

C4.3 Functional Analytic Methods for PDEs Lectures 15-16

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2022

- **•** Linear elliptic equations of second order.
- Classical and weak solutions.
- **•** Energy estimates.
- First existence theorem: Riesz representation theorem.
- First existence theorem: Direct method of the calculus of variation.
- Second existence theorem: Fredholm alternative.
- Third existence theorem: Spectral theory.
- $H²$ regularity of weak solutions to linear elliptic equations.
- $H²$ regularity of weak solutions to linear elliptic equations.
- Continuity of weak solutions to linear elliptic equations.
- A priori L^{∞} estimates.
- Guided reading groups' presentation.

A priori H^2 estimates in the general case

- We prove for $a_{ij}=\delta_{ij}$ that if $u\in H^1(\mathbb{R}^n)$ satisfies $-\partial_i(a_{ij}\partial_j u) = f$ on \mathbb{R}^n with $f \in L^2(\mathbb{R}^n)$, then $u \in H^2(\mathbb{R}^n)$.
- We now turn to the case where a is variable. To better convey central ideas, we will focus in the rest of this course to a priori estimates: We assume that the solution has the right regularity and will be concerned with establishing quantitative estimates.
- More precisely, we suppose that u belongs to $H^2(\mathbb{R}^n)$ and is a weak solution to $Lu = f$ in \mathbb{R}^n , and would like to bound $\|u\|_{H^2(\mathbb{R}^n)}$ in terms of the bounds for the coefficients of L, $||f||_{L^2(\mathbb{R}^n)}$ and $||u||_{H^1(\mathbb{R}^n)}$.
- For simplicity, we will assume that $b \equiv 0$ and $c \equiv 0$. You should check that the methods we use work in the general case.

Theorem

Suppose $a \in C^1(\mathbb{R}^n)$, $\nabla a \in L^\infty(\mathbb{R}^n)$ and $L = -\partial_i(a_{ij}\partial_j)$. There exist $0 < \delta_0 \ll 1$ and $C > 0$ such that if $||a_{ii} - \delta_{ii}||_{L^{\infty}(\mathbb{R}^n)} \leq \delta_0$ and if $u \in H^2(\mathbb{R}^n)$ and satisfies $Lu = f$ in \mathbb{R}^n in the weak sense, then

$$
||u||_{H^2(\mathbb{R}^n)} \leq C(||f||_{L^2(\mathbb{R}^n)} + ||u||_{H^1(\mathbb{R}^n)}).
$$

Proof

o Claim: *u* satisfies

$$
-\Delta u = f + (a_{ij} - \delta_{ij})\partial_i\partial_j u + \partial_i a_{ij}\partial_j u =: \tilde{f},
$$

that is, for all $v \in C_c^{\infty}(\mathbb{R}^n)$,

$$
\int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, dx = \int_{\mathbb{R}^n} \left[f + (a_{ij} - \delta_{ij}) \partial_i \partial_j u + \partial_i a_{ij} \partial_j u \right] v \, dx.
$$

Proof

Claim: for $v \in C_c^{\infty}(\mathbb{R}^n)$,

$$
\int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, dx = \int_{\mathbb{R}^n} \left[f + (a_{ij} - \delta_{ij}) \partial_i \partial_j u + \partial_i a_{ij} \partial_j u \right] v \, dx.
$$

 \star We note that $(\mathsf{a}_{ij}-\delta_{ij})\mathsf{v}\in\mathcal{C}_c^1(\mathbb{R}^n).$ Hence, by definition of weak derivatives,

$$
\int_{\mathbb{R}^n} (a_{ij} - \delta_{ij}) \partial_i \partial_j uv \, dx = - \int_{\mathbb{R}^n} \partial_j u \partial_i [(a_{ij} - \delta_{ij})v] \, dx
$$
\n
$$
= - \int_{\mathbb{R}^n} \partial_j u [(a_{ij} - \delta_{ij}) \partial_i v + \partial_i a_{ij} v] \, dx
$$
\n
$$
= \int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, dx - \int_{\mathbb{R}^n} a_{ij} \partial_j u \partial_i v \, dx
$$
\n
$$
- \int_{\mathbb{R}^n} \partial_i a_{ij} v \, dx.
$$

Proof

Claim: for $v \in C_c^{\infty}(\mathbb{R}^n)$,

$$
\int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, dx = \int_{\mathbb{R}^n} \left[f + (a_{ij} - \delta_{ij}) \partial_i \partial_j u + \partial_i a_{ij} \partial_j u \right] v \, dx.
$$

$$
\star \int_{\mathbb{R}^n} (a_{ij} - \delta_{ij}) \partial_i \partial_j uv \, dx = \int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, dx - \int_{\mathbb{R}^n} a_{ij} \partial_j u \partial_i v \, dx - \int_{\mathbb{R}^n} \partial_i a_{ij} v \, dx.
$$

 \star As $Lu = t$, we have

$$
\int_{\mathbb{R}^n} a_{ij} \partial_j u \partial_i v \, dx = \int_{\mathbb{R}^n} f v \, dx.
$$

 \star Putting the two identities together, we obtain the claim.

Proof

- We have proved the claim that $-\Delta u = \tilde{f} = f + (a_{ii} - \delta_{ii})\partial_i\partial_i u + \partial_i a_{ii}\partial_i u.$
- By the lemma on the H^2 regularity for $-\Delta$, we have a constant C such that

$$
\|\nabla^2 u\|_{L^2} \leq C \|\tilde{f}\|_{L^2}
$$

\n
$$
\leq C \Big[\|f\|_{L^2} + \|a_{ij} - \delta_{ij}\|_{L^\infty} \|\nabla^2 u\|_{L^2(\Omega)}
$$

\n
$$
+ \|\partial_i a_{ij}\|_{L^\infty} \|\nabla u\|_{L^2}\Big].
$$

• It is readily seen that if $C||a_{ii} - \delta_{ii}||_{L^{\infty}} < 1$, then the second term on the right hand side can be absorbed back to the left hand side, giving the conclusion:

$$
\|\nabla^2 u\|_{L^2}\leq C'\Big[\|f\|_{L^2}+\|\nabla u\|_{L^2}\Big].
$$

Theorem

Suppose $a \in C^1(\mathbb{R}^n)$, $\nabla a \in L^\infty(\mathbb{R}^n)$ and $L = -\partial_i(a_{ij}\partial_j)$. There exists $C > 0$ such that if $u \in H^2(\mathbb{R}^n)$ and satisfies $Lu = f$ in \mathbb{R}^n in the weak sense, then

$$
||u||_{H^2(\mathbb{R}^n)} \leq C(||f||_{L^2(\mathbb{R}^n)} + ||u||_{H^1(\mathbb{R}^n)}).
$$

Proof

Let $w = \partial_k u \in H^1(\mathbb{R}^n)$. We would like to bound $||w||_{H^1}$. **Q** Claim: w satisfies

$$
Lw = \partial_i h_i \text{ where } h_i = \partial_k a_{ij} \partial_j u + f \delta_{ik},
$$

that is, for $v \in C_c^{\infty}(\mathbb{R}^n)$,

$$
\int_{\mathbb{R}^n} a_{ij} \partial_j w \partial_i v \, dx = - \int_{\mathbb{R}^n} [\partial_k a_{ij} \partial_j u + f \, \delta_{ik}] \partial_i v \, dx.
$$

e

Proof

Claim: for $v \in C_c^{\infty}(\mathbb{R}^n)$,

$$
\int_{\mathbb{R}^n} a_{ij} \partial_j w \partial_i v \, dx = - \int_{\mathbb{R}^n} [\partial_k a_{ij} \partial_j u + f \, \delta_{ik}] \partial_i v \, dx.
$$

 \star Note that $\overline{a_{ij}}\partial_i v\in \mathcal{C}^1_{\textsf{c}}(\mathbb{R}^n)$. Hence, by definition of weak derivatives,

$$
\int_{\mathbb{R}^n} a_{ij} \partial_j w \partial_i v \, dx = \int_{\mathbb{R}^n} \partial_k \partial_j u (a_{ij} \partial_i v) \, dx = - \int_{\mathbb{R}^n} \partial_j u \partial_k (a_{ij} \partial_i v) \, dx
$$
\n
$$
= - \int_{\mathbb{R}^n} a_{ij} \partial_j u \partial_k \partial_i v \, dx - \int_{\mathbb{R}^n} \partial_j u \partial_k a_{ij} \partial_i v \, dx
$$

Proof

Claim: for $v \in C_c^{\infty}(\mathbb{R}^n)$,

$$
\int_{\mathbb{R}^n} a_{ij} \partial_j w \partial_i v \, dx = - \int_{\mathbb{R}^n} [\partial_k a_{ij} \partial_j u + f \, \delta_{ik}] \partial_i v \, dx.
$$

- \star $\int_{\mathbb{R}^n}$ a_{ij}∂_j w∂_i v dx = \int $\displaystyle{\int_{\mathbb{R}^n} \mathsf{a}_{ij} \partial_j u \, \partial_k \partial_i v \, dx - \int_{\mathbb{R}^n} }$ $\int_{\mathbb{R}^n} \partial_j u \, \partial_k a_{ij} \partial_i v \, dx.$ \star On the other hand, using $\partial_k v$ as a test function for $Lu = f$, we have Z $\displaystyle{\int_{\mathbb{R}^n} \mathsf{a}_{ij} \partial_j u \, \partial_i \partial_k v \, dx = \int_{\mathbb{R}^n} \mathsf{a}_{ij} \partial_j u \, d\mathsf{x}}$ $\int\limits_{\mathbb{R}^n} f \partial_k v \, dx.$
- \star Putting the two identities together we get the claim.

Proof

- We have thus shown that $Lw = \partial_i h_i$ with $h_i = \partial_k a_{ii} \partial_i u + f \delta_{ik}$.
- Using w as a test function for this equation, we get

$$
\int_{\mathbb{R}^n} a_{ij} \partial_j w \partial_i w \, dx = - \int_{\mathbb{R}^n} h_i \partial_i w \, dx.
$$

Using ellipticity on the left side and Cauchy-Schwarz' inequality on the right side we get

$$
\lambda \|\nabla w\|_{L^2}^2 \leq \|h\|_{L^2} \|\nabla w\|_{L^2} \leq \frac{\lambda}{2} \|\nabla w\|_{L^2}^2 + \frac{1}{2\lambda} \|h\|_{L^2}^2.
$$

. We thus have

$$
\|\nabla w\|_{L^2}\leq C\|h\|_{L^2}\leq C\Big[\|f\|_{L^2}+\|\nabla u\|_{L^2}\Big].
$$

Recalling that $w = \partial_k u$, we're done.

- Recall the example of the equation $-(au')' = f$ in $(-1, 1)$ with $a = \chi_{(-1,0)} + 2\chi_{(0,1)}$.
- If $f \in L^q$, then $au' \in W^{1,q}$ and so u' is presumably discontinuous.
- Nevertheless as u' exists by assumption, u is continuous.
- In higher dimension, the existence of ∇u (in L^2) doesn't ensure continuity of u. Nevertheless, a major result due to De Giorgi, Moser and Nash around late 50s asserts that u is indeed continuous!

Theorem (De Giorgi-Moser-Nash's theorem)

Suppose that a, b, $c\in L^\infty(\Omega)$, a is uniformly elliptic, and $\mathcal L=-\partial_i(a_{ij}\partial_j)+b_i\partial_i+c$. If $u\in H^1(\Omega)$ satisfies $Lu=f$ in Ω in the weak sense for some $f \in L^q(\Omega)$ with $q > \frac{n}{2}$ $\frac{n}{2}$, then u is locally Hölder continuous, and for any open ω such that $\bar{\omega} \subset \Omega$ we have

$$
||u||_{C^{0,\alpha}(\omega)} \leq C(||f||_{L^q(\Omega)} + ||u||_{H^1(\Omega)})
$$

where the constant C depends only on n, Ω , ω , a, b, c, and the Hölder exponent α depends only on n, Ω , ω , a.

We make some observations:

- In De Giorgi-Moser-Nash's theorem, no continuity is assumed on the coefficients a_{ii} .
- **•** If a_{ii} is continuous, one can imagine using the method of freezing coefficients to reduce to the case a_{ii} is constant. Hence the model equation is $-\Delta u = f$.
- In 1d, we have $-u'' = f$. If $f \in L^q$, we then have that $u \in W^{2,q}_{loc}$.
- It turns out that, in any dimension, if $-\Delta u = f$ and $f \in L^q$, then $u \in W^{2,q}_{loc}$. In particular, when $n/2 < q < n$, by the embedding $W_{loc}^{2,q} \hookrightarrow W_{loc}^{1,\frac{qn}{n-q}} \hookrightarrow C_{loc}^{0,2-\frac{n}{q}}$, we have u is Hölder continuous.

To illustrate the method, we will assume for simplicity that $b \equiv 0$ and $c = 0$. We will focus on

- a priori L^∞ estimates: we assume that the solution $u\in L^\infty$ and try to establish estimates for $||u||_{L^{\infty}}$.
- We assume in addition for now a boundary condition: $u = 0$ on ∂B_1 .

Theorem (Global a priori L^∞ estimates)

Suppose that $a\in L^\infty(B_1)$, a is uniformly elliptic, $b\equiv 0$, $c\equiv 0$ and $\mathcal{L}=-\partial_i(a_{ij}\partial_j).$ If $u\in H^1_0(B_1)\cap L^\infty(B_1)$ satisfies $Lu=f$ in B_1 in the weak sense and $f \in L^q(B_1)$ with $q > n/2$, then

$$
||u||_{L^{\infty}(B_1)} \leq C(||f||_{L^q(B_1)} + ||u||_{L^2(B_1)})
$$

where the constant C depends only on n, q, a .

Truncations and powers of H^1 functions

Lemma

Suppose that $u\in H^1_0(B_1)\cap L^\infty(B_1).$ Then, for $p\geq 1$ and $k\geq 0,$ one has $(u_++k)^p-k^p\in H^1_0(B_1).$

Proof

- As $u\in L^\infty(B_1)$, we can suppose $|u|\leq M$ a.e. in $B_1.$
- By Sheet 3, $u_+ \in H^1(B_1)$.
- Select a function $g\in C^1(\mathbb{R})$ such that $g(t)=(t_++k)^p-k^p$ for $t \leq M$, and $g(t) = (M + k + 1)^p - k^p$ for $t \geq M + 1$. Note that $(u_+ + k)^p - k^p = g(u)$.
- Then $|g(t)| + |g'(t)| \leq C$ on \mathbb{R} .
- By the chain rule (Sheet 2), $g(u)$ has weak derivatives $\nabla g(u) = g'(u) \nabla u \in L^2(B_1).$ Hence $g(u) \in H^1(B_1).$

Truncations and powers of H^1 functions

Proof

- $g(u) \in H^1(B_1)$.
- We next show that $g(u) \in H_0^1(B_1)$. Approximate u by $(u_m) \in \mathcal{C}^\infty_c(B_1).$ The argument above shows that $g(u_m) \in H^1(B_1)$. As $g(u_m)$ is continuous, we have that the its trace on ∂B_1 is zero, hence $g(u_m) \in H_0^1(B_1)$.
- We have, by Lebesgue's dominated convergence theorem

$$
\int_{B_1} |g(u_m)-g(u)|^2 dx \to 0.
$$

So $g(u_m) \to g(u)$ in L^2 .

Truncations and powers of H^1 functions

Proof

• Next, we have

$$
\int_{B} |\nabla g(u_m) - \nabla g(u)|^2 dx = \int_{B} |g'(u_m) \nabla u_m - g'(u) \nabla u|^2 dx
$$

\n
$$
\leq \int_{B} |g'(u_m) - g'(u)|^2 |\nabla u|^2 dx
$$

\n
$$
+ \int_{B} |g'(u_m)|^2 |\nabla u_m - \nabla u|^2 dx \to 0,
$$

where we use Lebesgue's dominated convergence theorem to treat the first integral and the convergence of ∇u_m to ∇u in L^2 to treat the second integral. Hence $\nabla g(u_m) \rightarrow \nabla g(u)$ in L^2 .

We have thus shown that $g(u_m)\in H^1_0(B)$ and $g(u_m)\rightarrow g(u)$ in $H^1(B)$. The conclusion follows.

We now prove the statement that if $u\in H^1_0(B_1)\cap L^\infty(B_1)$ is such that $Lu=f$ in B_1 with $f\in L^q(B_1)$ for some $q>n/2,$ then

$$
||u||_{L^{\infty}(B_1)} \leq C(||f||_{L^q(B_1)} + ||u||_{L^2(B_1)}).
$$

- We use Moser iteration method. We write $B = B_1$ and fix some $k > 0, p > 1.$
- Let $w = u_+ + k$ and we use $v = w^p k^p$ as test function. This is possible because we just proved that $v \in H^1_0(B_1).$ We have

$$
\int_{B} f v dx = \int_{B} a_{ij} \partial_{j} u \partial_{i} v dx
$$

\n
$$
= \int_{B} p w^{p-1} a_{ij} \partial_{j} u \partial_{i} u_{+} dx
$$

\n
$$
\stackrel{ellipticity}{\geq} \lambda p \int_{B} w^{p-1} |\nabla u_{+}|^{2} dx.
$$

Proof

• We thus have

$$
\int_{B} |\nabla w^{\frac{p+1}{2}}|^2 dx \leq Cp \int_{B} |f| |v| dx \leq Cp \int_{B} |f| w^p dx.
$$

• By Friedrichs' inequality, this gives

$$
\|w^{\frac{p+1}{2}}-k^{\frac{p+1}{2}}\|_{H^1}^2\leq Cp\int_B|f|w^p\,dx.
$$

• By Gagliardo-Nirenberg-Sobolev's inequality, this implies that

$$
\|w^{\frac{p+1}{2}}-k^{\frac{p+1}{2}}\|_{L^{\frac{2n}{n-2}}}^2 \leq Cp \int_B |f| \, w^p \, dx.
$$

• We thus have

$$
\|w^{\frac{p+1}{2}}\|_{L^{\frac{2n}{n-2}}}^2 \leq Cp \int_B \left(\frac{|f|}{k} + 1\right) w^{p+1} dx.
$$

Proof

$$
\bullet \ \ \| w^{\frac{p+1}{2}} \|_{L^{\frac{2n}{n-2}}}^2 \leq C p \int_B (\frac{|f|}{k} + 1) \, w^{p+1} \, dx.
$$

• Using Hölder's inequality, we then arrive at

$$
\|w^{p+1}\|_{L^{\frac{p}{n-2}}} \leq C p(\|\frac{|f|}{k}\|_{L^q}+1)\|w^{p+1}\|_{L^{q'}}.
$$

• We now choose k to be any number larger than $||f||_{Lq}$ and obtain from the above that

$$
||w||_{L^{\frac{n(p+1)}{n-2}}}^{p+1} \leq Cp||w||_{L^{q'(p+1)}}^{p+1}.
$$

Recalling that $q > n/2$, we have $q' < \frac{n}{n-1}$ $\frac{n}{n-2}$. Thus the above inequality is self-improving: If w has a bound in $L^{q'(\rho+1)}$, then it has a bound in $L^{\frac{n(p+1)}{n-2}}$.

Proof

$$
\bullet\,\,\|w\|_{L^{\frac{n(p+1)}{n-2}}}^{p+1}\leq C(p+1)\|w\|_{L^{q'(p+1)}}^{p+1}.
$$

Now let $\chi = \frac{n}{(n-2)}$ $\frac{n}{(n-2)q'} > 1$ and $t_m = \gamma \chi^m$ for some $\gamma > 2q'$, then the above gives

$$
||w||_{L^{t_{m+1}}} \leq (Ct_m)^{\frac{q'}{t_m}} ||w||_{L^{t_m}} = (C\gamma)^{q'\gamma^{-1}\chi^{-m}} \chi^{q'\gamma^{-1}m\chi^{-m}} ||w||_{L^{t_m}}.
$$

Hence by induction,

$$
\|w\|_{L^{t_{m+1}}}\leq (C\gamma)^{q'\gamma^{-1}\sum_m\chi^{-m}}\chi^{q'\gamma^{-1}\sum_mmx^{-m}}\|w\|_{L^{\gamma}}\leq C\|w\|_{L^{\gamma}}.
$$

• Sending $m \to \infty$, we obtain

$$
\|w\|_{L^\infty}\leq C\|w\|_{L^\gamma}\text{ provided }\gamma>2q'.
$$

Proof

- $||w||_{L^{\infty}} \leq C||w||_{L^{\gamma}}$ when $\gamma > 2q'$.
- We now reduce from L^{γ} to L^2 :

$$
\|w\|_{L^\infty}\leq C\Big\{\int_B |w|^\gamma\,dx\Big\}^{1/\gamma}\leq C\|w\|_{L^\infty}^{1-\frac{2}{\gamma}}\Big\{\int_B |w|^2\,dx\Big\}^{1/\gamma}.
$$

This gives

$$
||w||_{L^{\infty}} \leq C||w||_{L^2}.
$$

• Recalling that $w = u_+ + k$ and k can be any positive constant larger than $||f||_{L^q}$, we have thus shown that

$$
||u_+||_{L^{\infty}} \leq C(||u||_{L^2} + ||f||_{L^q})
$$

• Applying the same argument to $u_-,$ we get the corresponding bound for $u_-\$ and conclude the proof.

Luc Nguyen (University of Oxford) $CA.3 -$ Lectures 15-16 MT 2022 24 / 35

Theorem (Global a priori L^∞ estimates)

Suppose that a, b, $c\in L^\infty(B_1)$, a is uniformly elliptic, $b\equiv 0$, $c\equiv 0$ and $L=-\partial_i(a_{ij}\partial_j)$. If $u\in H^1_0(B_1)\cap L^\infty(B_1)$ satisfies $Lu=f$ in B_1 in the weak sense and $f\in L^q(B_1)$ with $q>n/2$, then

$$
||u||_{L^{\infty}(B_1)} \leq C(||f||_{L^q(B_1)} + ||u||_{L^2(B_1)})
$$

where the constant C depends only on n, q, a, b, c .

Remark

When L is injective, the term $||u||_{L^2(B_1)}$ on the right hand side can be dropped yielding the estimate:

$$
||u||_{L^{\infty}(B_1)} \leq C||f||_{L^{q}(B_1)}.
$$

The remark is a consequence of:

Theorem

Suppose that a, b, $c\in L^\infty(B_1)$, a is uniformly elliptic, and $\mathcal{L}=-\partial_i(a_{ij}\partial_j)+b_i\partial_i+c$. Suppose that the only solution in $H^1_0(B_1)$ to Lu $=0$ is the trivial solution. Then, for every $u\in H^1_0(B_1)$ and $f\in L^q(B_1)$ with $q\geq \frac{2n}{n+2}$ satisfying $Lu=f$ in B_1 , there holds

 $||u||_{H^1(B_1)} \leq C||f||_{L^q(B_1)}$

where the constant C depends only on n, q, a, b, c .

Proof

• When $q = 2$, the result is a consequence of the Fredholm alternative and the inverse mapping theorem.

Proof

- Let us consider first the case that $b \equiv 0$ and $c \equiv 0$.
	- \star In this case, by using u as a test function, we have

$$
\lambda \|\nabla u\|_{L^2}^2 \leq \int_{B_1} a_{ij} \partial_j u \partial_i u \, dx = \int_B fu \, dx \leq \|f\|_{L^q} \|u\|_{L^{q'}}.
$$

 \star By Friedrichs' inequality, we have $||u||_{H_1} \leq C||\nabla u||_{L^2}$. As $q \ge \frac{2n}{n+2}$, $q' \le \frac{2n}{n-2}$. Hence, by Gagliardo-Nirenberg-Sobolev's inequality, $||u||_{L^{q'}} \leq C ||u||_{H^1}.$ \star Therefore

$$
||u||_{H^1}^2 \leq C||\nabla u||_{L^2}^2 \leq C||f||_{L^q}||u||_{L^{q'}} \leq C||f||_{L^q}||u||_{H^1},
$$

from which we get $||u||_{H_1} \leq C||f||_{L_q}$, as desired.

Proof

 \bullet Let us now consider the general case. By using μ as a test function, we have

$$
B(u, u) = \int_{B_1} fu \, dx \leq ||f||_{L^q} ||u||_{L^{q'}},
$$

where B is the bilinear form associated with L

The right hand side is treated as before and is bounded from above by $C||f||_{L^q}||u||_{H^1}$. For the left hand side, we use Friedrichs' inequality together with energy estimates:

$$
B(u, u) + C||u||_{L^2}^2 \geq \frac{\lambda}{2} ||\nabla u||_{L^2}^2 \geq \frac{1}{C} ||u||_{H^1}^2.
$$

We thus have

$$
||u||_{H^1}^2 \leq C||f||_{L^q}||u||_{H^1} + C||u||_{L^2}^2.
$$

Proof

$$
\bullet \, \|u\|_{H^1}^2 \leq C \|f\|_{L^q} \|u\|_{H^1} + C \|u\|_{L^2}^2.
$$

● By Cauchy-Schwarz' inequality, we then have

$$
||u||_{H^1}^2 \leq \frac{1}{2}||u||_{H^1}^2 + C||f||_{L^q}^2 + C||u||_{L^2}^2,
$$

and so

$$
||u||_{H^1}^2 \leq C||f||_{L^q}^2 + C||u||_{L^2}^2.
$$

• In other words,

$$
||u||_{H^1} \leq C||f||_{L^q} + C||u||_{L^2}.
$$
 (*)

• To conclude, we show that

$$
||u||_{L^2} \leq C||f||_{L^q}.\tag{**}
$$

More precisely, we show that " $(*)$ + injectivity of $L \Rightarrow$ $(**)$ ".

Proof

• Suppose by contradiction that there exists sequence $u_m \in H_0^1(B_1)$, $f_m \in L^q(B_1)$ such that $Lu_m = f_m$ but

$$
||u_m||_{L^2} > m||f_m||_{L^q}.
$$

Replacing u_m by $\frac{1}{\|u_m\|_{L^2}}u_m$ if necessary, we can assume that $||u_m||_{L^2} = 1.$

- Then $\|u_m\|_{L^2}=1$, $\|f_m\|_{L^q}<\frac{1}{m}$ $\frac{1}{m}$ and by (*), $||u_m||_{H^1} \leq C$. By the reflexivity of H^1 and Rellich-Kondrachov's theorem, we may assume that $u_m \rightharpoonup u$ in H^1 and $u_m \rightarrow u$ in $L^2.$ Note that $||u||_{L^2} = 1$.
- To conclude, we show that $Lu = 0$, which implies $u = 0$ by hypothesis, and amounts to a contradiction with $||u||_{L^2} = 1$.

Proof

• We start with $Lu_m = f_m$ which means

$$
\int_{B_1} \left[a_{ij} \partial_j u_m \partial_i v + b_i \partial_i u_m v + c u_m v \right] dx = \int_{B_1} f_m v dx \text{ for all } v \in H_0^1(B_1).
$$

We then send $m\to\infty$ using that $\nabla u_m\rightharpoonup \nabla u$ in L^2 , $u_m\to u$ in L^2 and $f_m \rightarrow 0$ in L^q to obtain

$$
\int_{B_1} \left[a_{ij} \partial_j u \partial_i v + b_i \partial_i u v + cuv \right] dx = 0 \text{ for all } v \in H_0^1(B_1),
$$

i.e. $Lu = 0$, as desired.

As $u_m\in H_0^1(B_1)$, we have $u\in H_0^1(B_1)$ and so $u=0$ by hypothesis. This contradicts the identity $||u||_{L^2} = 1$, and finishes the proof.

Luc Nguyen (University of Oxford) $CA.3 - Letures 15-16$ MT 2022 31 / 35

Let us now consider an example in $1d$:

$$
\begin{cases}\n-(au')' = f \text{ in } (-1,1), \\
u(-1) = u(1) = 0,\n\end{cases}
$$
\nwhere $a = \chi_{(-1,0)} + k\chi_{(0,1)}$.

As $k \to 0$, the ellipticity deteriorates. As $k \to \infty$, the boundedness of k deteriorates.

We have proved 2 estimates:

$$
||u||_{L^{\infty}(-1,1)} \leq C_1(k) ||f||_{L^{\infty}(-1,1)},
$$
\n(1)

$$
||u||_{L^{\infty}(-1,1)} \leq C_2(k)(||f||_{L^{\infty}(-1,1)} + ||u||_{L^2(-1,1)}).
$$
 (2)

We would now like to have a rough appreciation whether (or how) these constants depend on k, as $k \to 0$ or ∞ .

Non-uniformly elliptic: A case study

$$
\begin{cases}\n-(au')' = f \text{ in } (-1,1), \\
u(-1) = u(1) = 0,\n\end{cases}
$$
\nwhere $a = \chi_{(-1,0)} + k\chi_{(0,1)}$.

- We empirically take $f = 1$, so that $||f||_{L^{\infty}} = 1$.
- We know that the problem has uniqueness (why?), so it suffices to find a solution.
- The equation gives $-u'' = 1$ in $(-1, 0)$ and $-u'' = 1/k$ in $(0, 1)$. So *u* takes the form

$$
u(x) = \begin{cases} -\frac{1}{2}(x+1)^2 + \alpha(x+1) & \text{for } x \in (-1,0), \\ -\frac{1}{2k}(x-1)^2 + \beta(x-1) & \text{for } x \in (0,1). \end{cases}
$$

$$
\begin{cases}\n-(au')' = 1 \text{ in } (-1,1), \\
u(-1) = u(1) = 0,\n\end{cases}
$$
\nwhere $a = \chi_{(-1,0)} + k\chi_{(0,1)}$.

As $u \in H^1(-1,1)$, u is continuous. So

$$
-\frac{1}{2}+\alpha=-\frac{1}{2k}-\beta.
$$

As au' is weakly differentiable, it is continuous and so

$$
-1+\alpha=1+k\beta.
$$

• So we find
$$
\alpha = \frac{k+3}{2(k+1)}
$$
 and $\beta = -\frac{3k+1}{2k(k+1)}$.

Non-uniformly elliptic: A case study

$$
\begin{cases}\n-(au')' = 1 \text{ in } (-1, 1), \\
u(-1) = u(1) = 0,\n\end{cases}
$$
\nwhere $a = \chi_{(-1,0)} + k\chi_{(0,1)}$.

• So we have

$$
u(x) = \begin{cases} -\frac{1}{2}(x+1)^2 + \frac{k+3}{2(k+1)}(x+1) & \text{for } x \in (-1,0), \\ -\frac{1}{2k}(x-1)^2 - \frac{3k+1}{2k(k+1)}(x-1) & \text{for } x \in (0,1). \end{cases}
$$

We find $\|u\|_{L^\infty}\sim \frac{1}{k}$ $\frac{1}{k}$ as $k\to 0$, and $||u||_{L^{\infty}}\sim 1$ as $k\to\infty$. Therefore

$$
C_1(k) \sim \frac{1}{k} \text{ as } k \to 0, \text{ and } C_1(k) \sim 1 \text{ as } k \to \infty.
$$

Similarly $\|u\|_{L^2}\sim \frac{1}{k}$ $\frac{1}{k}$ as $k\to 0$, and $\|u\|_{L^2}\sim 1$ as $k\to \infty$. Therefore

$$
C_2(k) \sim 1 \text{ as } k \to 0, \infty.
$$