

C4.3 Functional Analytic Methods for PDEs Lectures 15-16

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2022

In the last lectures

- Linear elliptic equations of second order.
- Classical and weak solutions.
- Energy estimates.
- First existence theorem: Riesz representation theorem.
- First existence theorem: Direct method of the calculus of variation.
- Second existence theorem: Fredholm alternative.
- Third existence theorem: Spectral theory.
- H^2 regularity of weak solutions to linear elliptic equations.

This lecture

- H^2 regularity of weak solutions to linear elliptic equations.
- Continuity of weak solutions to linear elliptic equations.
- A priori L^{∞} estimates.
- Guided reading groups' presentation.

A priori H^2 estimates in the general case

- We prove for $a_{ij} = \delta_{ij}$ that if $u \in H^1(\mathbb{R}^n)$ satisfies $-\partial_i(a_{ij}\partial_j u) = f$ on \mathbb{R}^n with $f \in L^2(\mathbb{R}^n)$, then $u \in H^2(\mathbb{R}^n)$.
- We now turn to the case where a is variable. To better convey central ideas, we will focus in the rest of this course to a priori estimates: We assume that the solution has the right regularity and will be concerned with establishing quantitative estimates.
- More precisely, we suppose that u belongs to $\underline{H^2(\mathbb{R}^n)}$ and is a weak solution to Lu=f in \mathbb{R}^n , and would like to bound $\|u\|_{H^2(\mathbb{R}^n)}$ in terms of the bounds for the coefficients of L, $\|f\|_{L^2(\mathbb{R}^n)}$ and $\|u\|_{H^1(\mathbb{R}^n)}$.
- For simplicity, we will assume that $b \equiv 0$ and $c \equiv 0$. You should check that the methods we use work in the general case.

Theorem

Suppose $a \in C^1(\mathbb{R}^n)$, $\nabla a \in L^\infty(\mathbb{R}^n)$ and $L = -\partial_i(a_{ij}\partial_j)$. There exist $0 < \delta_0 \ll 1$ and C > 0 such that if $\|a_{ij} - \delta_{ij}\|_{L^\infty(\mathbb{R}^n)} \le \delta_0$ and if $u \in H^2(\mathbb{R}^n)$ and satisfies Lu = f in \mathbb{R}^n in the weak sense, then

$$||u||_{H^2(\mathbb{R}^n)} \leq C(||f||_{L^2(\mathbb{R}^n)} + ||u||_{H^1(\mathbb{R}^n)}).$$

Proof

Claim: u satisfies

$$-\Delta u = f + (a_{ij} - \delta_{ij})\partial_i\partial_j u + \partial_i a_{ij}\partial_j u =: \tilde{f},$$

that is, for all $v \in C_c^\infty(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, dx = \int_{\mathbb{R}^n} \left[f + (a_{ij} - \delta_{ij}) \partial_i \partial_j u + \partial_i a_{ij} \partial_j u \right] v \, dx.$$

Proof

• Claim: for $v \in C_c^{\infty}(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, dx = \int_{\mathbb{R}^n} \left[f + (a_{ij} - \delta_{ij}) \partial_i \partial_j u + \partial_i a_{ij} \partial_j u \right] v \, dx.$$

* We note that $(a_{ij} - \delta_{ij})v \in C_c^1(\mathbb{R}^n)$. Hence, by definition of weak derivatives,

$$\begin{split} \int_{\mathbb{R}^n} (a_{ij} - \delta_{ij}) \partial_i \partial_j u v \, dx &= - \int_{\mathbb{R}^n} \partial_j u \partial_i [(a_{ij} - \delta_{ij}) v] \, dx \\ &= - \int_{\mathbb{R}^n} \partial_j u [(a_{ij} - \delta_{ij}) \partial_i v + \partial_i a_{ij} v] \, dx \\ &= \int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, dx - \int_{\mathbb{R}^n} a_{ij} \partial_j u \partial_i v \, dx \\ &- \int_{\mathbb{R}^n} \partial_i a_{ij} v \, dx. \end{split}$$

Proof

• Claim: for $v \in C_c^{\infty}(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, dx = \int_{\mathbb{R}^n} \Big[f + (a_{ij} - \delta_{ij}) \partial_i \partial_j u + \partial_i a_{ij} \partial_j u \Big] v \, dx.$$

$$\star \int_{\mathbb{R}^n} (a_{ij} - \delta_{ij}) \partial_i \partial_j uv \, dx = \int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, dx - \int_{\mathbb{R}^n} a_{ij} \partial_j u \partial_i v \, dx - \int_{\mathbb{R}^n} \partial_i a_{ij} v \, dx.$$

 \star As Lu = f, we have

$$\int_{\mathbb{R}^n} a_{ij} \partial_j u \partial_i v \, dx = \int_{\mathbb{R}^n} f \, v \, dx.$$

* Putting the two identities together, we obtain the claim.

Proof

- We have proved the claim that $-\Delta u = \tilde{f} = f + (a_{ii} \delta_{ii})\partial_i\partial_i u + \partial_i a_{ii}\partial_i u.$
- By the lemma on the H^2 regularity for $-\Delta$, we have a constant C such that

$$\begin{split} \|\nabla^{2}u\|_{L^{2}} &\leq C\|\tilde{f}\|_{L^{2}} \\ &\leq C\Big[\|f\|_{L^{2}} + \|a_{ij} - \delta_{ij}\|_{L^{\infty}}\|\nabla^{2}u\|_{L^{2}(\Omega)} \\ &+ \|\partial_{i}a_{ij}\|_{L^{\infty}}\|\nabla u\|_{L^{2}}\Big]. \end{split}$$

• It is readily seen that if $C||a_{ij} - \delta_{ij}||_{L^{\infty}} < 1$, then the second term on the right hand side can be absorbed back to the left hand side, giving the conclusion:

$$\|\nabla^2 u\|_{L^2} \le C' \Big[\|f\|_{L^2} + \|\nabla u\|_{L^2} \Big].$$

Theorem

Suppose $a \in C^1(\mathbb{R}^n)$, $\nabla a \in L^\infty(\mathbb{R}^n)$ and $L = -\partial_i(a_{ij}\partial_j)$. There exists C > 0 such that if $u \in H^2(\mathbb{R}^n)$ and satisfies Lu = f in \mathbb{R}^n in the weak sense, then

$$||u||_{H^2(\mathbb{R}^n)} \leq C(||f||_{L^2(\mathbb{R}^n)} + ||u||_{H^1(\mathbb{R}^n)}).$$

Proof

- Let $w = \partial_k u \in H^1(\mathbb{R}^n)$. We would like to bound $||w||_{H^1}$.
- Claim: w satisfies

$$Lw = \partial_i h_i$$
 where $h_i = \partial_k a_{ij} \partial_j u + f \delta_{ik}$,

that is, for $v \in C_c^\infty(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} a_{ij} \partial_j w \partial_i v \ dx = - \int_{\mathbb{R}^n} [\partial_k a_{ij} \partial_j u + f \ \delta_{ik}] \partial_i v \ dx.$$

Proof

• Claim: for $v \in C_c^{\infty}(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} a_{ij} \partial_j w \partial_i v \, dx = - \int_{\mathbb{R}^n} [\partial_k a_{ij} \partial_j u + f \, \delta_{ik}] \partial_i v \, dx.$$

* Note that $a_{ij}\partial_i v \in C^1_c(\mathbb{R}^n)$. Hence, by definition of weak derivatives,

$$\begin{split} \int_{\mathbb{R}^n} a_{ij} \partial_j w \partial_i v \, dx &= \int_{\mathbb{R}^n} \partial_k \partial_j u \left(a_{ij} \partial_i v \right) dx = - \int_{\mathbb{R}^n} \partial_j u \, \partial_k (a_{ij} \partial_i v) \, dx \\ &= - \int_{\mathbb{R}^n} a_{ij} \partial_j u \, \partial_k \partial_i v \, dx - \int_{\mathbb{R}^n} \partial_j u \, \partial_k a_{ij} \partial_i v \, dx \end{split}$$

Proof

• Claim: for $v \in C_c^{\infty}(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} a_{ij} \partial_j w \partial_i v \ dx = - \int_{\mathbb{R}^n} [\partial_k a_{ij} \partial_j u + f \ \delta_{ik}] \partial_i v \ dx.$$

- $\star \int_{\mathbb{R}^n} a_{ij} \partial_j w \partial_i v \, dx = \int_{\mathbb{R}^n} a_{ij} \partial_j u \, \partial_k \partial_i v \, dx \int_{\mathbb{R}^n} \partial_j u \, \partial_k a_{ij} \partial_i v \, dx.$
- * On the other hand, using $\partial_k v$ as a test function for Lu=f, we have

$$\int_{\mathbb{R}^n} a_{ij} \partial_j u \, \partial_i \partial_k v \, dx = \int_{\mathbb{R}^n} f \partial_k v \, dx.$$

* Putting the two identities together we get the claim.

Proof

- We have thus shown that $Lw = \partial_i h_i$ with $h_i = \partial_k a_{ij} \partial_j u + f \delta_{ik}$.
- Using w as a test function for this equation, we get

$$\int_{\mathbb{R}^n} a_{ij} \partial_j w \partial_i w \ dx = - \int_{\mathbb{R}^n} h_i \partial_i w \ dx.$$

 Using ellipticity on the left side and Cauchy-Schwarz' inequality on the right side we get

$$\|\lambda\|\nabla w\|_{L^2}^2 \leq \|h\|_{L^2}\|\nabla w\|_{L^2} \leq \frac{\lambda}{2}\|\nabla w\|_{L^2}^2 + \frac{1}{2\lambda}\|h\|_{L^2}^2.$$

We thus have

$$\|\nabla w\|_{L^2} \le C\|h\|_{L^2} \le C\Big[\|f\|_{L^2} + \|\nabla u\|_{L^2}\Big].$$

Recalling that $w = \partial_k u$, we're done.

Example

- Recall the example of the equation -(au')' = f in (-1,1) with $a = \chi_{(-1,0)} + 2\chi_{(0,1)}$.
- If $f \in L^q$, then $au' \in W^{1,q}$ and so u' is presumably discontinuous.
- Nevertheless as u' exists by assumption, u is continuous.
- In higher dimension, the existence of ∇u (in L^2) doesn't ensure continuity of u. Nevertheless, a major result due to De Giorgi, Moser and Nash around late 50s asserts that u is indeed continuous!

De Giorgi-Moser-Nash's theorem

Theorem (De Giorgi-Moser-Nash's theorem)

Suppose that $a,b,c\in L^\infty(\Omega)$, a is uniformly elliptic, and $L=-\partial_i(a_{ij}\partial_j)+b_i\partial_i+c$. If $u\in H^1(\Omega)$ satisfies Lu=f in Ω in the weak sense for some $f\in L^q(\Omega)$ with $q>\frac{n}{2}$, then u is locally Hölder continuous , and for any open ω such that $\bar{\omega}\subset\Omega$ we have

$$||u||_{C^{0,\alpha}(\omega)} \leq C(||f||_{L^q(\Omega)} + ||u||_{H^1(\Omega)})$$

where the constant C depends only on $n, \Omega, \omega, a, b, c$, and the Hölder exponent α depends only on n, Ω, ω, a .

A digression

We make some observations:

- In De Giorgi-Moser-Nash's theorem, no continuity is assumed on the coefficients a_{ii} .
- If a_{ij} is continuous, one can imagine using the method of freezing coefficients to reduce to the case a_{ij} is constant. Hence the model equation is $-\Delta u = f$.
- In 1d, we have -u''=f. If $f\in L^q$, we then have that $u\in W^{2,q}_{loc}$.
- It turns out that, in any dimension, if $-\Delta u = f$ and $f \in L^q$, then $u \in W^{2,q}_{loc}$. In particular, when n/2 < q < n, by the embedding $W^{2,q}_{loc} \hookrightarrow W^{1,\frac{qn}{n-q}}_{loc} \hookrightarrow C^{0,2-\frac{n}{q}}_{loc}$, we have u is Hölder continuous.

To illustrate the method, we will assume for simplicity that $b \equiv 0$ and $c \equiv 0$. We will focus on

- a priori L^{∞} estimates: we assume that the solution $u \in L^{\infty}$ and try to establish estimates for $\|u\|_{L^{\infty}}$.
- We assume in addition for now a boundary condition: u = 0 on ∂B_1 .

Theorem (Global a priori L^{∞} estimates)

Suppose that $a \in L^{\infty}(B_1)$, a is uniformly elliptic, $b \equiv 0$, $c \equiv 0$ and $L = -\partial_i(a_{ij}\partial_j)$. If $u \in H^1_0(B_1) \cap L^{\infty}(B_1)$ satisfies Lu = f in B_1 in the weak sense and $f \in L^q(B_1)$ with q > n/2, then

$$||u||_{L^{\infty}(B_1)} \leq C(||f||_{L^q(B_1)} + ||u||_{L^2(B_1)})$$

where the constant C depends only on n, q, a.

Truncations and powers of H^1 functions

Lemma

Suppose that $u \in H_0^1(B_1) \cap L^{\infty}(B_1)$. Then, for $p \ge 1$ and $k \ge 0$, one has $(u_+ + k)^p - k^p \in H_0^1(B_1)$.

Proof

- As $u \in L^{\infty}(B_1)$, we can suppose $|u| \leq M$ a.e. in B_1 .
- By Sheet 3, $u_+ \in H^1(B_1)$.
- Select a function $g \in C^1(\mathbb{R})$ such that $g(t) = (t_+ + k)^p k^p$ for $t \leq M$, and $g(t) = (M + k + 1)^p k^p$ for $t \geq M + 1$. Note that $(u_+ + k)^p k^p = g(u)$.
- Then $|g(t)| + |g'(t)| \le C$ on \mathbb{R} .
- By the chain rule (Sheet 2), g(u) has weak derivatives $\nabla g(u) = g'(u) \nabla u \in L^2(B_1)$. Hence $g(u) \in H^1(B_1)$.

Truncations and powers of H^1 functions

Proof

- $g(u) \in H^1(B_1)$.
- We next show that $g(u) \in H_0^1(B_1)$. Approximate u by $(u_m) \in C_c^{\infty}(B_1)$. The argument above shows that $g(u_m) \in H^1(B_1)$.
 - As $g(u_m)$ is continuous, we have that the its trace on ∂B_1 is zero, hence $g(u_m) \in H^1_0(B_1)$.
- We have, by Lebesgue's dominated convergence theorem

$$\int_{B_1} |g(u_m) - g(u)|^2 dx \to 0.$$

So $g(u_m) \rightarrow g(u)$ in L^2 .

Truncations and powers of H^1 functions

Proof

Next, we have

$$\begin{split} \int_{\mathcal{B}} |\nabla g(u_m) - \nabla g(u)|^2 \, dx &= \int_{\mathcal{B}} |g'(u_m) \nabla u_m - g'(u) \nabla u|^2 \, dx \\ &\leq \int_{\mathcal{B}} |g'(u_m) - g'(u)|^2 |\nabla u|^2 \, dx \\ &+ \int_{\mathcal{B}} |g'(u_m)|^2 |\nabla u_m - \nabla u|^2 \, dx \to 0, \end{split}$$

where we use Lebesgue's dominated convergence theorem to treat the first integral and the convergence of ∇u_m to ∇u in L^2 to treat the second integral.

Hence $\nabla g(u_m) \to \nabla g(u)$ in L^2 .

• We have thus shown that $g(u_m) \in H_0^1(B)$ and $g(u_m) \to g(u)$ in $H^1(B)$. The conclusion follows.

We now prove the statement that if $u \in H_0^1(B_1) \cap L^{\infty}(B_1)$ is such that Lu = f in B_1 with $f \in L^q(B_1)$ for some q > n/2, then

$$||u||_{L^{\infty}(B_1)} \leq C(||f||_{L^q(B_1)} + ||u||_{L^2(B_1)}).$$

- We use Moser iteration method. We write $B = B_1$ and fix some k > 0, p > 1.
- Let $w = u_+ + k$ and we use $v = w^p k^p$ as test function. This is possible because we just proved that $v \in H_0^1(B_1)$. We have

$$\int_{B} f v dx = \int_{B} a_{ij} \partial_{j} u \partial_{i} v dx$$

$$= \int_{B} p w^{p-1} a_{ij} \partial_{j} u \partial_{i} u_{+} dx$$

$$\stackrel{ellipticity}{\geq} \lambda p \int_{B} w^{p-1} |\nabla u_{+}|^{2} dx.$$

Proof

We thus have

$$\int_{B} |\nabla w^{\frac{p+1}{2}}|^2 dx \leq Cp \int_{B} |f| |v| dx \leq Cp \int_{B} |f| w^p dx.$$

By Friedrichs' inequality, this gives

$$\|w^{\frac{p+1}{2}}-k^{\frac{p+1}{2}}\|_{H^1}^2\leq Cp\int_B|f|w^p\,dx.$$

By Gagliardo-Nirenberg-Sobolev's inequality, this implies that

$$\|w^{\frac{p+1}{2}}-k^{\frac{p+1}{2}}\|_{L^{\frac{2n}{n-2}}}^2 \leq Cp\int_B |f| w^p dx.$$

We thus have

$$\|w^{\frac{p+1}{2}}\|_{L^{\frac{2n}{n-2}}}^2 \leq Cp \int_{B} (\frac{|f|}{k}+1) w^{p+1} dx.$$

Proof

- $\|w^{\frac{p+1}{2}}\|_{L^{\frac{2n}{n-2}}}^2 \leq Cp \int_{B} (\frac{|f|}{k} + 1) w^{p+1} dx.$
- Using Hölder's inequality, we then arrive at

$$\|w^{p+1}\|_{L^{\frac{n}{n-2}}} \le Cp(\|\frac{|f|}{k}\|_{L^q}+1)\|w^{p+1}\|_{L^{q'}}.$$

• We now choose k to be any number larger than $||f||_{L^q}$ and obtain from the above that

$$\|w\|_{L^{\frac{n(p+1)}{n-2}}}^{p+1} \le Cp\|w\|_{L^{q'(p+1)}}^{p+1}.$$

Recalling that q > n/2, we have $q' < \frac{n}{n-2}$. Thus the above inequality is self-improving: If w has a bound in $L^{q'(p+1)}$, then it has a bound in $L^{\frac{n(p+1)}{n-2}}$.

Proof

- $\|w\|_{L^{\frac{n(p+1)}{n-2}}}^{p+1} \le C(p+1)\|w\|_{L^{q'(p+1)}}^{p+1}$.
- Now let $\chi = \frac{n}{(n-2)q'} > 1$ and $t_m = \gamma \chi^m$ for some $\gamma > 2q'$, then the above gives

$$||w||_{L^{t_{m+1}}} \leq (Ct_m)^{\frac{q'}{t_m}} ||w||_{L^{t_m}} = (C\gamma)^{q'\gamma^{-1}\chi^{-m}} \chi^{q'\gamma^{-1}m\chi^{-m}} ||w||_{L^{t_m}}.$$

Hence by induction,

$$\|w\|_{L^{t_{m+1}}} \leq (C\gamma)^{q'\gamma^{-1}\sum_{m}\chi^{-m}}\chi^{q'\gamma^{-1}\sum_{m}m\chi^{-m}}\|w\|_{L^{\gamma}} \leq C\|w\|_{L^{\gamma}}.$$

• Sending $m \to \infty$, we obtain

$$||w||_{L^{\infty}} \leq C||w||_{L^{\gamma}}$$
 provided $\gamma > 2q'$.

Proof

- $||w||_{L^{\infty}} \leq C||w||_{L^{\gamma}}$ when $\gamma > 2q'$.
- We now reduce from L^{γ} to L^2 :

$$||w||_{L^{\infty}} \le C \Big\{ \int_{B} |w|^{\gamma} dx \Big\}^{1/\gamma} \le C ||w||_{L^{\infty}}^{1-\frac{2}{\gamma}} \Big\{ \int_{B} |w|^{2} dx \Big\}^{1/\gamma}.$$

This gives

$$||w||_{L^{\infty}}\leq C||w||_{L^{2}}.$$

• Recalling that $w = u_+ + k$ and k can be any positive constant larger than $||f||_{L^q}$, we have thus shown that

$$||u_+||_{L^{\infty}} \leq C(||u||_{L^2} + ||f||_{L^q})$$

• Applying the same argument to u_{-} , we get the corresponding bound for u_{-} and conclude the proof.

Theorem (Global a priori L^{∞} estimates)

Suppose that $a,b,c\in L^\infty(B_1)$, a is uniformly elliptic, $b\equiv 0$, $c\equiv 0$ and $L=-\partial_i(a_{ij}\partial_j)$. If $u\in H^1_0(B_1)\cap L^\infty(B_1)$ satisfies Lu=f in B_1 in the weak sense and $f\in L^q(B_1)$ with q>n/2, then

$$||u||_{L^{\infty}(B_1)} \leq C(||f||_{L^q(B_1)} + ||u||_{L^2(B_1)})$$

where the constant C depends only on n, q, a, b, c.

Remark

When L is injective, the term $||u||_{L^2(B_1)}$ on the right hand side can be dropped yielding the estimate:

$$||u||_{L^{\infty}(B_1)} \leq C||f||_{L^q(B_1)}.$$

The remark is a consequence of:

Theorem

Suppose that $a,b,c\in L^\infty(B_1)$, a is uniformly elliptic, and $L=-\partial_i(a_{ij}\partial_j)+b_i\partial_i+c$. Suppose that the only solution in $H^1_0(B_1)$ to Lu=0 is the trivial solution. Then, for every $u\in H^1_0(B_1)$ and $f\in L^q(B_1)$ with $q\geq \frac{2n}{n+2}$ satisfying Lu=f in B_1 , there holds

$$||u||_{H^1(B_1)} \leq C||f||_{L^q(B_1)}$$

where the constant C depends only on n, q, a, b, c.

Proof

• When q = 2, the result is a consequence of the Fredholm alternative and the inverse mapping theorem.

Proof

- Let us consider first the case that $b \equiv 0$ and $c \equiv 0$.
 - \star In this case, by using u as a test function, we have

$$\lambda \|\nabla u\|_{L^2}^2 \leq \int_{B_1} \mathsf{a}_{ij} \partial_j u \partial_i u \, dx = \int_{B} \mathsf{f} u \, dx \leq \|\mathsf{f}\|_{L^q} \|u\|_{L^{q'}}.$$

- * By Friedrichs' inequality, we have $\|u\|_{H^1} \leq C \|\nabla u\|_{L^2}$. As $q \geq \frac{2n}{n+2}$, $q' \leq \frac{2n}{n-2}$. Hence, by Gagliardo-Nirenberg-Sobolev's inequality, $\|u\|_{L^{q'}} \leq C \|u\|_{H^1}$.
- * Therefore

$$||u||_{H^1}^2 \le C||\nabla u||_{L^2}^2 \le C||f||_{L^q}||u||_{L^{q'}} \le C||f||_{L^q}||u||_{H^1},$$

from which we get $||u||_{H^1} \le C||f||_{L^q}$, as desired.

Proof

• Let us now consider the general case. By using *u* as a test function, we have

$$B(u,u) = \int_{B_1} fu \, dx \le ||f||_{L^q} ||u||_{L^{q'}},$$

where B is the bilinear form associated with L.

• The right hand side is treated as before and is bounded from above by $C||f||_{L^q}||u||_{H^1}$. For the left hand side, we use Friedrichs' inequality together with energy estimates:

$$B(u,u) + C||u||_{L^2}^2 \ge \frac{\lambda}{2}||\nabla u||_{L^2}^2 \ge \frac{1}{C}||u||_{H^1}^2.$$

We thus have

$$||u||_{H^1}^2 \le C||f||_{L^q}||u||_{H^1} + C||u||_{L^2}^2.$$

Proof

- $||u||_{H^1}^2 \le C||f||_{L^q}||u||_{H^1} + C||u||_{L^2}^2$.
- By Cauchy-Schwarz' inequality, we then have

$$||u||_{H^1}^2 \le \frac{1}{2}||u||_{H^1}^2 + C||f||_{L^q}^2 + C||u||_{L^2}^2,$$

and so

$$||u||_{H^1}^2 \leq C||f||_{L^q}^2 + C||u||_{L^2}^2.$$

In other words,

$$||u||_{H^1} \le C||f||_{L^q} + C||u||_{L^2}.$$
 (*)

• To conclude, we show that

$$||u||_{L^2} \le C||f||_{L^q}. \tag{**}$$

More precisely, we show that "(*) + injectivity of L \Rightarrow (**)".

Proof

• Suppose by contradiction that there exists sequence $u_m \in H_0^1(B_1)$, $f_m \in L^q(B_1)$ such that $Lu_m = f_m$ but

$$||u_m||_{L^2} > m||f_m||_{L^q}.$$

Replacing u_m by $\frac{1}{\|u_m\|_{L^2}}u_m$ if necessary, we can assume that $\|u_m\|_{L^2}=1$.

- Then $\|u_m\|_{L^2}=1$, $\|f_m\|_{L^q}<\frac{1}{m}$ and by (*), $\|u_m\|_{H^1}\leq C$. By the reflexivity of H^1 and Rellich-Kondrachov's theorem, we may assume that $u_m\rightharpoonup u$ in H^1 and $u_m\to u$ in L^2 . Note that $\|u\|_{L^2}=1$.
- To conclude, we show that Lu = 0, which implies u = 0 by hypothesis, and amounts to a contradiction with $||u||_{L^2} = 1$.

Proof

• We start with $Lu_m = f_m$ which means

$$\int_{B_1} \left[a_{ij} \partial_j u_m \partial_i v + b_i \partial_i u_m v + c u_m v \right] dx = \int_{B_1} f_m v \ dx \text{ for all } v \in H^1_0(B_1).$$

We then send $m \to \infty$ using that $\nabla u_m \rightharpoonup \nabla u$ in L^2 , $u_m \to u$ in L^2 and $f_m \to 0$ in L^q to obtain

$$\int_{B_1} \left[a_{ij} \partial_j u \partial_i v + b_i \partial_i u v + c u v \right] dx = 0 \text{ for all } v \in H_0^1(B_1),$$

i.e. Lu = 0, as desired.

• As $u_m \in H^1_0(B_1)$, we have $u \in H^1_0(B_1)$ and so u = 0 by hypothesis. This contradicts the identity $||u||_{L^2} = 1$, and finishes the proof.

Let us now consider an example in 1*d*:

$$\left\{ \begin{array}{l} -(au')' = f \text{ in } (-1,1), \\ u(-1) = u(1) = 0, \end{array} \right. \quad \text{where } a = \chi_{(-1,0)} + k\chi_{(0,1)}.$$

As $k \to 0$, the ellipticity deteriorates. As $k \to \infty$, the boundedness of k deteriorates.

We have proved 2 estimates:

$$||u||_{L^{\infty}(-1,1)} \le C_1(k)||f||_{L^{\infty}(-1,1)},$$
 (1)

$$||u||_{L^{\infty}(-1,1)} \le C_2(k)(||f||_{L^{\infty}(-1,1)} + ||u||_{L^2(-1,1)}).$$
 (2)

We would now like to have a rough appreciation whether (or how) these constants depend on k, as $k \to 0$ or ∞ .

$$\begin{cases} -(au')' = f \text{ in } (-1,1), \\ u(-1) = u(1) = 0, \end{cases} \text{ where } a = \chi_{(-1,0)} + k\chi_{(0,1)}.$$

- We empirically take f=1, so that $||f||_{L^{\infty}}=1$.
- We know that the problem has uniqueness (why?), so it suffices to find a solution.
- The equation gives -u''=1 in (-1,0) and -u''=1/k in (0,1). So u takes the form

$$u(x) = \begin{cases} -\frac{1}{2}(x+1)^2 + \alpha(x+1) & \text{for } x \in (-1,0), \\ -\frac{1}{2k}(x-1)^2 + \beta(x-1) & \text{for } x \in (0,1). \end{cases}$$

$$\begin{cases} -(au')' = 1 \text{ in } (-1,1), \\ u(-1) = u(1) = 0, \end{cases} \text{ where } a = \chi_{(-1,0)} + k\chi_{(0,1)}.$$

• As $u \in H^1(-1,1)$, u is continuous. So

$$-\frac{1}{2} + \alpha = -\frac{1}{2k} - \beta.$$

As au' is weakly differentiable, it is continuous and so

$$-1 + \alpha = 1 + k\beta$$
.

• So we find $\alpha = \frac{k+3}{2(k+1)}$ and $\beta = -\frac{3k+1}{2k(k+1)}$.

$$\begin{cases} -(au')' = 1 \text{ in } (-1,1), \\ u(-1) = u(1) = 0, \end{cases} \text{ where } a = \chi_{(-1,0)} + k\chi_{(0,1)}.$$

So we have

$$u(x) = \begin{cases} -\frac{1}{2}(x+1)^2 + \frac{k+3}{2(k+1)}(x+1) & \text{for } x \in (-1,0), \\ -\frac{1}{2k}(x-1)^2 - \frac{3k+1}{2k(k+1)}(x-1) & \text{for } x \in (0,1). \end{cases}$$

• We find $\|u\|_{L^{\infty}} \sim \frac{1}{k}$ as $k \to 0$, and $\|u\|_{L^{\infty}} \sim 1$ as $k \to \infty$. Therefore

$$\mathcal{C}_1(k)\sim rac{1}{k} ext{ as } k o 0, ext{ and } \mathcal{C}_1(k)\sim 1 ext{ as } k o \infty.$$

• Similarly $\|u\|_{L^2} \sim \frac{1}{k}$ as $k \to 0$, and $\|u\|_{L^2} \sim 1$ as $k \to \infty$. Therefore

$$C_2(k) \sim 1$$
 as $k \to 0, \infty$.