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Simulation and deep learning

In this lecture, we give an overview of neural networks enhancing
Monte Carlo methods.

We give some general methodology and three case studies from
finance:
» policy gradient methods, e.g. in optimal allocation problems;
» deep optimal stopping;
» deep BSDE solver, e.g. for valuation adjustments.
Need following ingredients (see also “Theories of Deep Learning”):
» (dynamic programming and BSDEs;)
» neural network architectures;
» (stochastic) gradient descent optimisation.



Stochastic control

Consider
dXt = b(t,Xt;at) dt-l—a(t,Xt;at) th, X() = X,
where (a¢); is a suitable admissible control process.

The control is chosen such that

-
E [/ f(Xe,ar)dt + g(X7)| — min.
0 «
Can be formulated as
» (Hamilton—Jacobi—-Bellman) PDE via dynamic programming;

» FBSDE via stochastic maximum principle.



Policy gradient methods

Can also write the control in feedback form, oy = a(t, X;). Then
» parametrize as a(t, X:; p);
» discretize X by Euler—-Maruyama,

X2, 1 = XE+b(tn, X2; a(tn, XE: p))) Att+o(tn, XE; a(tn, XE: p)) AW,

> generate M samples X,’,)’(m) and solve
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Multiperiod optimal investment

Reference: A Data Driven Neural Network Approach to Optimal Asset Allocation
for Target Based Defined Contribution Pension Plans, Yuying Li and Peter Forsyth
(2019).

Consider:

» M risky and risk-free assets, with (Markovian) price process
5(t) = (Sm(t))1<m<m-

Intervention times T ={0 =ty < t; < ... <ty = T}.
Returns R(tp) = (Rm(tn))1<m<m:-

A fraction p7" invested in the m-th asset in (t,, th+1)-

The total wealth W(t,).

Cash injections q(t,) at time t,.
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Model and objective
Then we have, for n=0,1,...,N —1:

W(th) = W(t,)+q(ta)
W(t,.) = phR(ta)W(t])

n

The investor aims to solve the minimisation problem

min g(W(T)) =E [min(W(T) — W*,0)?]
{pos--spn—1}
< < = —
subject to O<pn=1l, n=01.. ,N—-1

17p,=1, n=0,1,...,N—1

for a target W*.

> Related to mean-variance optimisation problem.

» Could allow short-selling, leverage constraints, etc.



Parametrization

» For small M, can solve HJB (Markovian case).
> Here, optimise directly over p by simulation.
» [F&L (19)] use p, = p(F(tn)), F(t) a d-vector of features;

» satisfy the constraints by construction:

Sk X (F ()

S e xkihi(F(tn)”

pm(F(tn)) = m=1,...,M,

» where

h(F(t)) = o (Z Ff(mz,-j) o=

» and z € R/ x € R’*M are the weights of the output and
input layer, respectively.



Optimisation

The optimisation problem becomes

min E [min(W( T)— W, 0))2]

zE]RdX/, xER/XM

where W is determined from z and x, and F, as above.

» Estimate expectation with L sample paths of S, F, W;

> features can be S itself;

» cost of gradient: O(/(d + M)NL); cost of Hessian:
O(/?(d + M)?NL) (see [F&L (19)] );

» in the [F&L (19)] application, /(d + M) small and trust region
method feasible;

» otherwise SGD.



Optimal stopping

Key reference: Deep optimal stopping: Sebastian Becker, Patrick
Cheridito, Arnulf Jentzen (2020).

Consider:
» a discrete-time Markov process (X,)n—1..n in RY;

> an optimal stopping problem

sup E[g(7, X7)];
TET

» auxiliary problems
sup E[g(7, X7)],
T€Tn

where T, ={r €T : 7> n}.



NN approximation

» Define functions f,, : R — {0,1} and

» candidate stopping times
N m—1
Tn = Z Mipm(Xm) H(l — fi(X)))-

m=n Jj=n

» Approximation with trial functions £,
N m—1

Tn = Z mfem(Xm) H(l - fej(Xj)),

m=n Jj=n

v

where f¥ = Woy?, W(x) =1/(1 + exp(—x)) and ¢ a NN
parametrised by 6.

v

Optimise recursively over 6.



FBSDEs (again)

Recall the FBSDE

dXt — b(t,Xt) dt"‘U(t,Xt) th’ XO = X;
dYt — f(tuxty Yt>Zt) dt+Zt th, YT f— h(XT)

Discretize (forward):

Xps1 = Xo+ b(tn, Xn) At + 0(tn, Xn) AW,,

Yo = Yot f(Xn, Yo, Z,) At + Z, AW,

Use a “shooting method” to optimise over Z for Y to “hit" hat T.



Deep BSDE solver

» Parametrize Z, = 2,,()?,,; p), where 2, is a parametric function
of x and p a parameter; denote the resulting Y for given p
and Yy = £ by YP£,

> In the “deep” solver, Z, is a multi-layer, fully connected,
neural network with the parameter p containing the weights
and biases.

» Now write the (discrete) FBSDE as optimisation problem:

B[(VH* = h(Xn))] = min.

> In practice, generate M samples (X(™, Y2:£(m) and solve

M
1 ~ ~
=5 yeo(m _pexUmyy2 o min.



Error bounds

Define a suitable continuous-time interpolant ()~<t, \N/t, Z) Then

~ ~ T ~
sup (]E|Xt — X: 2+ E|Y; - Yt\2) + / E|Z; — Z;|* dt
0<t<T 0

<C (At Y E| Yy — h()?T)|2.)

» These bounds are “a posteriori”, i.e. the r-h-s can be
estimated from the numerical solution (subject to C);

> the first term on the r-h-s is the time stepping error;
» the second term includes the optimisation error;
» also hold in the coupled case with b(t, X, Y:), o(t, X, Y);

» see J. Han & J. Long, Convergence of the deep BSDE method
for coupled FBSDEs, Probability, Uncertainty and
Quantitative Risk, 2020.



Counterparty credit risk

References:
Financial Modeling, A Backward Stochastic Differential Equations Perspective,
Stephane Crépey (2013).

Deep learning-based numerical methods for ... backward stochastic differential
equations, W. E, J. Han and A. Jentzen (2017).

» Two agents: the bank (B, our perspective), the counterparty (C);

v

Default times: 7/, for j € {B,C} and 7 = min(78,7¢};
Risky assets: X; = (X{, ..., X?) solution of a SDE;

v

v

Cash accounts: B{, je{B,C}

v

Collaterals: C; exchanged between the parties.



Valuation adjustments

Banks need to compute Credit Valuation Adjustments (CVA), Debt Valuation
Adjustments (DVA), Funding Valuation Adjustments (FVA), and other adjustments
(xVAs).

Consider a portfolio of M (European) contingent claims:
ym = EC e_rm(T’"_t)gm(XTm)\ft} ., m=1,...,M, telo,T],
solving the following (decoupled) FBSDE:

AX = p(t, X)) dt — o(t, X;) AW,
—AY" = —nYrde — Y0 ZEmawf,
Xo = X,

Y7r'n’" = gm(XTm)'



Valuation adjustments

Let Vt = ZM

m=1

Y/" and t < 7 (pre-default). Consider:

XVA: = —CVA; + DVA; + FVA;

where (X the default intensities, r risk-free rates)

.
CVA, == BfIEJ@{(l—RC)/ ; (Vu—C)~ /\CQdu’ft}
DVA, := BfE@ RB)/ (Vu—C)" )\B’Qdu‘}}}
T (o _ _ _ +
FVA, := BIE® [/ (ry ru)(YuBFXVAu C) du| 7]
t u

T (,f,b _ N _ -
o BtF]EQ |:/ (ru ru) (Yu ~XVAU Cu) du‘ft}
t BI’

u



Value adjustments

The following BSDE representation also holds:

—dXVA, = f (Y, XVA,) dt — S0, UkdWe?,
XVAT =0,

where
f(Ye, XVA,) =
~(1-RY(Y:e—C)) Ac©
+(1—RB) (Y. —C,)" ABC
(= r) (Ve = XVA = C) T = (PP = 1) (Ve = XVA - )~
+

el = r)CGE = (PP = R)CL



XVA computation

(Numerical) solution of BSDEs in possibly high dimension:
» for the exposures Y, m=1,..., M,
> for the XVA itself.

(See, eg: Cesari et al. ('10), Shoftner (‘08) , Pham, Huré, Warin (‘19),
Abbas-Turki, Crépey, Diallo (‘18) et al.)

References: Regression based techniques of “Longstaff-Schwartz”" type
(coupled with Picard iteration for recursive XVAs), nested MC

simulations, PDE techniques (see, eg: Cesari et al. (‘10), Shoftner (‘08) ,
Pham, Huré, Warin (‘19), Abbas-Turki, Crépey, Diallo (‘18) et al.)

Can apply the deep BSDE solver by E and Jentzen (‘17) (similar to
She, Gercu ('17)).



Deep BSDE solver

Algorithm 1: Deep algorithm for exposure simulation
Set parameters: N, L (time steps and Monte Carlo paths)

Fix architecture of ANN (with parameters p)

Deep BSDE solver for exposure computation(N,L)

Simulate L paths (X,(,@)n:g ,,,,, v e=1,... L.

Define the neural networks (©f)n=1,... n;

form=1,...,Mdo

L
2
minimize over £ and p %Z (gm(X,(f)) _ yﬁ,pé,(z)) (recall: Y, — gm(Xey) = 0)

=1

y:ﬁu&(l) _ y;n-,p-,{,(f) + r,,y,',"’p’g'(g)At—i- (Zﬁ’(l))TAWn(Z),
subject to yg"p‘g’(’z) =,

27 0=gn(X3").

Save the optimizer (£, 5™).

end
end




Non-recursive adjustments

CVA and DVA can be written as EQ[ftT CD(u,VL,)du‘]:t}.

Algorithm 2: Deep method non-recursive adjustments

Set parameters: N, L, P (time steps, inner/outer paths);
Fix architecture of ANN.
Apply Algorithm 1.
Simulate (V7" npo1.p. m=1,..., M,
where £ =E&m p=p"
Define Y =M ym®) n—o,.. N, p=1,....P

P N
. L 3 55(p)
Compute the adjustment P <§ 1.V, ")

i=1 \n=0

where 7),, are weights of the used quadrature formula.




Deep algorithm for XVA computation

Algorithm 3: Deep algorithm for xVA simulation
Set parameters; fix architecture of ANNs.
Apply Algorithm 1
Simulate (V7"?)_o. npo1.po m=1,..., M,
where £ = &7, p=p™
Define Y? = M ym™® 5 —0,... N, p=1,...,P Deep BSDE
solver for adjustment computation (N,P):

Define the neural networks (v/$)n=1.....n;
1< 2

minimize over v and ¢, = Z (X,\C,"”(p)) (recall: XVA,, =0)
P par

A0 = X0 0) KO )AL+ W) TAWP,
subject to Xéﬂ”’(”) =,
USSP = <.

end




Closing words

> Neural networks are effective function approximators in high
dimensions.

» Can be used to approximate decision policies, value functions,
or their gradients.

» Requires approximation of, and sampling from, underlying
dynamics (— Monte Carlo methods).

» Optimisation over hyper-parameters usually by SGD.

» Requires efficient computation of gradients (— back
propagation).

> Impressive empirical results giving “good” accuracy in high
dimensions.



