Distribution Theory

Problem Sheet 4

Problem 1. This question provides a condition ensuring that the usual partial derivatives coincide with the distributional partial derivatives. Prove Lemma 5.21 from the lecture notes: If the dimension $n \geq 2$ and $f \in \mathrm{C}^{1}\left(\mathbb{R}^{n} \backslash\{0\}\right) \cap \mathrm{L}_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right)$ has usual partial derivatives $\partial_{j} f \in \mathrm{~L}_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right)$ for each direction $1 \leq j \leq n$, then also

$$
\int_{\mathbb{R}^{n}} \partial_{j} f \varphi \mathrm{~d} x=-\int_{\mathbb{R}^{n}} f \partial_{j} \varphi \mathrm{~d} x
$$

holds for all $\varphi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$. Give an example to show that it can fail for dimension $n=1$. Show that for dimension $n=1$ we instead have the following: If $f \in \mathrm{C}^{1}(\mathbb{R} \backslash\{0\}) \cap \mathrm{C}(\mathbb{R})$ and the usual derivative $f^{\prime} \in \mathrm{L}_{\mathrm{loc}}^{1}(\mathbb{R})$, then

$$
\int_{\mathbb{R}} f^{\prime} \varphi \mathrm{d} x=-\int_{\mathbb{R}} f \varphi^{\prime} \mathrm{d} x
$$

holds for all $\varphi \in \mathscr{D}(\mathbb{R})$.
Problem 2. In this question all distributions are assumed to be real-valued. If $u, v \in \mathscr{D}^{\prime}(\mathbb{R})$, then we write $u \geq v$ provided $\langle u, \phi\rangle \geq\langle v, \phi\rangle$ holds for all non-negative $\phi \in \mathscr{D}(\mathbb{R})$.
(a) Given $v \in \mathscr{D}^{\prime}(\mathbb{R})$. Find all $u \in \mathscr{D}^{\prime}(\mathbb{R})$ such that $u \geq v$.
(b) Find all $u \in \mathscr{D}^{\prime}(\mathbb{R})$ satisfying

$$
u^{\prime \prime}-2 u^{\prime}+u \geq 0
$$

Problem 3. Let Ω be an open subset of \mathbb{R}^{2} and consider the Poisson equation

$$
\Delta u=f \text { in } \mathscr{D}^{\prime}(\Omega)
$$

where $f \in \mathscr{D}^{\prime}(\Omega)$ is given.
State the singular support rule for convolutions and show how it together with properties of a fundamental solution for the Laplacian leads to the identity

$$
\text { sing. } \cdot \operatorname{supp}(u)=\text { sing } \cdot \operatorname{supp}(f) .
$$

What are all the fundamental solutions for Δ in \mathbb{R}^{2} ?
Problem 4. Distributions defined by finite parts.
Recall from Sheet 2 that the distributional derivative of $\log |x|$ is the distribution $\operatorname{pv}\left(\frac{1}{x}\right)$ defined by the principal value integral

$$
\left\langle\operatorname{pv}\left(\frac{1}{x}\right), \varphi\right\rangle:=\lim _{\varepsilon \searrow 0}\left(\int_{-\infty}^{-\varepsilon}+\int_{\varepsilon}^{\infty}\right) \frac{\varphi(x)}{x} \mathrm{~d} x, \quad \varphi \in \mathscr{D}(\mathbb{R}) .
$$

In order to represent the higher order derivatives one can use finite parts: Let $n \in \mathbb{N}$ with $n>1$. We then define $\operatorname{fp}\left(\frac{1}{x^{n}}\right)$ for each $\varphi \in \mathscr{D}(\mathbb{R})$ by the finite part integral

$$
\left\langle\operatorname{fp}\left(\frac{1}{x^{n}}\right), \varphi\right\rangle:=\int_{-\infty}^{\infty} \frac{\varphi(x)-\sum_{j=0}^{n-2} \frac{\varphi^{(j)}(0)}{j!} x^{j}-\frac{\varphi^{(n-1)}(0)}{(n-1)!} x^{n-1} \mathbf{1}_{(-1,1)}(x)}{x^{n}} \mathrm{~d} x
$$

(a) Check that hereby $\operatorname{fp}\left(\frac{1}{x^{n}}\right)$ is a well-defined distribution on \mathbb{R}. Show that

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \operatorname{pv}\left(\frac{1}{x}\right)=-\mathrm{fp}\left(\frac{1}{x^{2}}\right) \quad \text { and } \quad \frac{\mathrm{d}}{\mathrm{~d} x} \mathrm{fp}\left(\frac{1}{x^{n}}\right)=-n \mathrm{fp}\left(\frac{1}{x^{n+1}}\right)
$$

for all $n>1$. Is $\operatorname{fp}\left(\frac{1}{x^{n}}\right)$ homogeneous? (See Problem 4 on Sheet 2 for the definition of homogeneity.)
(b) Show that for $n>1$ we have $x^{n} \operatorname{fp}\left(\frac{1}{x^{n}}\right)=1$ and find the general solution to the equation $x^{n} u=1$ in $\mathscr{D}^{\prime}(\mathbb{R})$. What is the general solution to the equation $(x-a)^{n} v=1$ in $\mathscr{D}^{\prime}(\mathbb{R})$ when $a \in \mathbb{R} \backslash\{0\}$?
(c) Optional. Let $p(x) \in \mathbb{C}[x] \backslash\{0\}$ be a nontrivial polynomial. Describe the general solution $w \in \mathscr{D}^{\prime}(\mathbb{R})$ to the equation

$$
p(x) w=1 \text { in } \mathscr{D}^{\prime}(\mathbb{R}) .
$$

Problem 5. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if for all $x_{0}, x_{1} \in \mathbb{R}$ and $\lambda \in(0,1)$ we have

$$
\begin{equation*}
f\left(\lambda x_{1}+(1-\lambda) x_{0}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{0}\right) . \tag{1}
\end{equation*}
$$

A function $a: \mathbb{R} \rightarrow \mathbb{R}$ satisfying (1) with equality everywhere is called an affine function.
(a) Show that an affine function must have the form $a(x)=a_{1} x+a_{0}$ for some constants a_{0}, $a_{1} \in \mathbb{R}$. Show also that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if and only if it for each compact interval $[\alpha, \beta] \subset \mathbb{R}$ has the property:

$$
\text { when } a \text { is affine and } f(x) \leq a(x) \text { for } x \in\{\alpha, \beta\} \text {, then } f \leq a \text { on }[\alpha, \beta]
$$

(b) Show that a convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the 3 slope inequality:

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \leq \frac{f\left(x_{3}\right)-f\left(x_{1}\right)}{x_{3}-x_{1}} \leq \frac{f\left(x_{3}\right)-f\left(x_{2}\right)}{x_{3}-x_{2}}
$$

holds for all triples $x_{1}<x_{2}<x_{3}$. Deduce that a convex function must be continuous and that it is differentiable except for in at most countably many points.
Optional: Show that a convex function is locally Lipschitz continuous: for each $r>0$ there exists $L=L_{r} \geq 0$ such that $|f(x)-f(y)| \leq L|x-y|$ holds for all $x, y \in[-r, r]$.
(c) Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is twice differentiable. Show that f is convex if and only if

$$
f^{\prime \prime}(x) \geq 0
$$

holds for all $x \in \mathbb{R}$.
(d) Let $u \in \mathscr{D}^{\prime}(\mathbb{R})$ be real-valued and assume that $u^{\prime \prime} \geq 0$ in $\mathscr{D}^{\prime}(\mathbb{R})$. Show that u is a regular distribution that is represented by a convex function.

Problem 6. (Optional) Boundary values in the sense of distributions for holomorphic functions. (a) Prove that for each $n \in \mathbb{N}$,

$$
(x+\mathrm{i} \varepsilon)^{-n} \rightarrow(x+\mathrm{i} 0)^{-n} \quad \text { in } \mathscr{D}^{\prime}(\mathbb{R}) \text { as } \varepsilon \searrow 0,
$$

where the distribution $(x+\mathrm{i} 0)^{-n}$ was defined on Problem Sheet 3 .
A holomorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ on the upper half-plane $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ is said to be of slow growth if for each $r>0$ there exist $m=m_{r} \in \mathbb{N}_{0}$ and $c=c_{r} \geq 0$ so

$$
|f(z)| \leq \frac{c}{\operatorname{Im}(z)^{m}}
$$

holds for all $z \in \mathbb{H}$ with $|\operatorname{Re}(z)| \leq r$ and $\operatorname{Im}(z)<2$.
(b) Prove that if $f: \mathbb{H} \rightarrow \mathbb{C}$ is holomorphic of slow growth, then it has a boundary value in the sense of distributions:

$$
\langle f(x+\mathrm{i} 0), \varphi\rangle:=\lim _{\varepsilon \searrow 0} \int_{\mathbb{R}} f(x+\mathrm{i} \varepsilon) \varphi(x) \mathrm{d} x
$$

exists for all $\varphi \in \mathscr{D}(\mathbb{R})$ and defines a distribution. [Hint: Assume first that $m=0$ above and let $F: \mathbb{H} \rightarrow \mathbb{C}$ be the holomorphic primitive with $F(\mathrm{i})=0$. Explain why F has a continuous extension to the closed upper half-plane $\overline{\mathbb{H}}$ and use this to conclude the proof in this special case. Then use induction on m.]

