Exercise sheet 4. W1 of Hilary Term. All lectures.

Q1. Suppose in this exercise that $\operatorname{char}(k)=0$. Find the singularities of the following curves C in k^{2}. For each singular point $P \in C$ compute the dimension of $\mathfrak{m}_{P} / \mathfrak{m}_{P}^{2}$ as a k-vector space. Here \mathfrak{m}_{P} is the maximal ideal of $\mathcal{O}_{C, P}$.
(1) $\mathrm{Z}\left(x^{6}+y^{6}-x y\right)$
(2) $\mathrm{Z}\left(y^{2}+x^{4}+y^{4}-x^{3}\right)$

You may assume that the polynomials $x^{6}+y^{6}-x y$ and $y^{2}+x^{4}+y^{4}-x^{3}$ are irreducible.
Q2. (blowing up the origin in affine space) Let $n \geqslant 1$. Let x_{1}, \ldots, x_{n} be variables for k^{n} and let y_{1}, \ldots, y_{n} be homogenous variables for $\mathbb{P}^{n-1}(k)$. Note that contrary to what is customary, the index of the homogenous variables runs between 1 and n here (not 0 and $n-1$).
(1) Let Z be the subset of $k^{n} \times \mathbb{P}^{n-1}(k)$ defined by the equations $\left\{x_{i} y_{j}-x_{j} y_{i}=0\right\}_{i, j \in\{1, \ldots, n\}}$ (note that this makes sense because the polynomials are homogenous in the y-variables). Show that Z is a closed subvariety of $k^{n} \times \mathbb{P}^{n-1}(k)$. The variety Z is called the blow-up of k^{n} at the origin of k^{n}. Let $\phi: Z \rightarrow k^{n}$ the map obtained by restricting the projection $k^{n} \times \mathbb{P}^{n-1}(k) \rightarrow k^{n}$ to Z.
(2) Show that $\phi^{-1}(\{0\})$ is canonically isomorphic to $\mathbb{P}^{n-1}(k)$. Show that the points of $\phi^{-1}(0)$ are in one-to-one correspondence with the lines going through the origin of k^{n}.
(3) Show that the restriction of ϕ to the open subvariety $\phi^{-1}\left(k^{n} \backslash\{0\}\right)$ of Z induces an isomorphism $\phi^{-1}\left(k^{n} \backslash\{0\}\right) \simeq k^{n} \backslash\{0\}$.

Q3. (blowing up a point of an affine variety) Let $X \subseteq k^{n}$ be a closed subvariety (ie an algebraic set). Let $\bar{v}:=\left\langle v_{1}, \ldots, v_{n}\right\rangle \in X$ and suppose that $\{\bar{v}\}$ is not an irreducible component of X. Let $\tau_{\bar{v}}: k^{n} \rightarrow k^{n}$ be the map such that $\tau_{\bar{v}}\left(\left\langle w_{1}, \ldots, w_{n}\right\rangle\right)=\left\langle w_{1}+v_{1}, \ldots, w_{n}+v_{n}\right\rangle$ for all $\bar{w}=\left\langle w_{1}, \ldots, w_{n}\right\rangle \in k^{n}$ (note that this is an automorphism of the variety $\left.k^{n}\right)$. Let $Y:=\tau_{-\bar{v}}(X)$. Note that by construction we have $0 \in Y$. Let $\phi: Z \rightarrow k^{n}$ be the morphism defined in Q2.

We define the blow-up $\mathrm{Bl}(X, \bar{v})$ of X at \bar{v} to be the closure of $\phi^{-1}(Y \backslash\{0\})$ in Z.
(1) Show that $\phi(\operatorname{Bl}(X, \bar{v}))=Y$.

Let $b: \operatorname{Bl}(X, \bar{v}) \rightarrow X$ be the morphism $\left.\tau_{\bar{v}} \circ \phi\right|_{\mathrm{Bl}(X, \bar{v})}$.
(2) Suppose that X is irreducible. Show that $\operatorname{Bl}(X, \bar{v})$ is an irreducible component of $\phi^{-1}(Y) \subseteq k^{n} \times \mathbb{P}^{n-1}(k)$. Show that b is a birational morphism. If $X \neq k^{n}$, show that the irreducible components of $\phi^{-1}(Y)$ are $\operatorname{Bl}(X, \bar{v})$ and $\{0\} \times \mathbb{P}^{n-1}(k)$.

The closed set $b^{-1}(\{v\})=\operatorname{Bl}(X, \bar{v}) \cap\left(\{0\} \times \mathbb{P}^{n-1}(k)\right)$ is called the exceptional divisor of $\operatorname{Bl}(X, \bar{v})$.
Q4. Let C be the plane curve considered in (1) of Q1. Consider the blow-up B of C at each of its singular points in turn. How many irreducible components does the exceptional divisor of B have? Is B non-singular?

Q5. Let C be the curve $y^{2}=x^{3}$ in k^{2}. Let $b: \operatorname{Bl}(C, 0) \rightarrow C$ of C be the blow-up of C at the origin.
(1) Show that $\operatorname{Bl}(C, 0) \simeq k$.
(2) Show that the map b is a homeomorphism but is not an isomorphism.

Q6. Let $V \subseteq k^{2}$ be the algebraic set defined by the equation $x_{1} x_{2}=0$. Show that $\operatorname{Bl}(V, 0)$ has two disjoint irreducible components and that each of these components is isomorphic to k.

Q7. (1) Let $f: X \rightarrow Y$ be a dominant morphism of varieties. Suppose that Y is irreducible. Show that $\operatorname{dim}(X) \geqslant \operatorname{dim}(Y)$.
(2) Let $f: X \rightarrow Y$ be a dominant morphism of irreducible varieties. Suppose that the field extension $\kappa(X) \mid \kappa(Y)$ is algebraic. Show that there are affine open subvarieties $U \subseteq X$ and $W \subseteq Y$ such that $f(U)=W$ and such that the map of rings $\mathcal{O}_{X}(U) \rightarrow \mathcal{O}_{Y}(V)$ is injective and finite.
(3) Let $f: X \rightarrow Y$ be a dominant morphism of irreducible quasi-projective varieties. Show that there is a $y \in Y$ such that we have $\operatorname{dim}\left(f^{-1}(\{y\})\right) \geqslant \operatorname{dim}(X)-\operatorname{dim}(Y)$. [Hint. Reduce to the situation where Y is affine and apply Noether's normalisation lemma to show that you may assume wlog that $Y=k^{n}$ for some n. Now use the existence of transcendence bases and (2) to show that there is an open subvariety $U \subseteq X$ and an open subvariety W of $k^{\operatorname{dim}(X)-\operatorname{dim}(Y)} \times k^{n}$ such that $\left.f\right|_{U}$ factors as a finite and surjective morphism $U \rightarrow W$, followed by the projection to k^{n}. Now deduce the result from (1) and a computation of the dimension of the fibres of the projection $k^{\operatorname{dim}(X)-\operatorname{dim}(Y)} \times k^{n} \rightarrow k^{n}$.]
(4) Deduce that in the situation of (3), the set of $y \in Y$ such that we have $\operatorname{dim}\left(f^{-1}(\{y\})\right) \geqslant \operatorname{dim}(X)-\operatorname{dim}(Y)$ is dense in Y.

Q8. (1) Show that all the morphisms from $\mathbb{P}^{2}(k)$ to $\mathbb{P}^{1}(k)$ are constant. [Hint: Use Q^{7} and the projective dimension theorem.]
(2) Deduce from (1) that for any $n \geqslant 2$ the morphisms from $\mathbb{P}^{n}(k)$ to $\mathbb{P}^{1}(k)$ are constant. [Hint: Use (1) and Q7 of Sheet 2.]

