Distribution Theory

MT22/HT23

Problem Sheet 4

Problem 1. This question provides a condition ensuring that the usual partial derivatives coincide with the distributional partial derivatives. Prove Lemma 5.21 from the lecture notes: If the dimension $n \ge 2$ and $f \in C^1(\mathbb{R}^n \setminus \{0\}) \cap L^1_{loc}(\mathbb{R}^n)$ has usual partial derivatives $\partial_j f \in L^1_{loc}(\mathbb{R}^n)$ for each direction $1 \le j \le n$, then also

$$\int_{\mathbb{R}^n} \partial_j f \varphi \, \mathrm{d}x = - \int_{\mathbb{R}^n} f \partial_j \varphi \, \mathrm{d}x$$

holds for all $\varphi \in \mathscr{D}(\mathbb{R}^n)$. Give an example to show that it can fail for dimension n = 1. Show that for dimension n = 1 we instead have the following: If $f \in C^1(\mathbb{R} \setminus \{0\}) \cap C(\mathbb{R})$ and the usual derivative $f' \in L^1_{loc}(\mathbb{R})$, then

$$\int_{\mathbb{R}} f' \varphi \, \mathrm{d}x = -\int_{\mathbb{R}} f \varphi' \, \mathrm{d}x$$

holds for all $\varphi \in \mathscr{D}(\mathbb{R})$.

Problem 2. In this question all distributions are assumed to be real-valued. If $u, v \in \mathscr{D}'(\mathbb{R})$, then we write $u \ge v$ provided $\langle u, \phi \rangle \ge \langle v, \phi \rangle$ holds for all non-negative $\phi \in \mathscr{D}(\mathbb{R})$.

(a) Given $v \in \mathscr{D}'(\mathbb{R})$. Find all $u \in \mathscr{D}'(\mathbb{R})$ such that $u \ge v$. (b) Find all $u \in \mathscr{D}'(\mathbb{R})$ satisfying

$$u'' - 2u' + u \ge 0.$$

Problem 3. Let Ω be an open subset of \mathbb{R}^2 and consider the Poisson equation

$$\Delta u = f \text{ in } \mathscr{D}'(\Omega)$$

where $f \in \mathscr{D}'(\Omega)$ is given.

State the *singular support rule for convolutions* and show how it together with properties of a fundamental solution for the Laplacian leads to the identity

$$\operatorname{sing.supp}(u) = \operatorname{sing.supp}(f).$$

What are all the fundamental solutions for Δ in \mathbb{R}^2 ?

Problem 4. Distributions defined by finite parts.

Recall from Sheet 2 that the distributional derivative of $\log |x|$ is the distribution $pv(\frac{1}{x})$ defined by the principal value integral

$$\left\langle \operatorname{pv}\left(\frac{1}{x}\right),\varphi\right\rangle := \lim_{\varepsilon\searrow 0} \left(\int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty}\right) \frac{\varphi(x)}{x} \,\mathrm{d}x\,,\quad \varphi\in\mathscr{D}(\mathbb{R}).$$

In order to represent the higher order derivatives one can use finite parts: Let $n \in \mathbb{N}$ with n > 1. We then define $\operatorname{fp}\left(\frac{1}{x^n}\right)$ for each $\varphi \in \mathscr{D}(\mathbb{R})$ by the *finite part integral*

$$\left\langle \operatorname{fp}\left(\frac{1}{x^{n}}\right),\varphi\right\rangle := \int_{-\infty}^{\infty} \frac{\varphi(x) - \sum_{j=0}^{n-2} \frac{\varphi^{(j)}(0)}{j!} x^{j} - \frac{\varphi^{(n-1)}(0)}{(n-1)!} x^{n-1} \mathbf{1}_{(-1,1)}(x)}{x^{n}} \,\mathrm{d}x.$$

(a) Check that hereby $fp(\frac{1}{x^n})$ is a well-defined distribution on \mathbb{R} . Show that

$$\frac{\mathrm{d}}{\mathrm{d}x}\mathrm{pv}\left(\frac{1}{x}\right) = -\mathrm{fp}\left(\frac{1}{x^2}\right)$$
 and $\frac{\mathrm{d}}{\mathrm{d}x}\mathrm{fp}\left(\frac{1}{x^n}\right) = -n\mathrm{fp}\left(\frac{1}{x^{n+1}}\right)$

for all n > 1. Is $fp(\frac{1}{x^n})$ homogeneous? (See Problem 4 on Sheet 2 for the definition of homogeneity.)

(b) Show that for n > 1 we have $x^n \operatorname{fp}\left(\frac{1}{x^n}\right) = 1$ and find the general solution to the equation $x^n u = 1$ in $\mathscr{D}'(\mathbb{R})$. What is the general solution to the equation $(x - a)^n v = 1$ in $\mathscr{D}'(\mathbb{R})$ when $a \in \mathbb{R} \setminus \{0\}$?

(c) *Optional*. Let $p(x) \in \mathbb{C}[x] \setminus \{0\}$ be a nontrivial polynomial. Describe the general solution $w \in \mathscr{D}'(\mathbb{R})$ to the equation

$$p(x)w = 1$$
 in $\mathscr{D}'(\mathbb{R})$.

Problem 5. A function $f : \mathbb{R} \to \mathbb{R}$ is *convex* if for all $x_0, x_1 \in \mathbb{R}$ and $\lambda \in (0, 1)$ we have

$$f(\lambda x_1 + (1-\lambda)x_0) \le \lambda f(x_1) + (1-\lambda)f(x_0).$$
(1)

A function $a: \mathbb{R} \to \mathbb{R}$ satisfying (1) with equality everywhere is called an *affine function*. (a) Show that an affine function must have the form $a(x) = a_1x + a_0$ for some constants a_0 , $a_1 \in \mathbb{R}$. Show also that a function $f: \mathbb{R} \to \mathbb{R}$ is convex if and only if it for each compact interval $[\alpha, \beta] \subset \mathbb{R}$ has the property:

when a is affine and $f(x) \leq a(x)$ for $x \in \{\alpha, \beta\}$, then $f \leq a$ on $[\alpha, \beta]$

(b) Show that a convex function $f : \mathbb{R} \to \mathbb{R}$ satisfies the 3 slope inequality:

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}$$

holds for all triples $x_1 < x_2 < x_3$. Deduce that a convex function must be continuous and that it is differentiable except for in at most countably many points.

Optional: Show that a convex function is locally Lipschitz continuous: for each r > 0 there exists $L = L_r \ge 0$ such that $|f(x) - f(y)| \le L|x - y|$ holds for all $x, y \in [-r, r]$.

(c) Assume that $f : \mathbb{R} \to \mathbb{R}$ is twice differentiable. Show that f is convex if and only if

$$f''(x) \ge 0$$

holds for all $x \in \mathbb{R}$.

(d) Let $u \in \mathscr{D}'(\mathbb{R})$ be real-valued and assume that $u'' \geq 0$ in $\mathscr{D}'(\mathbb{R})$. Show that u is a regular distribution that is represented by a convex function.

Problem 6. (Optional) Boundary values in the sense of distributions for holomorphic functions. (a) Prove that for each $n \in \mathbb{N}$,

$$(x + i\varepsilon)^{-n} \to (x + i0)^{-n}$$
 in $\mathscr{D}'(\mathbb{R})$ as $\varepsilon \searrow 0$,

where the distribution $(x + i0)^{-n}$ was defined on Problem Sheet 3. A holomorphic function $f: \mathbb{H} \to \mathbb{C}$ on the upper half-plane $\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ is said to be of slow growth if for each r > 0 there exist $m = m_r \in \mathbb{N}_0$ and $c = c_r \ge 0$ so

$$|f(z)| \le \frac{c}{\operatorname{Im}(z)^m}$$

holds for all $z \in \mathbb{H}$ with $|\operatorname{Re}(z)| \leq r$ and $\operatorname{Im}(z) < 2$.

(b) Prove that if $f: \mathbb{H} \to \mathbb{C}$ is holomorphic of slow growth, then it has a boundary value in the sense of distributions:

$$\left\langle f(x+\mathrm{i}0),\varphi\right\rangle := \lim_{\varepsilon\searrow 0}\int_{\mathbb{R}} f(x+\mathrm{i}\varepsilon)\varphi(x)\,\mathrm{d}x$$

exists for all $\varphi \in \mathscr{D}(\mathbb{R})$ and defines a distribution. [*Hint: Assume first that* m = 0 above and let $F \colon \mathbb{H} \to \mathbb{C}$ be the holomorphic primitive with F(i) = 0. Explain why F has a continuous extension to the closed upper half-plane \mathbb{H} and use this to conclude the proof in this special *case. Then use induction on m.*]