Stochastic Simulation: Lecture 16

Christoph Reisinger
Oxford University Mathematical Institute

Modified from earlier slides by Prof. Mike Giles.

Simulation and deep learning

In this lecture, we give an overview of neural networks enhancing
Monte Carlo methods.

We give some general methodology and three case studies from
finance:
» policy gradient methods, e.g. in optimal allocation problems;
» deep optimal stopping;
» deep BSDE solver, e.g. for valuation adjustments.
Need following ingredients (see also “Theories of Deep Learning”):
» (dynamic programming and BSDEs;)
» neural network architectures;
» (stochastic) gradient descent optimisation.

Stochastic control

Consider
dXt = b(t,Xt;at) dt-l—a(t,Xt;at) th, X() = X,
where (a¢); is a suitable admissible control process.

The control is chosen such that

-
E [/ f(Xe,ar)dt + g(X7)| — min.
0 «
Can be formulated as
» (Hamilton—Jacobi—-Bellman) PDE via dynamic programming;

» FBSDE via stochastic maximum principle.

Policy gradient methods

Can also write the control in feedback form, oy = a(t, X;). Then
» parametrize as a(t, X:; p);
» discretize X by Euler—-Maruyama,

X2, 1 = XE+b(tn, X2; a(tn, XE: p))) Att+o(tn, XE; a(tn, XE: p)) AW,

> generate M samples X,’,)’(m) and solve

M N-—
1 .
o FXE™ a(tn, XE: p)) AL+ g(XE™) min
=0

|_\

m=1

3

Multiperiod optimal investment

Reference: A Data Driven Neural Network Approach to Optimal Asset Allocation
for Target Based Defined Contribution Pension Plans, Yuying Li and Peter Forsyth
(2019).

Consider:

» M risky and risk-free assets, with (Markovian) price process
5(t) = (Sm(t))1<m<m-

Intervention times T ={0 =ty < t; < ... <ty = T}.
Returns R(tp) = (Rm(tn))1<m<m:-

A fraction p7" invested in the m-th asset in (t,, th+1)-

The total wealth W(t,).

Cash injections q(t,) at time t,.

v

v

v

v

v

Model and objective
Then we have, for n=0,1,...,N —1:

W(th) = W(t,)+q(ta)
W(t,.) = phR(ta)W(t])

n

The investor aims to solve the minimisation problem

min g(W(T)) =E [min(W(T) — W*,0)?]
{pos--spn—1}
< < = —
subject to O<pn=1l, n=01.. ,N—-1

17p,=1, n=0,1,...,N—1

for a target W*.

> Related to mean-variance optimisation problem.

» Could allow short-selling, leverage constraints, etc.

Parametrization

» For small M, can solve HJB (Markovian case).
> Here, optimise directly over p by simulation.
» [F&L (19)] use p, = p(F(tn)), F(t) a d-vector of features;

» satisfy the constraints by construction:

Sk X (F ()

S e xkihi(F(tn)”

pm(F(tn)) = m=1,...,M,

» where

h(F(t)) = o (Z Ff(mz,-j) o=

» and z € R/ x € R’*M are the weights of the output and
input layer, respectively.

Optimisation

The optimisation problem becomes

min E [min(W(T)— W, 0))2]

zE]RdX/, xER/XM

where W is determined from z and x, and F, as above.

» Estimate expectation with L sample paths of S, F, W;

> features can be S itself;

» cost of gradient: O(/(d + M)NL); cost of Hessian:
O(/?(d + M)?NL) (see [F&L (19)]);

» in the [F&L (19)] application, /(d + M) small and trust region
method feasible;

» otherwise SGD.

Optimal stopping

Key reference: Deep optimal stopping: Sebastian Becker, Patrick
Cheridito, Arnulf Jentzen (2020).

Consider:
» a discrete-time Markov process (X,)n—1..n in RY;

> an optimal stopping problem

sup E[g(7, X7)];
TET

» auxiliary problems
sup E[g(7, X7)],
T€Tn

where T, ={r €T : 7> n}.

NN approximation

» Define functions f,, : R — {0,1} and

» candidate stopping times
N m—1
Tn = Z Mipm(Xm) H(l — fi(X)))-

m=n Jj=n

» Approximation with trial functions £,
N m—1

Tn = Z mfem(Xm) H(l - fej(Xj)),

m=n Jj=n

v

where f¥ = Woy?, W(x) =1/(1 + exp(—x)) and ¢ a NN
parametrised by 6.

v

Optimise recursively over 6.

FBSDEs (again)

Recall the FBSDE

dXt — b(t,Xt) dt"‘U(t,Xt) th’ XO = X;
dYt — f(tuxty Yt>Zt) dt+Zt th, YT f— h(XT)

Discretize (forward):

Xps1 = Xo+ b(tn, Xn) At + 0(tn, Xn) AW,,

Yo = Yot f(Xn, Yo, Z,) At + Z, AW,

Use a “shooting method” to optimise over Z for Y to “hit" hat T.

Deep BSDE solver

» Parametrize Z, = 2,,()?,,; p), where 2, is a parametric function
of x and p a parameter; denote the resulting Y for given p
and Yy = £ by YP£,

> In the “deep” solver, Z, is a multi-layer, fully connected,
neural network with the parameter p containing the weights
and biases.

» Now write the (discrete) FBSDE as optimisation problem:

B[(VH* = h(Xn))] = min.

> In practice, generate M samples (X(™, Y2:£(m) and solve

M
1 ~ ~
=5 yeo(m _pexUmyy2 o min.

Error bounds

Define a suitable continuous-time interpolant ()~<t, \N/t, Z) Then

~ ~ T ~
sup (]E|Xt — X: 2+ E|Y; - Yt\2) + / E|Z; — Z;|* dt
0<t<T 0

<C (At Y E| Yy — h()?T)|2.)

» These bounds are “a posteriori”, i.e. the r-h-s can be
estimated from the numerical solution (subject to C);

> the first term on the r-h-s is the time stepping error;
» the second term includes the optimisation error;
» also hold in the coupled case with b(t, X, Y:), o(t, X, Y);

» see J. Han & J. Long, Convergence of the deep BSDE method
for coupled FBSDEs, Probability, Uncertainty and
Quantitative Risk, 2020.

Counterparty credit risk

References:
Financial Modeling, A Backward Stochastic Differential Equations Perspective,
Stephane Crépey (2013).

Deep learning-based numerical methods for ... backward stochastic differential
equations, W. E, J. Han and A. Jentzen (2017).

» Two agents: the bank (B, our perspective), the counterparty (C);

v

Default times: 7/, for j € {B,C} and 7 = min(78,7¢};
Risky assets: X; = (X{, ..., X?) solution of a SDE;

v

v

Cash accounts: B{, je{B,C}

v

Collaterals: C; exchanged between the parties.

Valuation adjustments

Banks need to compute Credit Valuation Adjustments (CVA), Debt Valuation
Adjustments (DVA), Funding Valuation Adjustments (FVA), and other adjustments
(xVAs).

Consider a portfolio of M (European) contingent claims:
ym = EC e_rm(T’"_t)gm(XTm)\ft} ., m=1,...,M, telo,T],
solving the following (decoupled) FBSDE:

AX = p(t, X)) dt — o(t, X;) AW,
—AY" = —nYrde — Y0 ZEmawf,
Xo = X,

Y7r'n’" = gm(XTm)'

Valuation adjustments

Let Vt = ZM

m=1

Y/" and t < 7 (pre-default). Consider:

XVA: = —CVA; + DVA; + FVA;

where (X the default intensities, r risk-free rates)

.
CVA, == BfIEJ@{(l—RC)/ ; (Vu—C)~ /\CQdu’ft}
DVA, := BfE@ RB)/ (Vu—C)")\B’Qdu‘}}}
T (o _ _ _ +
FVA, := BIE® [/ (ry ru)(YuBFXVAu C) du| 7]
t u

T (,f,b _ N _ -
o BtF]EQ |:/ (ru ru) (Yu ~XVAU Cu) du‘ft}
t BI’

u

Value adjustments

The following BSDE representation also holds:

—dXVA, = f (Y, XVA,) dt — S0, UkdWe?,
XVAT =0,

where
f(Ye, XVA,) =
~(1-RY(Y:e—C)) Ac©
+(1—RB) (Y. —C,)" ABC
(= r) (Ve = XVA = C) T = (PP = 1) (Ve = XVA -)~
+

el = r)CGE = (PP = R)CL

XVA computation

(Numerical) solution of BSDEs in possibly high dimension:
» for the exposures Y, m=1,..., M,
> for the XVA itself.

(See, eg: Cesari et al. ('10), Shoftner (‘08) , Pham, Huré, Warin (‘19),
Abbas-Turki, Crépey, Diallo (‘18) et al.)

References: Regression based techniques of “Longstaff-Schwartz”" type
(coupled with Picard iteration for recursive XVAs), nested MC

simulations, PDE techniques (see, eg: Cesari et al. (‘10), Shoftner (‘08) ,
Pham, Huré, Warin (‘19), Abbas-Turki, Crépey, Diallo (‘18) et al.)

Can apply the deep BSDE solver by E and Jentzen (‘17) (similar to
She, Gercu ('17)).

Deep BSDE solver

Algorithm 1: Deep algorithm for exposure simulation
Set parameters: N, L (time steps and Monte Carlo paths)

Fix architecture of ANN (with parameters p)

Deep BSDE solver for exposure computation(N,L)

Simulate L paths (X,(,@)n:g ,,,,, v e=1,... L.

Define the neural networks (©f)n=1,... n;

form=1,...,Mdo

L
2
minimize over £ and p %Z (gm(X,(f)) _ yﬁ,pé,(z)) (recall: Y, — gm(Xey) = 0)

=1

y:ﬁu&(l) _ y;n-,p-,{,(f) + r,,y,',"’p’g'(g)At—i- (Zﬁ’(l))TAWn(Z),
subject to yg"p‘g’(’z) =,

27 0=gn(X3").

Save the optimizer (£, 5™).

end
end

Non-recursive adjustments

CVA and DVA can be written as EQ[ftT CD(u,VL,)du‘]:t}.

Algorithm 2: Deep method non-recursive adjustments

Set parameters: N, L, P (time steps, inner/outer paths);
Fix architecture of ANN.
Apply Algorithm 1.
Simulate (V7" npo1.p. m=1,..., M,
where £ =E&m p=p"
Define Y =M ym®) n—o,.. N, p=1,....P

P N
. L 3 55(p)
Compute the adjustment P <§ 1.V, ")

i=1 \n=0

where 7),, are weights of the used quadrature formula.

Deep algorithm for XVA computation

Algorithm 3: Deep algorithm for xVA simulation
Set parameters; fix architecture of ANNs.
Apply Algorithm 1
Simulate (V7"?)_o. npo1.po m=1,..., M,
where £ = &7, p=p™
Define Y? = M ym™® 5 —0,... N, p=1,...,P Deep BSDE
solver for adjustment computation (N,P):

Define the neural networks (v/$)n=1.....n;
1< 2

minimize over v and ¢, = Z (X,\C,"”(p)) (recall: XVA,, =0)
P par

A0 = X0 0) KO)AL+ W) TAWP,
subject to Xéﬂ”’(”) =,
USSP = <.

end

Closing words

> Neural networks are effective function approximators in high
dimensions.

» Can be used to approximate decision policies, value functions,
or their gradients.

» Requires approximation of, and sampling from, underlying
dynamics (— Monte Carlo methods).

» Optimisation over hyper-parameters usually by SGD.

» Requires efficient computation of gradients (— back
propagation).

> Impressive empirical results giving “good” accuracy in high
dimensions.

