Exercise sheet 4. W1 of Hilary Term. All lectures.

Q1. Suppose in this exercise that $\operatorname{char}(k)=0$. Find the singularities of the following curves C in k^{2}. For each singular point $P \in C$ compute the dimension of $\mathfrak{m}_{P} / \mathfrak{m}_{P}^{2}$ as a k-vector space. Here \mathfrak{m}_{P} is the maximal ideal of $\mathcal{O}_{C, P}$.
(1) $\mathrm{Z}\left(x^{6}+y^{6}-x y\right)$
(2) $\mathrm{Z}\left(y^{2}+x^{4}+y^{4}-x^{3}\right)$

You may assume that the polynomials $x^{6}+y^{6}-x y$ and $y^{2}+x^{4}+y^{4}-x^{3}$ are irreducible.
Solution. (1) Note that $\operatorname{dim}(C)=1$ by Krull's theorem and by Theorem 8.7. Thus we need to find the points of C where the gradient of $x^{6}+y^{6}-x y$ vanishes. The gradient of $x^{6}+y^{6}-x y$ is $\left\langle 6 x^{5}-y, 6 y^{5}-x\right\rangle$. Hence we need to solve the equations $x^{6}+y^{6}-x y=6 x^{5}-y=6 y^{5}-x=0$. We have

$$
(x / 6)\left(6 x^{5}-y\right)-(y / 6)\left(6 y^{5}-x\right)+2 y^{6}-x y=x^{6}+y^{6}-x y
$$

and thus these equations are equivalent to

$$
2 y\left(y^{5}-x\right)=6 x^{5}-y=6 y^{5}-x=0
$$

Now if $y=0$ then $x=0$. If $y \neq 0$ then $y^{5}=x=x / 6$ so $y=0$, which is a contradiction. So we must have $x=y=0$. So $\langle 0,0\rangle$ is the only singular point of C.

For $P=\langle 0,0\rangle$ the dimension of $\mathfrak{m}_{P} / \mathfrak{m}_{P}^{2}$ as a k-vector space cannot be 1 , since otherwise the ring $\mathcal{O}_{C, P}$ would be regular (apply Proposition 13.3). Since \mathfrak{m}_{P} is generated as a $k[x, y]$-module by the elements x and y, we see that $\mathfrak{m}_{P} / \mathfrak{m}_{P}^{2}$ has dimension at most 2 . Hence $\mathfrak{m}_{P} / \mathfrak{m}_{P}^{2}$ has dimension 2.
(2) The reasoning is similar. Solve $y^{2}+x^{4}+y^{4}-x^{3}=4 x^{3}-3 x^{2}=2 y+4 y^{3}=0$. Combining, we obtain

$$
4\left(y^{2}+x^{4}+y^{4}-x^{3}\right)+(1 / 4-x)\left(4 x^{3}-3 x^{2}\right)-y\left(2 y+4 y^{3}\right)=(-3 / 4) x^{2}+2 y^{2}=0
$$

Now if $x \neq 0$ then $x=3 / 4$ since $4 x^{3}-3 x^{2}=0$ and so $y^{2}=27 / 128$. But then $y\left(2 y+4 y^{3}\right)=6503409 / 67108864$ which is a contradiction. So we have $x=0$ and also $y=0$. We conclude again that the origin is the only singular point of C. By the same reasoning as above, we see that $\mathfrak{m}_{P} / \mathfrak{m}_{P}^{2}$ has dimension 2.

Q2. (blowing up the origin in affine space) Let $n \geqslant 1$. Let x_{1}, \ldots, x_{n} be variables for k^{n} and let y_{1}, \ldots, y_{n} be homogenous variables for $\mathbb{P}^{n-1}(k)$. Note that contrary to what is customary, the index of the homogenous variables runs between 1 and n here (not 0 and $n-1$).
(1) Let Z be the subset of $k^{n} \times \mathbb{P}^{n-1}(k)$ defined by the equations $\left\{x_{i} y_{j}-x_{j} y_{i}=0\right\}_{i, j \in\{1, \ldots, n\}}$ (note that this makes sense because the polynomials are homogenous in the y-variables). Show that Z is a closed subvariety of $k^{n} \times \mathbb{P}^{n-1}(k)$. The variety Z is called the blow-up of k^{n} at the origin of k^{n}. Let $\phi: Z \rightarrow k^{n}$ the map obtained by restricting the projection $k^{n} \times \mathbb{P}^{n-1}(k) \rightarrow k^{n}$ to Z.
(2) Show that $\phi^{-1}(\{0\})$ is canonically isomorphic to $\mathbb{P}^{n-1}(k)$. Show that the points of $\phi^{-1}(0)$ are in one-to-one correspondence with the lines going through the origin of k^{n}.
(3) Show that the restriction of ϕ to the open subvariety $\phi^{-1}\left(k^{n} \backslash\{0\}\right)$ of Z induces an isomorphism $\phi^{-1}\left(k^{n} \backslash\{0\}\right) \simeq k^{n} \backslash\{0\}$.

Solution. (1) On the open affine subset $k^{n} \times U_{j_{0}}^{n-1}, Z$ is given by the equations

$$
\left\{x_{i} y_{j}-x_{j} y_{i}=0, x_{i}-x_{j_{0}} y_{i}=0\right\}_{i \in\{1, \ldots, n\}, j \in\left\{1, \ldots, j_{0}-1, j_{0}+1, \ldots, n\right\}}
$$

The set $Z \cap k^{n} \times U_{j_{0}}^{n-1}$ is thus closed in $k^{n} \times U_{j_{0}}^{n-1}$. Since the $k^{n} \times U_{j}^{n-1}$ cover $k^{n} \times \mathbb{P}^{n-1}(k)$, we see that Z is closed.
(2) It follows from the definitions that $\phi^{-1}(\{0\})=\{0\} \times \mathbb{P}^{n-1}(k)$.
(3) Suppose that $\left\langle X_{1}, \ldots, X_{n}\right\rangle \neq 0$. Then there is an i_{0} such that $X_{i_{0}} \neq 0$. The equations for Z then give $Y_{j}=X_{j}\left(Y_{i_{0}} / X_{i_{0}}\right)$ for all j. Up to multiplication of all the Y_{j} by a non zero scalar factor, the only solution to this set of equations is $\left\langle X_{1}, \ldots, X_{n}\right\rangle$. In particular, we have

$$
\phi^{-1}\left(\left\langle X_{1}, \ldots, X_{n}\right\rangle\right)=\left\{\left\langle X_{1}, \ldots, X_{n}\right\rangle\right\} \times\left\{\left[X_{1}, \ldots, X_{n}\right]\right\} .
$$

This shows that the morphism $\phi^{-1}\left(k^{n} \backslash\{0\}\right) \rightarrow k^{n} \backslash\{0\}$ is a bijection. To show that it is an isomorphism, we shall provide an inverse morphism. For this, consider the morphism $q: k^{n} \backslash\{0\} \rightarrow \mathbb{P}^{n-1}(k)$ introduced in Q6 of Sheet 3. We define a map $k^{n} \backslash\{0\} \rightarrow Z$ by the formula $g:=\operatorname{Id}_{k^{n} \backslash\{0\}} \prod q$. By construction, this gives an inverse of the morphism $\phi^{-1}\left(k^{n} \backslash\{0\}\right) \rightarrow k^{n} \backslash\{0\}$.

Q3. (blowing up a point of an affine variety) Let $X \subseteq k^{n}$ be a closed subvariety (ie an algebraic set). Let $\bar{v}:=\left\langle v_{1}, \ldots, v_{n}\right\rangle \in X$ and suppose that $\{\bar{v}\}$ is not an irreducible component of X. Let $\tau_{\bar{v}}: k^{n} \rightarrow k^{n}$ be the map such that $\tau_{\bar{v}}\left(\left\langle w_{1}, \ldots, w_{n}\right\rangle\right)=\left\langle w_{1}+v_{1}, \ldots, w_{n}+v_{n}\right\rangle$ for all $\bar{w}=\left\langle w_{1}, \ldots, w_{n}\right\rangle \in k^{n}$ (note that this is an automorphism of the variety $\left.k^{n}\right)$. Let $Y:=\tau_{-\bar{v}}(X)$. Note that by construction we have $0 \in Y$. Let $\phi: Z \rightarrow k^{n}$ be the morphism defined in Q2.

We define the blow-up $\mathrm{Bl}(X, \bar{v})$ of X at \bar{v} to be the closure of $\phi^{-1}(Y \backslash\{0\})$ in Z.
(1) Show that $\phi(\operatorname{Bl}(X, \bar{v}))=Y$.

Let $b: \operatorname{Bl}(X, \bar{v}) \rightarrow X$ be the morphism $\left.\tau_{\bar{v}} \circ \phi\right|_{\mathrm{Bl}(X, \bar{v})}$.
(2) Suppose that X is irreducible. Show that $\operatorname{Bl}(X, \bar{v})$ is an irreducible component of $\phi^{-1}(Y) \subseteq k^{n} \times \mathbb{P}^{n-1}(k)$. Show that b is a birational morphism. If $X \neq k^{n}$, show that the irreducible components of $\phi^{-1}(Y)$ are $\operatorname{Bl}(X, \bar{v})$ and $\{0\} \times \mathbb{P}^{n-1}(k)$.

The closed set $b^{-1}(\{v\})=\operatorname{Bl}(X, \bar{v}) \cap\left(\{0\} \times \mathbb{P}^{n-1}(k)\right)$ is called the exceptional divisor of $\operatorname{Bl}(X, \bar{v})$.
Solution. (1) Note first that \bar{v} lies in the closure of $X \backslash\{\bar{v}\}$. To see this, let C be the irreducible component of X containing \bar{v}. Then $C \backslash\{\bar{v}\}$ is non-empty (by assumption) and it is open in C (since $\{\bar{v}\}$ is closed). Furthermore, $C \backslash\{\bar{v}\}$ is not closed in C, for otherwise C would be disconnected and hence reducible. Thus \bar{v} lies in the closure of $C \backslash\{0\}$ in C (which must be C) and hence \bar{v} lies in the closure of $X \backslash\{\bar{v}\}$ in X.

Now since $\mathbb{P}^{n-1}(k)$ is complete (see Theorem 12.9), we know that $\phi(\operatorname{Bl}(X, \bar{v}))$ is closed. By (3) of Q 2 , we now that $\phi(\operatorname{Bl}(X, \bar{v})) \backslash\{\bar{v}\}=X \backslash\{\bar{v}\}$ and thus by the reasoning in the last paragraph, we see that $\bar{v} \in \phi(\operatorname{Bl}(X, \bar{v}))$. In particular, $\phi(\mathrm{Bl}(X, \bar{v}))=Y$.
(2) From Q2 (3) we know that the natural morphism $\phi^{-1}(Y \backslash\{0\}) \rightarrow Y \backslash\{0\}$ is an isomorphism. Now if X is irreducible, so is Y and so is $Y \backslash\{0\}$. Hence $\operatorname{Bl}(X, \bar{v})$ is irreducible by Q 4 (1) of Sheet 2. On the other hand, $\operatorname{Bl}(X, \bar{v}) \subseteq \phi^{-1}(Y)$ since $\phi^{-1}(Y)$ is closed in Z. Since $\operatorname{Bl}(X, \bar{v})$ contains the non empty open subset set $\phi^{-1}(Y \backslash\{0\})$ of $\phi^{-1}(Y)$, we see that $\mathrm{Bl}(X, \bar{v})$ is an irreducible component of $\phi^{-1}(Y)$. Since $\phi^{-1}(Y \backslash\{0\}) \rightarrow Y \backslash\{0\}$ is an isomorphism, the morphism b is birational.

On the other hand, we have by construction $\phi^{-1}(Y)=\operatorname{Bl}(X, \bar{v}) \cup\left(\{0\} \times \mathbb{P}^{n-1}(k)\right)$. Now suppose that $X \neq k^{n}$. We then have $\{0\} \times \mathbb{P}^{n-1}(k) \nsubseteq \operatorname{Bl}(X, \bar{v})$ because

$$
\operatorname{dim}\left(\{0\} \times \mathbb{P}^{n-1}(k)\right)=n-1 \geqslant \operatorname{dim}(\operatorname{Bl}(X, \bar{v}))=\operatorname{dim}(X) \leqslant n-1
$$

(use Proposition 9.2, Q6 of Sheet 6 and Theorem 8.7). Since $\{0\} \times \mathbb{P}^{n-1}(k)$ is irreducible (since it is isomorphic to $\left.\mathbb{P}^{n-1}(k)\right)$ we see that the irreducible components of $\phi^{-1}(Y)$ are $\operatorname{Bl}(X, \bar{v})$ and $\{0\} \times \mathbb{P}^{n-1}(k)$.

Q4. Let C be the plane curve considered in (1) of Q1. Consider the blow-up B of C at each of its singular points in turn. How many irreducible components does the exceptional divisor of B have? Is B non-singular?

Solution. Consider the curve $\mathrm{Z}\left(x_{1} x_{2}-x_{1}^{6}-x_{2}^{6}\right) \subseteq k^{2}$ of (1) of Q1. Use the terminology of Q2 and Q3, letting $n=2$ and $X=\mathrm{Z}\left(x_{1} x_{2}-x_{1}^{6}-x_{2}^{6}\right)=Y$ (note that the point to blow-up is the origin by the solution Q1 (1) so we do not have to translate X). We first compute $\phi^{-1}(X)$. Let $\pi: k^{n} \times \mathbb{P}^{1}(k) \rightarrow k^{n}$ be the natural projection. By definition

$$
\phi^{-1}(X)=\pi^{-1}(X) \cap Z=\mathrm{Z}\left(x_{1} y_{2}-x_{2} y_{1}, x_{1} x_{2}-x_{1}^{6}-x_{2}^{6}\right)
$$

Let $U_{1}:=\left\{\left[1, Y_{2}\right] \mid Y_{2} \in k\right\} \subseteq \mathbb{P}^{1}(k)$. In $k^{2} \times U_{1}$, we have

$$
\begin{aligned}
& \phi^{-1}(X) \cap\left(k^{2} \times U_{1}\right)=\mathrm{Z}\left(x_{1} y_{2}-x_{2}, x_{1} x_{2}-x_{1}^{6}-x_{2}^{6}\right)=\mathrm{Z}\left(x_{1} y_{2}-x_{2}, x_{1}^{2} y_{2}-x_{1}^{6}-x_{1}^{6} y_{2}^{6}\right) \\
= & \left.\mathrm{Z}\left(x_{1} y_{2}-x_{2}, x_{1}^{2}\left(y_{2}-x_{1}^{4}-x_{1}^{4} y_{2}^{6}\right)\right)=\mathrm{Z}\left(x_{1} y_{2}-x_{2}, x_{1}\right) \cup \mathrm{Z}\left(x_{1} y_{2}-x_{2}, y_{2}-x_{1}^{4}-x_{1}^{4} y_{2}^{6}\right)\right) \\
= & \{0\} \times U_{1} \cup \mathrm{Z}\left(x_{1} y_{2}-x_{2}, y_{2}-x_{1}^{4}-x_{2}^{4} y_{2}^{2}\right)
\end{aligned}
$$

Now $\mathrm{Z}\left(x_{1} y_{2}-x_{2}, y_{2}-x_{1}^{4}-x_{2}^{4} y_{2}^{2}\right)$ does not contain $\{0\} \times U_{1}$ (since setting $x_{1}=x_{2}=0$ implies that $\left.y_{2}=0\right)$ so we have $\operatorname{Bl}(X, 0) \cap\left(k^{2} \times U_{1}\right)=\mathrm{Z}\left(x_{1} y_{2}-x_{2}, y_{2}-x_{1}^{4}-x_{2}^{4} y_{2}^{2}\right)$ by Q 3 (2). Finally, note that $\mathrm{Z}\left(x_{1} y_{2}-x_{2}, y_{2}-x_{1}^{4}-x_{2}^{4} y_{2}^{2}\right) \cap\left(\{0\} \times U_{1}\right)$ contains only the point $\{0\} \times\{[1,0]\}$. In other words, the intersection of the exceptional divisor of $\operatorname{Bl}(X, 0)$ with $\{0\} \times U_{1}$ is the point $\{0\} \times\{[1,0]\}$.

Let now $U_{2}:=\left\{\left[Y_{1}, 1\right] \mid Y_{1} \in k\right\} \subseteq \mathbb{P}^{1}(k)$. We compute as before

$$
\begin{aligned}
& \phi^{-1}(X) \cap\left(k^{2} \times U_{1}\right)=\mathrm{Z}\left(x_{1}-x_{2} y_{1}, x_{1} x_{2}-x_{1}^{6}-x_{2}^{6}\right)=\mathrm{Z}\left(x_{1}-x_{2} y_{1}, y_{1} x_{2}^{2}-x_{2}^{6} y_{1}^{6}-x_{2}^{6}\right) \\
= & \mathrm{Z}\left(x_{1}-x_{2} y_{1}, x_{2}\right) \cup \mathrm{Z}\left(x_{1}-x_{2} y_{1}, y_{1}-x_{2}^{4} y_{1}^{6}-x_{2}^{4}\right)=\{0\} \times U_{2} \cup \mathrm{Z}\left(x_{1}-x_{2} y_{1}, y_{1}-x_{2}^{4} y_{1}^{6}-x_{2}^{4}\right)
\end{aligned}
$$

We conclude as before that

$$
\mathrm{Bl}(X, 0) \cap\left(k^{2} \times U_{2}\right)=\mathrm{Z}\left(x_{1}-x_{2} y_{1}, y_{1}-x_{2}^{4} y_{1}^{6}-x_{2}^{4}\right)
$$

We compute $\mathrm{Z}\left(x_{1}-x_{2} y_{1}, y_{1}-x_{2}^{4} y_{1}^{6}-x_{2}^{4}\right) \cap\left(\{0\} \times U_{2}\right)=\{0\} \times\{[0,1]\}$. So the intersection of the exceptional divisor of $\operatorname{Bl}(X, 0)$ with $\{0\} \times U_{2}$ is the point $\{0\} \times[0,1]$.
Putting everything together, we see that the exceptional divisor of $\operatorname{Bl}(X, 0)$ consists of the points $\{0\} \times\{[1,0]\}$ and $\{0\} \times\{[0,1]\}$. In particular, the exceptional divisor of $\operatorname{Bl}(X, 0)$ has two irreducible components.

We now check non-singularity. We only have to check the non-singularity of $\operatorname{Bl}(X, 0)$ at $\{0\} \times\{[1,0]\}$ and $\{0\} \times\{[0,1]\}$ since $\operatorname{Bl}(X, 0) \backslash\{\{0\} \times\{[1,0]\} \cup\{0\} \times\{[0,1]\}\}$ is isomorphic to $X \backslash\{0\}$ and $X \backslash\{0\}$ is non-singular by the solution of Q1(1).

We first check non-singularity at $\{0\} \times\{[1,0]\}$. Let $Q_{1}:=x_{1} y_{2}-x_{2}$ and $Q_{2}:=y_{2}-x_{1}^{4}-x_{2}^{4} y_{2}^{2}$. We have

$$
\left(\begin{array}{ccc}
\frac{\partial}{\partial x_{1}} Q_{1} & \frac{\partial}{\partial x_{2}} Q_{1} & \frac{\partial}{\partial y_{2}} Q_{1} \\
\frac{\partial}{\partial x_{1}} Q_{2} & \frac{\partial}{\partial x_{2}} Q_{2} & \frac{\partial}{\partial y_{2}} Q_{2}
\end{array}\right)=\left(\begin{array}{ccc}
0 & -1 & 0 \\
-4 x_{1}^{3} & -4 x_{2}^{3} y_{2}^{2} & 1-2 x_{2}^{4} y_{2}
\end{array}\right)
$$

and evaluating at 0 we get the matrix

$$
\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

which has rank 2. Using Lemma 13.5 we see that $\operatorname{Bl}(X, 0)$ is non-singular at $\{0\} \times\{[1,0]\}$.
We now check non-singularity at $\{0\} \times\{[0,1]\}$. Let $Q_{1}:=x_{1}-x_{2} y_{1}$ and $Q_{2}:=y_{1}-x_{2}^{4} y_{1}^{6}-x_{2}^{4}$. We have

$$
\left(\begin{array}{ccc}
\frac{\partial}{\partial x_{1}} Q_{1} & \frac{\partial}{\partial x_{2}} Q_{1} & \frac{\partial}{\partial y_{2}} Q_{1} \\
\frac{\partial}{\partial x_{1}} Q_{2} & \frac{\partial}{\partial x_{2}} Q_{2} & \frac{\partial}{\partial y_{2}} Q_{2}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -4 x_{2}^{3}-4 x_{2}^{3} y_{1}^{6} & 1-6 x_{2}^{4} y_{1}^{5}
\end{array}\right)
$$

and evaluating at 0 we get the matrix

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

which again has rank 2. Again using Lemma 13.5 we see that $\operatorname{Bl}(X, 0)$ is non-singular at $\{0\} \times\{[0,1]\}$.
So all in all $\operatorname{Bl}(X, 0)$ is non-singular and its exceptional divisor has two irreducible components (which are points).
Q5. Let C be the curve $y^{2}=x^{3}$ in k^{2}. Let $b: \operatorname{Bl}(C, 0) \rightarrow C$ of C be the blow-up of C at the origin.
(1) Show that $\operatorname{Bl}(C, 0) \simeq k$.
(2) Show that the map b is a homeomorphism but is not an isomorphism.

Solution. Use the terminology of Q2 and Q3, letting $n=2$ and $X=\mathrm{Z}\left(x_{2}^{2}-x_{1}^{3}\right)=Y$ (note that the point to blow-up is the origin so we do not have to translate X). We first compute $\phi^{-1}(X)$. Let $\pi: k^{n} \times \mathbb{P}^{1}(k) \rightarrow k^{n}$ be the natural projection. By definition

$$
\phi^{-1}(X)=\pi^{-1}(X) \cap Z=\mathrm{Z}\left(x_{1} y_{2}-x_{2} y_{1}, x_{2}^{2}-x_{1}^{3}\right)
$$

Let $U_{1}:=\left\{\left[1, Y_{2}\right] \mid Y_{2} \in k\right\} \subset \mathbb{P}^{1}(k)$. In $k^{2} \times U_{1}$, we have

$$
\begin{aligned}
& \phi^{-1}(X) \cap\left(k^{2} \times U_{1}\right)=\mathrm{Z}\left(x_{1} y_{2}-x_{2}, x_{2}^{2}-x_{1}^{3}\right)=\mathrm{Z}\left(x_{1} y_{2}-x_{2}, x_{1}^{2} y_{2}^{2}-x_{1}^{3}\right) \\
= & \mathrm{Z}\left(x_{1} y_{2}-x_{2}, x_{1}\right) \cup \mathrm{Z}\left(x_{1} y_{2}-x_{2}, y_{2}^{2}-x_{1}\right)=\left(\{0\} \times U_{1}\right) \cup \mathrm{Z}\left(x_{1} y_{2}-x_{2}, y_{2}^{2}-x_{1}\right)
\end{aligned}
$$

The closed set $\mathrm{Z}\left(x_{1} y_{2}-x_{2}, y_{2}^{2}-x_{1}\right)$ does not contain $\{0\} \times U_{1}$. Also $\phi^{-1}(X) \cap\left(k^{2} \times U_{1}\right)$ has at most two irreducible components by Q2 (2) so we conclude that $\mathrm{Z}\left(x_{1} y_{2}-x_{2}, y_{2}^{2}-x_{1}\right)=\operatorname{Bl}(X, 0) \cap\left(k^{2} \times U_{1}\right)$. On the other hand, $\mathrm{Z}\left(x_{1} y_{2}-x_{2}, y_{2}^{2}-x_{1}\right) \cap\left(\{0\} \times U_{1}\right)=\{0\} \times\{[1,0]\}$.
We now repeat the above reasoning for $U_{2}:=\left\{\left[Y_{1}, 1\right] \mid Y_{1} \in k\right\} \subseteq \mathbb{P}^{1}(k)$ instead of U_{1}. We have

$$
\begin{aligned}
& \phi^{-1}(X) \cap\left(k^{2} \times U_{2}\right)=\mathrm{Z}\left(x_{1}-x_{2} y_{1}, x_{2}^{2}-x_{1}^{3}\right)=\mathrm{Z}\left(x_{1}-x_{2} y_{1}, x_{2}^{2}-x_{2}^{3} y_{1}^{3}\right) \\
= & \mathrm{Z}\left(x_{1}-x_{2} y_{1}, x_{2}\right) \cup \mathrm{Z}\left(x_{1}-x_{2} y_{1}, 1-x_{2} y_{2}^{3}\right)=\left(\{0\} \times U_{2}\right) \cup \mathrm{Z}\left(x_{1}-x_{2} y_{1}, 1-x_{2} y_{2}^{3}\right)
\end{aligned}
$$

As before, we have $\left.\mathrm{Z}\left(x_{1}-x_{2} y_{1}, 1-x_{2} y_{2}^{3}\right)\right) \cap\left(k^{2} \times U_{2}\right)=\operatorname{Bl}(X, 0) \cap\left(k^{2} \times U_{2}\right)$. On the other hand, a simple calculation shows that $\mathrm{Z}\left(x_{1}-x_{2} y_{1}, 1-x_{2} y_{2}^{3}\right) \cap\left(\{0\} \times U_{2}\right)=\emptyset$.

So we conclude that the exceptional divisor of $\operatorname{Bl}(X, 0)$ consist of only the point $\{0\} \times\{[1,0]\}$. In particular, the map $b: \mathrm{Bl}(X, 0) \rightarrow X$ is bijective. Since $\operatorname{Bl}(X, 0)$ is complete, the morphism b sends closed sets to closed sets (see Theorem 12.9 and Corollary 12.10) and thus (since b is bijective), b sends open sets to open sets. Hence b is a homeomorphism. This answers part of (2). On the other hand

$$
\phi^{-1}(X) \cap k^{2} \times\left(\mathbb{P}^{1} \backslash U_{1}\right)=\mathrm{Z}\left(x_{1} y_{2}-x_{2} y_{1}, x_{2}^{2}-x_{1}^{3}, y_{1}\right)=\mathrm{Z}\left(x_{1}, y_{1}, x_{2}\right)=\{0\} \times\{[0,1]\}
$$

and this set is not in $\operatorname{Bl}(X, 0)$ by the above. Hence

$$
\mathrm{Bl}(X, 0)=\mathrm{Z}\left(x_{1} y_{2}-x_{2}, y_{2}^{2}-x_{1}\right) \subseteq\{0\} \times U_{1} \subseteq k^{3}
$$

We claim that the map $A(t)=\left\langle t^{2}, t^{3}, t\right\rangle$ gives an isomorphism between k and $\mathrm{Z}\left(x_{1} y_{2}-x_{2}, y_{2}^{2}-x_{1}\right)$. Indeed this map has an inverse, which is the restriction to $\mathrm{Z}\left(x_{1} y_{2}-x_{2}, y_{2}^{2}-x_{1}\right)$ of the map $B: k^{3} \rightarrow k$ given by the formula $B\left(X_{1}, X_{2}, Y_{2}\right)=Y_{2}$. To verify this, note first that we clearly have $A(t) \in \mathrm{Z}\left(x_{1} y_{2}-x_{2}, y_{2}^{2}-x_{1}\right)$ and $B(A(t))=t$. Secondly, for $\left\langle X_{1}, X_{2}, Y_{2}\right\rangle \in \mathrm{Z}\left(x_{1} y_{2}-x_{2}, y_{2}^{2}-x_{1}\right)$ we have

$$
A\left(B\left(X_{1}, X_{2}, Y_{2}\right)\right)=\left(Y_{2}^{2}, Y_{2}^{3}, Y_{2}\right)
$$

and we have $Y_{2}^{2}=X_{1}, Y_{2}^{3}=X_{1} Y_{2}=X_{2}$. We conclude that $\operatorname{Bl}(X, 0) \simeq k$.
Q6. Let $V \subseteq k^{2}$ be the algebraic set defined by the equation $x_{1} x_{2}=0$. Show that $\operatorname{Bl}(V, 0)$ has two disjoint irreducible components and that each of these components is isomorphic to k.
Solution. Use the terminology of Q 2 and Q 3 , letting $n=2$ and $X=\mathrm{Z}\left(x_{1} x_{2}\right)=Y$ (note that the point to blow-up is the origin so we do not have to translate X). We first compute $\phi^{-1}(X)$. Let $\pi: k^{n} \times \mathbb{P}^{1}(k) \rightarrow k^{n}$ be the natural projection. By definition

$$
\phi^{-1}(X)=\pi^{-1}(X) \cap Z=\mathrm{Z}\left(x_{1} y_{2}-x_{2} y_{1}, x_{1} x_{2}\right)
$$

Let $U_{1}:=\left\{\left[1, Y_{2}\right] \mid Y_{2} \in k\right\} \subseteq \mathbb{P}^{1}(k)$. In $k^{2} \times U_{1}$, we have

$$
\begin{aligned}
& \phi^{-1}(X) \cap\left(k^{2} \times U_{1}\right)=\mathrm{Z}\left(x_{1} y_{2}-x_{2}, x_{1} x_{2}\right)=\mathrm{Z}\left(x_{1} y_{2}-x_{2}, x_{1}\right) \cup \mathrm{Z}\left(x_{1} y_{2}-x_{2}, x_{2}\right) \\
= & \{0\} \times U_{1} \cup \mathrm{Z}\left(x_{1} y_{2}, x_{2}\right)=\{0\} \times U_{1} \cup Z\left(x_{1}, x_{2}\right) \cup \mathrm{Z}\left(y_{2}, x_{2}\right)=\{0\} \times U_{1} \cup \mathrm{Z}\left(y_{2}, x_{2}\right)
\end{aligned}
$$

Now note that by definition $\operatorname{Bl}(X, 0)$ is the closure of $\phi^{-1}(X \backslash 0)$. In particular, $\operatorname{Bl}(X, 0)$ is the union of the closures of $\phi^{-1}\left(\mathrm{Z}\left(x_{1}\right) \backslash 0\right)$ and $\phi^{-1}\left(\mathrm{Z}\left(x_{1}\right) \backslash 0\right)$, ie the blow-ups of $\mathrm{Z}\left(x_{1}\right)$ and of $\mathrm{Z}\left(x_{2}\right)$, respectively. Now note that $\phi^{-1}\left(\mathrm{Z}\left(x_{1}\right) \backslash 0\right) \cap\left(k^{2} \times U_{1}\right)=\emptyset$ (see the solution to Q2 (3)). Noting also that $\mathrm{Z}\left(y_{2}, x_{2}\right)$ is irreducible, we see that $\left.\operatorname{Bl}(X, 0) \cap\left(k^{2} \times U_{1}\right)\right)=\mathrm{Z}\left(y_{2}, x_{2}\right)$.

A completely similar reasoning with U_{2} in place of U_{1} shows that $\operatorname{Bl}(X, 0) \cap\left(k^{2} \times U_{2}\right)=\mathrm{Z}\left(y_{1}, x_{1}\right)$. Hence $\mathrm{Bl}(X, 0) \subseteq \mathrm{Z}\left(y_{2}, x_{2}\right) \cup \mathrm{Z}\left(y_{1}, x_{1}\right) \subseteq k^{2} \times \mathbb{P}^{1}(k)$, where we view the polynomials $x_{1}, x_{2}, y_{1}, y_{2}$ as homogenous polynomials in the y-variables. On the other hand we have $\mathrm{Z}\left(y_{2}, x_{2}\right) \cap \mathrm{Z}\left(y_{1}, x_{1}\right)=\mathrm{Z}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\emptyset$ and $\mathrm{Z}\left(y_{2}, x_{2}\right) \simeq \mathrm{Z}\left(y_{1}, x_{1}\right) \simeq k$. Since $\mathrm{Bl}(X, 0)$ has two irreducible components of dimension 1 by the above, we thus have $\mathrm{Bl}(X, 0)=\mathrm{Z}\left(y_{2}, x_{2}\right) \cup \mathrm{Z}\left(y_{1}, x_{1}\right)$.

Q7. (1) Let $f: X \rightarrow Y$ be a dominant morphism of varieties. Suppose that Y is irreducible. Show that $\operatorname{dim}(X) \geqslant \operatorname{dim}(Y)$.
(2) Let $f: X \rightarrow Y$ be a dominant morphism of irreducible varieties. Suppose that the field extension $\kappa(X) \mid \kappa(Y)$ is algebraic. Show that there are affine open subvarieties $U \subseteq X$ and $W \subseteq Y$ such that $f(U)=W$ and such that the map of rings $\mathcal{O}_{X}(U) \rightarrow \mathcal{O}_{Y}(V)$ is injective and finite.
(3) Let $f: X \rightarrow Y$ be a dominant morphism of irreducible quasi-projective varieties. Show that there is a $y \in Y$ such that we have $\operatorname{dim}\left(f^{-1}(\{y\})\right) \geqslant \operatorname{dim}(X)-\operatorname{dim}(Y)$. [Hint. Reduce to the situation where Y is affine and apply Noether's normalisation lemma to show that you may assume wlog that $Y=k^{n}$ for some n. Now use the existence of transcendence bases and (2) to show that there is an open subvariety $U \subseteq X$ and an open subvariety W of $k^{\operatorname{dim}(X)-\operatorname{dim}(Y)} \times k^{n}$ such that $\left.f\right|_{U}$ factors as a finite and surjective morphism $U \rightarrow W$, followed by the projection to k^{n}. Now deduce the result from (1) and a computation of the dimension of the fibres of the projection $k^{\operatorname{dim}(X)-\operatorname{dim}(Y)} \times k^{n} \rightarrow k^{n}$.]
(4) Deduce that in the situation of (3), the set of $y \in Y$ such that we have $\operatorname{dim}\left(f^{-1}(\{y\})\right) \geqslant \operatorname{dim}(X)-\operatorname{dim}(Y)$ is dense in Y.

Solution. (1) Let $\left\{X_{i}\right\}$ be the irreducible components of X. Then $f\left(X_{i}\right)$ is irreducible for all i and hence the closure $\overline{f\left(X_{i}\right)}$ is also irreducible for all i (by Q4 (1) of Sheet 2). Hence we must have $\cup_{i} \overline{f\left(X_{i}\right)}=Y$, otherwise f is not dominant. Now if $\overline{f\left(X_{i}\right)} \neq Y$ for all i then Y is not irreducible, which is impossible. So there is an index i_{0} such that $\overline{f\left(X_{i_{0}}\right)}=Y$. In that case we have a field extension $\kappa\left(X_{i_{0}}\right) \mid \kappa(Y)$ and thus $\operatorname{dim}\left(X_{i_{0}}\right) \geqslant \operatorname{dim}(Y)$ by Proposition 9.2. In now follows from the definition of dimension that $\operatorname{dim}(X) \geqslant \operatorname{dim}(Y)$.
(2) We first prove the following statement of commutative algebra. Let $\phi: A \rightarrow B$ be a homomorphism of finitely generated integral k-algebras. Suppose that $\operatorname{Spm}(\phi)(\operatorname{Spm}(B))$ is dense in $\operatorname{Spm}(A)$ and suppose that the induced map $\operatorname{Frac}(\phi): \operatorname{Frac}(A) \rightarrow \operatorname{Frac}(B)$ is an algebraic extension of fields. Then there is an element $f \in A$ such that the induced map $A\left[f^{-1}\right] \rightarrow B\left[\phi(f)^{-1}\right]$ is injective and finite.

To prove this assertion, note that by Q5 of Sheet 1 we already know that under the given assumptions, ϕ must be injective. Note also that since we have a commutative diagram

all whose maps are injective, the induced map $A\left[f^{-1}\right] \rightarrow B\left[\phi(f)^{-1}\right]$ is injective for any choice of $f \in A \backslash\{0\}$ (remember that A and B are integral domains). Thus we only have to show that there is $f \in A \backslash\{0\}$ such that the induced map $A\left[f^{-1}\right] \rightarrow B\left[\phi(f)^{-1}\right]$ is finite. Now let b_{1}, \ldots, b_{l} be generators of B as a k-algebra. By assumption, each $b_{i} / 1 \in \operatorname{Frac}(B)$ satisfies a monic polynomial equation with coefficients in $\operatorname{Frac}(A)$. Let $f \in A$ be the product of the denominators of all the coefficients of all these equations. Note that $B\left[\phi(f)^{-1}\right]$ is generated as a k-algebra by $1 / \phi(f)$ and by the elements $b_{i} / 1$ (use Lemma 5.3 in CA). In particular, $B\left[\phi(f)^{-1}\right]$ is generated by the $b_{i} / 1$ as a $A\left[f^{-1}\right]$-algebra. On the other hand, by construction, the elements $b_{i} / 1$ all satisfy integral equations over $A\left[f^{-1}\right]$. Hence $A\left[f^{-1}\right] \rightarrow B\left[\phi(f)^{-1}\right]$ is a finite map of rings (see section 8 in CA).

Note that the fact that $A\left[f^{-1}\right] \rightarrow B\left[\phi(f)^{-1}\right]$ is injective and finite implies that the induced map

$$
\operatorname{Spm}\left(B\left[\phi(f)^{-1}\right]\right) \rightarrow \operatorname{Spm}\left(A\left[f^{-1}\right]\right)
$$

is surjective (use Th. 8.8 and Cor. 8.10 in CA).
Returning to the problem at hand, note that we may wlog assume that X and Y are affine (take an affine open Y^{\prime} in Y and an affine open X^{\prime} in $f^{-1}\left(Y^{\prime}\right)$ and replace X by X^{\prime} (resp. Y by Y^{\prime}). Applying the result of commutative algebra that we just proved to $A=\mathcal{O}_{X}(X)$ and $B=\mathcal{O}_{Y}(Y)$ we obtain the desired result.
(3) Note that Th. 9.1 (Noether's normalisation lemma), Prop. 8.12, Th. 8.8 and Cor. 8.10 in CA imply that for some $n \geqslant 0$ there is a surjective morphism $h: Y \rightarrow k^{\operatorname{dim}(Y)}$, such that the fibre $h^{-1}(\bar{v})$ of h over \bar{v} is finite for all $\bar{v} \in k^{n}$. Since the fibres of the composed morphism $h \circ f$ are finite disjoint unions of fibres of f, we may thus replace f by $h \circ f$ and suppose that $Y=k^{n}$ for some $n \geqslant 0$.
Now consider the field extension $\kappa(X) \mid \kappa(Y)$. Choose a transcendence basis $b_{1}, \ldots, b_{\delta} \in \kappa(X)$ of $\kappa(X)$ over $\kappa(Y)$. Write $\kappa(Y)=\kappa\left(k^{n}\right)=k\left(x_{1}, \ldots, x_{n}\right)$. The set $x_{1}, \ldots, x_{n}, b_{1}, \ldots, b_{\delta}$ is then by construction a transcendence basis for $\kappa(X)$ over k. Since we know that $\operatorname{dim}\left(k^{n}\right)=n$ (see Theorem 8.4), we deduce from Proposition 9.2 that $\delta=\operatorname{dim}(X)-\operatorname{dim}(Y)$. Now the subfield $\kappa(Y)\left(b_{1}, \ldots, b_{\delta}\right)$ of $\kappa(X)$ is isomorphic as a k-algebra to $k\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{\delta}\right)$, which is the function field of $k^{n+\delta}$. The inclusion $k\left(x_{1}, \ldots, x_{n}\right) \hookrightarrow k\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{\delta}\right)$ is induced by the natural projection morphism $\pi: k^{n+\delta} \rightarrow k^{n}$ (unroll the definitions). Hence we have a rational dominant map $a: X \rightarrow k^{n+\delta}$ such that the rational dominant
map associated with the morphism $f: X \rightarrow Y$ is the composition of a with the rational dominant map associated with π (apply Proposition 9.4 and Q3 of Sheet 3). Applying (2) we obtain open affine subvarietes $U \subseteq X$ and $W \subseteq k^{n+\delta}$ and a surjective morphism $g: U \rightarrow W$, which represents a. Let now now $f^{\prime}=\pi \circ g$. Note that by Q3 of Sheet 3 again, we have $f^{\prime}=\left.f\right|_{U}$. Let $y \in \pi(W)=f^{\prime}(U)=f(U)$. We compute

$$
\begin{aligned}
& \operatorname{dim}\left(f^{-1}(y)\right) \geqslant \operatorname{dim}\left(f^{-1}(y) \cap U\right)=\operatorname{dim}\left(\left(f^{\prime}\right)^{-1}(y)\right) \\
= & \operatorname{dim}\left(g^{-1}\left(\pi^{-1}(y) \cap W\right)\right) \geqslant \operatorname{dim}\left(\pi^{-1}(y) \cap W\right)=\operatorname{dim}\left(\pi^{-1}(y)\right)=\delta=\operatorname{dim}(X)-\operatorname{dim}(Y)
\end{aligned}
$$

Here we used Q6 of Sheet 2 for the first inequality and we used (1) for the inequality

$$
\operatorname{dim}\left(g^{-1}\left(\pi^{-1}(y) \cap W\right) \geqslant \operatorname{dim}\left(\pi^{-1}(y) \cap W\right)\right.
$$

(remember that g is surjective). To justify the equality

$$
\operatorname{dim}\left(\pi^{-1}(y) \cap W\right)=\operatorname{dim}\left(\pi^{-1}(y)\right)=\delta
$$

note that $\pi^{-1}(y) \simeq k^{\delta}$. We thus have $\operatorname{dim}\left(\pi^{-1}(y) \cap W\right)=\operatorname{dim}\left(\pi^{-1}(y)\right)$ by Proposition 9.2 and we have $\operatorname{dim}\left(\pi^{-1}(y)\right)=\delta$ by Theorem 8.4.
(4) Let $U \subseteq Y$ be an open subvariety. Applying (3) to the morphism $f^{-1}(U) \rightarrow U$, we see that there is a point $y \in U$ such that $\operatorname{dim}\left(f^{-1}(y)\right) \geqslant \operatorname{dim}\left(f^{-1}(U)\right)-\operatorname{dim}(U)=\operatorname{dim}(X)-\operatorname{dim}(Y)$. Since U was arbitrary, this shows what we want.

Q8. (1) Show that all the morphisms from $\mathbb{P}^{2}(k)$ to $\mathbb{P}^{1}(k)$ are constant. [Hint: Use Q^{7} and the projective dimension theorem.]
(2) Deduce from (1) that for any $n \geqslant 2$ the morphisms from $\mathbb{P}^{n}(k)$ to $\mathbb{P}^{1}(k)$ are constant. [Hint: Use (1) and Q7 of Sheet 2.]
Solution. (1) Let $f: \mathbb{P}^{2}(k) \rightarrow \mathbb{P}^{1}(k)$ is a morphism. Suppose for contradiction that f is not constant. By Corollary 12.10, the image $f\left(\mathbb{P}^{2}(k)\right)$ is closed, and it is also irreducible, since $\mathbb{P}^{2}(k)$ is irreducible. Hence $f\left(\mathbb{P}^{2}(k)\right)=\mathbb{P}^{1}(k)$ (because $\left.\operatorname{dim}\left(\mathbb{P}^{1}(k)\right)=1\right)$. Now let $y_{1}, y_{2} \in \mathbb{P}^{1}(k)$ be such that $y_{1} \neq y_{2}$ and $\operatorname{dim}\left(f^{-1}\left(y_{1}\right)\right), \operatorname{dim}\left(f^{-1}\left(y_{1}\right)\right) \geqslant \operatorname{dim}\left(\mathbb{P}^{2}(k)\right)-\operatorname{dim}\left(\mathbb{P}^{1}(k)\right)=1$. This exists by Q7. Since $\operatorname{dim}\left(\mathbb{P}^{2}(k)\right)=2$ we then actually have $\operatorname{dim}\left(f^{-1}\left(y_{1}\right)\right)=\operatorname{dim}\left(f^{-1}\left(y_{1}\right)\right)=1$. Let C_{1} (resp. C_{2}) be an irreducible component of $\operatorname{dim}\left(f^{-1}\left(y_{1}\right)\right)\left(\right.$ resp. $\left.\operatorname{dim}\left(f^{-1}\left(y_{2}\right)\right)\right)$ such that $\operatorname{dim}\left(C_{1}\right)=\operatorname{dim}\left(C_{2}\right)=1$. We have $\operatorname{dim}\left(C_{1}\right)+\operatorname{dim}\left(C_{2}\right)-2=0$ and so by Proposition 11.2 we have $C_{1} \cap C_{2} \neq \emptyset$. This is a contradiction.
(2) Let $n \geqslant 2$. First note that $\mathbb{P}^{2}(k)$ is isomorphic to the closed subvariety $\mathrm{Z}\left(x_{3}, x_{4}, \ldots, x_{n}\right)$ of $\mathbb{P}^{n}(k)$. To see this note that the image of the morphism $\iota: \mathbb{P}^{2}(k) \rightarrow \mathbb{P}^{n}(k)$ given by the formula

$$
\left[X_{0}, X_{1}, X_{2}\right] \mapsto\left[X_{0}, X_{1}, X_{2}, 0 \ldots((n-2) \text {-times }) \ldots, 0\right]
$$

is $\mathrm{Z}\left(x_{3}, x_{4}, \ldots, x_{n}\right)$. This morphism is an isomorphism onto $\mathrm{Z}\left(x_{3}, x_{4}, \ldots, x_{n}\right)$ because the morphism

$$
\mathbb{P}^{n}(k) \backslash \mathrm{Z}\left(x_{0}, x_{1}, x_{2}\right) \rightarrow \mathbb{P}^{2}(k)
$$

given by the formula

$$
\left[X_{0}, X_{1}, X_{2}, \ldots, X_{n}\right] \mapsto\left[X_{0}, X_{1}, X_{2}\right]
$$

gives an inverse to ι when restricted to $\mathrm{Z}\left(x_{3}, x_{4}, \ldots, x_{n}\right)$.
Let now $f: \mathbb{P}^{n}(k) \rightarrow \mathbb{P}^{1}(k)$ be a morphism. Suppose for contradiction that f is not constant. Let $\bar{v}_{1}, \bar{v}_{2} \in \mathbb{P}^{n}(k)$ be two points such that $f\left(\bar{v}_{1}\right) \neq f\left(\bar{v}_{2}\right)$. Let M be an invertible $(n+1) \times(n+1)$-matrix such
that $M([1,0,0, \ldots, 0])=\bar{v}_{1}$ and $M([0,1,0,0, \ldots, 0])=\bar{v}_{2}$. Let $\phi_{M}: \mathbb{P}^{n}(k) \rightarrow \mathbb{P}^{n}(k)$ be the automorphism defined by M (see Q7 of Sheet 2). The morphism $f \circ \phi_{M} \circ \iota: \mathbb{P}^{2}(k) \rightarrow \mathbb{P}^{1}(k)$ is then not constant, which is a contradiction by (1).

