
Stochastic Simulation: Lecture 15

Christoph Reisinger

Oxford University Mathematical Institute

Modified from earlier slides by Prof. Mike Giles.



Conditional expectations and value functions

Many applications require the approximations of conditional
expectations: Given a pair of random variables (X ,Y ) find

E[Y |X ].

I Control, BSDEs, optimal stopping,...

Several methods available:

I Approximation by trees (cf. PDE schemes for density).

I Quantisation, e.g. Bally and Pagés (2003).

I Kernel estimators, e.g. Bouchard and Touzi (2004) or Guyon
and Henry-Labordère (2012).

I Here: least-squares Monte Carlo.



Least-squares Monte Carlo

Use the representation u(X ) = E[Y |X ], which solves

u = arg min
v

E[(v(X )− Y )2].

Using a finite-dim. approximation
∑K

k=1 αkηk(x) = α>η(x),

α̂ = arg min
α

E[(α>η(X )− Y )2].

From M independent samples (X (m),Y (m)), one gets

ũ = α̃>η, α̃ = (A>A)−1A>

 Y (1)

...

Y (M)

 ,

where Am,k = ηk(X (m)).



Optimal Stopping

One of the biggest challenge for Monte Carlo methods is the
accurate and efficient solution of (high-dimensional) optimal
stopping problems.
In computational finance, this comes up in the pricing of options
with optional early exercise:

I Bermudan options: can exercise at a finite number of times tj
I American options: can exercise at any time

The challenge is to find/approximate the optimal strategy
(i.e. when to exercise) and hence determine the value and
sensitivities.



Optimal Stopping

Approximating the free optimal stopping (exercise) boundary
introduces new approximation errors:

I An approximate free boundary is inevitably sub-optimal
=⇒ under-estimate of “true” value, but accurate value for
the sub-optimal strategy

In financial terms:

I For the option buyer, sub-optimal price reflects value
achievable with sub-optimal strategy.

I For the option seller, “true” price is the best a purchaser
might achieve.

I Can also derive an upper bound approximation.



Optimal Stopping

Why is optimal stopping so difficult for Monte Carlo methods?

I leads naturally to a dynamic programming formulation
working backwards in time

I fairly minor extension for finite difference methods which
already march backwards in time

I doesn’t fit well with Monte Carlo methods which go forwards
in time



Problem Formulation

Following description in Glasserman’s book, we consider the
dynamic programming formulation:

Vm(x) = hm(x)

Vi−1(x) = max (hi−1(x),E[Vi (Xi ) | Xi−1 = x ])

where

I Xi is the underlying at exercise time ti
I Vi (x) is option value at time ti assuming not previously

exercised

I hi (x) is exercise value at time ti .



Problem Formulation

An alternative point of view considers stopping rules τ ,
the time at which the option is exercised.

For a particular stopping rule, the initial option value is

V0(X0) = E[hτ (Xτ )],

the expected value of the option at the time of exercise.

The best that can be achieved is then

V0(X0) = sup
τ

E[hτ (Xτ )]

giving an optimisation problem.



Problem Formulation

The continuation value is

Ci (x) = E[Vi+1(Xi+1) | Xi = x ]

and so the optimal stopping rule is

τ = min {i : hi (Xi ) > Ci (Xi )}

Approximating the continuation value leads to an approximate
stopping rule.



Longstaff–Schwartz Method

The Longstaff–Schwartz method (2001) is the one most used in
practice.

Start with N path simulations, each going from initial time t=0 to
maturity t=T = tm.

Problem is to assign a value to each path, working out whether
and when to exercise the option.

This is done by working backwards in time, approximating the
continuation value.



Longstaff–Schwartz Method

At maturity, the value of an option is

Vm(Xm) = hm(Xm)

At the previous exercise date, the continuation value is

Cm−1(x) = E[Vm(Xm) | Xm−1 = x ]

This is approximated using a set of R basis functions as

Ĉm−1(x) =
R∑

r=1

βr ψr (x)



Longstaff–Schwartz Method

The coefficients βr are obtained by a least-squares minimisation,
minimising

E
{(

E[Vm(Xm) | Xm−1]− Ĉm−1(Xm−1)
)2
}

Setting the derivative w.r.t. βr to zero gives

E
{(

E[Vm(Xm) | Xm−1]− Ĉm−1(Xm−1)
)
ψr (Xm−1)

}
= 0

and hence

E[Vm(Xm) ψr (Xm−1)] = E[Ĉm−1(Xm−1) ψr (Xm−1)]

=
∑
s

E[ψr (Xm−1) ψs(Xm−1)] βs



Longstaff–Schwartz Method

This set of equations can be written collectively as

Bψψ β = BVψ

where
(BVψ)r = E[Vm(Xm)ψr (Xm−1)]

(Bψψ)rs = E[ψr (Xm−1)ψs(Xm−1)]

Therefore,
β = B−1

ψψ BVψ



Longstaff–Schwartz Method

In the numerical approximation, each of the expectations is
replaced by an average over the values from the N paths.

For example,
E[ψr (Xm−1)ψs(Xm−1)]

is approximated as

N−1
N∑

n=1

ψr (X
(n)
m−1) ψs(X

(n)
m−1)

Assuming that the number of paths is much greater than the
number of basis functions, the main cost is in approximating Bψψ
with a cost which is O(N R2).



Longstaff–Schwartz Method

Once we have the approximation for the continuation value, what
do we do?

I if Ĉ (Xm−1) < hm−1(Xm−1), exercise the option and set

Vm−1 = hm−1(Xm−1)

I if not, then either set

Vm−1 = Ĉ (Xm−1)

(Tsitsiklis & van Roy, 1999), or

Vm−1 = Vm

(Longstaff & Schwartz, 2001)



Longstaff–Schwartz Method

The Longstaff–Schwarz treatment only uses the continuation
estimate to decide on the exercise boundary
– no loss of accuracy for paths which are not exercised.

The Tsitsiklis–van Roy treatment introduces more error, especially
for American options where it gets applied each timestep.

Also, Longstaff–Schwarz can do least squares fit only for paths
which are in-the-money (i.e. h(X ) > 0) – leads to improved
accuracy.

Because of the optimality condition, the option value is insensitive
to small perturbations in the exercise boundary, so can assume that
exercise of paths is not affected when computing first order Greeks.



Longstaff–Schwartz Method

Provided the basis functions are chosen suitably, the approximation

Ĉm−1(x) =
R∑

r=1

βr ψr (x)

gets increasingly accurate as R →∞. Longstaff & Schwartz used
5-20 basis functions in their paper
– I don’t know what is standard now in practice.

Having completed the calculation for tm−1, repeat the procedure
for tm−2 then tm−3 and so on. Could use different basis functions
for each exercise time – the coefficients β will certainly be different.



Longstaff–Schwartz Method

The estimate will tend to be biased low because of the sub-optimal
exercise boundary, however might be biased high due to using the
same paths for decision-making and valuation.

To be sure of being biased low, should use two sets of paths, one
to estimate the continuation value and exercise boundary, and the
other for the valuation.

However, in practice the difference is quite small.

This leaves the problem of computing an upper bound.



Upper Bounds

In Glasserman’s Bermudan version of Rogers’s continuous time
result (2002), he lets Mm be a martingale with M0 =0.

For any stopping rule τ , we have

E[hτ (Xτ )] = E[hτ (Xτ )−Mτ ] ≤ E[max
k

(hk(Xk)−Mk)]

This is true for all martingales M and all stopping rules τ and
hence

V0(X0) = sup
τ

E[hτ (Xτ )] ≤ inf
M

E[max
k

(hk(Xk)−Mk)]



Upper Bounds

The key duality result is that in fact there is equality

sup
τ

E[hτ (Xτ )] = inf
M

E[max
k

(hk(Xk)−Mk)]

so that

I an arbitrary τ gives a lower bound

I an arbitrary M gives an upper bound

I making both of them “better” shrinks the gap between them
to zero



Upper Bounds

Glasserman proves by induction that the optimal martingale M is
equal to

Mk =
k∑

i=1

(
Vi (Xi )− E[Vi (Xi ) | Xi−1]

)

To get a good upper bound we approximate this martingale.



Upper Bounds

The approximate martingale for a particular path is defined as

M̂k =
k∑

i=1

(
Vi (Xi )− P−1

∑
p

Vi (X
(p)
i )

)

where the X
(p)
i are values for Xi from P different mini-paths

starting at Xi−1, and

Vi (Xi ) = max(hi (Xi ), Ĉi (Xi ))

with Ĉi (Xi ) being the approximate continuation value given by the
Longstaff–Schwartz algorithm.

Glasserman suggests up to 100 mini-paths may be needed.



Forward-backward stochastic differential equations

I Another challenge for Monte Carlo simulation are control
problems.

I We roughly have the following correspondence:
I Conditional expectations ⇐⇒ Linear PDEs
I Value functions in control ⇐⇒ Parabolic, convex PDEs
I Value functions in games ⇐⇒ Parabolic, non-convex PDEs

In the drift-controlled case, can also write value as FBSDE:

dXt = b(t,Xt) dt + σ(t,Xt) dWt , X0 = x ;

dYt = f (t,Xt ,Yt ,Zt) dt + Zt dWt , YT = h(XT ).

The solution is the triplet (X ,Y ,Z )!

Dimensions: If X d-dim and W k − dim, ie σ is d × k-dim, then Y is 1-dim and

Z is k-dim.



Time-discretisation

Straightforward forward Euler–Maruyama scheme for X :

X̂n+1 = X̂n + b(tn, X̂n) ∆t + σ(tn, X̂n) ∆Wn.

For (Y ,Z ), consider the backward scheme: ŶN = h(X̂N), ẐN = 0,
and, for n = N − 1, . . . , 0:

Ẑn =
1

∆t
E[∆W>

n Ŷn+1|Fn],

Ŷn = E[Ŷn+1 − f (X̂n, Ŷn+1, Ẑn)∆t|Fn].



Least-squares Monte Carlo
Write Ŷn = ŷn(X̂n), Ẑn = ẑn(X̂n) (due to Markovianity), and

ŷn(x) ≈
K∑

k=1

αn,kηk(n, x), ẑn,i (x) ≈
K∑

k=1

βn,i ,kζi ,k(n, x),

for suitable basis functions η, ζ, and weights α, β.

Then define the scheme: ỹN(x) = h(x), z̃N(x) = 0,

βn,i = arg min
1

M

M∑
m=1

(
β>ζi (n, X̂

(m)
n )−

∆W
(m)
i ỹn+1(X̂

(m)
n+1)

∆t

)2

,

z̃n,i (x) = β>n,iζi (n, x),

αn = arg min
1

M

M∑
m=1

(
α>η(n, X̂

(m)
n )− ỹn+1(X̂

(m)
n+1)+

f
(
tn, X̂n, ỹn+1(X̂

(m)
n+1), z̃n(X̂

(m)
n )

)
∆t
)2
,

ỹn(x) = β>n,iη(n, x).



Final Words

I Many applications require regression as part of simulation.

I Control, optimal stopping outlined here.

I Full convergence analysis – time stepping error, simulation
error, regression error – is possible.

I Important application in finance: risk simulation and
“valuation adjustments”.


