Exercise sheet 4. W1 of Hilary Term. All lectures.

Q1. Suppose in this exercise that char(k) = 0. Find the singularities of the following curves C' in k2. For
each singular point P € C compute the dimension of mp/m% as a k-vector space. Here mp is the maximal
ideal of O¢ p.

(1) Z(a8 + ¢ — ay)

(2) Z(y? + ' +y* —2?)

3

You may assume that the polynomials z¢ + 4% — zy and y? 4+ 2* + y* — 23 are irreducible.

Solution. (1) Note that dim(C) = 1 by Krull’s theorem and by Theorem 8.7. Thus we need to find the
points of C' where the gradient of 2° + ¢ — xy vanishes. The gradient of 25 + ¢ — 2y is (62° — y, 6¢° — ).

Hence we need to solve the equations z® + 3% — 2y = 62° — y = 63> — x = 0. We have
(2/6)(62° —y) — (y/6)(6y° — 2) +2y° —ay = 2° +y° —ay
and thus these equations are equivalent to
2y(y® —x) = 62° —y =6y° — 2 =0.
Now if y = 0 then x = 0. If y # 0 then y> = z = 2/6 so y = 0, which is a contradiction. So we must have
x =y =0. So (0,0) is the only singular point of C.

For P = (0,0) the dimension of mp/m% as a k-vector space cannot be 1, since otherwise the ring Oc p
would be regular (apply Proposition 13.3). Since mp is generated as a k[x, y]-module by the elements x and

y, we see that mp/m% has dimension at most 2. Hence mp/m?% has dimension 2.

(2) The reasoning is similar. Solve y? + z% + y* — 23 = 423 — 322 = 2y + 4y3 = 0. Combining, we obtain
42 + ot oyt — %) + (1/4 — 2) (42> — 32%) — y(2y + 49°) = (—=3/4)2® + 2% = 0.

Now if # # 0 then x = 3/4 since 42°—32? = 0 and so y? = 27/128. But then y(2y+4y3) = 6503409/67108864
which is a contradiction. So we have x = 0 and also y = 0. We conclude again that the origin is the only
singular point of C. By the same reasoning as above, we see that mp/m% has dimension 2.

Q2. (blowing up the origin in affine space) Let n > 1. Let z1,...,x, be variables for k™ and let y1,...,yn
be homogenous variables for P"~1(k). Note that contrary to what is customary, the index of the homogenous

variables runs between 1 and n here (not 0 and n — 1).

(1) Let Z be the subset of k™ x P"~(k) defined by the equations {2;y; — x5 = 0}; jeq1,....n} (note that
this makes sense because the polynomials are homogenous in the y-variables). Show that Z is a closed
subvariety of k™ x P?~1(k). The variety Z is called the blow-up of k™ at the origin of k™. Let ¢ : Z — k"
the map obtained by restricting the projection k™ x P"~1(k) — k™ to Z.

(2) Show that ¢~'({0}) is canonically isomorphic to P"~!(k). Show that the points of ¢$~1(0) are in one-
to-one correspondence with the lines going through the origin of k™.

(3) Show that the restriction of ¢ to the open subvariety ¢~ !(k™\{0}) of Z induces an isomorphism
¢~ (k"\{0}) ~ k"\{0}.

Solution. (1) On the open affine subset k™ x U;;_l, Z is given by the equations

{@iy; — 25y = 0,2 — 25,9 = 0}icq1,...n}.jefl,do—1Lojo+1,cm}-



The set Z N k™ x Uﬁ;l is thus closed in k™ X U;:;l. Since the k™ x U;kl cover k™ x P"~1(k), we see that

Z is closed.
(2) It follows from the definitions that ¢=1({0}) = {0} x P"~1(k).

(3) Suppose that (X7,...,X,) # 0. Then there is an iy such that X;, # 0. The equations for Z then give
Y; = X,;(Y;,/X;,) for all j. Up to multiplication of all the Y; by a non zero scalar factor, the only solution

to this set of equations is (X7,..., X, ). In particular, we have

ST H(Xy, LX) = (X, LX) < {[ X, X

This shows that the morphism ¢~ (k"\{0}) — £™\{0} is a bijection. To show that it is an isomorphism,
we shall provide an inverse morphism. For this, consider the morphism ¢ : k¥*\{0} — P"~1(k) introduced
in Q6 of Sheet 3. We define a map k"\{0} — Z by the formula g := Idj»\ {0} [[ ¢ By construction, this
gives an inverse of the morphism ¢~1(k™\{0}) — £™\{0}.

Q3. (blowing up a point of an affine variety) Let X C k™ be a closed subvariety (ie an algebraic set). Let
v := (v1,...,v,) € X and suppose that {7} is not an irreducible component of X. Let 75 : k™ — k™ be
the map such that 75({(wy, ..., w,)) = (w1 + v1,..., Wy +vy) for all w = (wq,...,w,) € k™ (note that this
is an automorphism of the variety k™). Let Y := 7_5(X). Note that by construction we have 0 € Y. Let
¢ : Z — k™ be the morphism defined in Q2.

We define the blow-up BI(X,v) of X at © to be the closure of ¢~!(Y\{0}) in Z.

(1) Show that ¢(Bl(X,7)) =Y.

Let b: BI(X,v) — X be the morphism 73 0 ¢|gi(x,7)-

(2) Suppose that X is irreducible. Show that BI(X, ) is an irreducible component of ¢~(Y) C k" xP"~1(k).

Show that b is a birational morphism. If X # k", show that the irreducible components of ¢=*(Y) are
BI(X, o) and {0} x P"~1(k).

The closed set b=!({v}) = BI(X, ) N ({0} x P*~1(k)) is called the exceptional divisor of BI(X,v).

Solution. (1) Note first that @ lies in the closure of X\{7}. To see this, let C' be the irreducible component
of X containing . Then C\{7} is non-empty (by assumption) and it is open in C (since {7} is closed).
Furthermore, C\{7} is not closed in C, for otherwise C' would be disconnected and hence reducible. Thus
v lies in the closure of C\{0} in C' (which must be C) and hence ¥ lies in the closure of X\{7} in X.

Now since P"~1(k) is complete (see Theorem 12.9), we know that ¢(B1(X, 1)) is closed. By (3) of Q2, we now
that ¢(BL(X, 7))\{v} = X\{o} and thus by the reasoning in the last paragraph, we see that v € ¢(Bl(X,7)).
In particular, ¢(Bl(X, 7)) =Y.

(2) From Q2 (3) we know that the natural morphism ¢~ 1(Y\{0}) — Y\{0} is an isomorphism. Now if
X is irreducible, so is Y and so is Y'\{0}. Hence BI(X, ) is irreducible by Q4 (1) of Sheet 2. On the
other hand, BI(X,%) C ¢~ 1(Y) since ¢~1(Y) is closed in Z. Since BI(X, ) contains the non empty open
subset set ¢~ 1(Y'\{0}) of ¢~1(Y), we see that BI(X, ) is an irreducible component of ¢~!(Y). Since
¢~ 1(Y\{0}) — Y'\{0} is an isomorphism, the morphism b is birational.

On the other hand, we have by construction ¢~(Y) = BI(X,v) U ({0} x P»~1(k)). Now suppose that
X # k™. We then have {0} x P"~1(k)  BI(X, %) because

dim({0} x P""}(k)) =n — 1 > dim(Bl(X, 7)) = dim(X) <n —1
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(use Proposition 9.2, Q6 of Sheet 6 and Theorem 8.7). Since {0} x P"~!(k) is irreducible (since it is
isomorphic to P"~1(k)) we see that the irreducible components of ¢$~1(Y') are BI(X, %) and {0} x P"~1(k).

Q4. Let C be the plane curve considered in (1) of Q1. Consider the blow-up B of C at each of its singular
points in turn. How many irreducible components does the exceptional divisor of B have? Is B non-singular?

Solution. Consider the curve Z(z1z2 — 2§ — 25) C k? of (1) of Q1. Use the terminology of Q2 and Q3,
letting n = 2 and X = Z(x175 — 2% — 25) = Y (note that the point to blow-up is the origin by the solution
Q1 (1) so we do not have to translate X). We first compute ¢~(X). Let m : k® x P*(k) — k" be the

natural projection. By definition
dHX) =7 HX)NZ = Z(z1ys — Toy1, 2120 — 25 — 25)
Let Uy := {[1,Y3] | Y2 € k} C P}(k). In k? x Uy, we have

¢~HX) N (K x U1) = Z(z1y2 — 22,2102 — @ — 25) = Z(21y2 — 22, 27y2 — 2} — 2f1)3)
= Z(z1ys — o, 2} (y2 — @1 — 2793)) = Z(21y2 — 22, 1) UZ(2192 — T2, Y2 — 1 — 2195))
= {0} x Uy UZ(z1y2 — 2,92 — o] — T5y3)
Now Z(z1y2 — 22,y2 — =] — 73y3) does not contain {0} x U; (since setting x; = x5 = 0 implies that
y2 = 0) so we have BI(X,0) N (k? x U1) = Z(z1y2 — 2,y2 — 27 — x3y3) by Q3 (2). Finally, note that

Z(x1y2 — w2,y2 — xF — 25y3) N ({0} x Up) contains only the point {0} x {[1,0]}. In other words, the
intersection of the exceptional divisor of BI(X,0) with {0} x U; is the point {0} x {[1,0]}.

Let now Uy := {[Y1,1]| Y1 € k} € P*(k). We compute as before

¢ H(X) N (K x Ur) = Z(w1 — wayn, w122 — 2§ — a3) = Z(w1 — Tay1, Y105 — 2517 — a3)
4

= Z(x1 — w2y1,@2) UZ(21 — 2ay1, 51 — 2393 — 23) = {0} x Uz UZ(21 — w291, 41 — 0347 — @3)
We conclude as before that
BI(X,0) N (k* x Us) = Z(xy — xay1, 41 — w5y5 — 23)
We compute Z(x1 — Tay1,y1 — r5y® — 23) N ({0} x Uz) = {0} x {[0, 1]}. So the intersection of the exceptional
divisor of BI(X,0) with {0} x Us is the point {0} x [0, 1].

Putting everything together, we see that the exceptional divisor of BI(X, 0) consists of the points {0} x{[1, 0]}
and {0} x {[0,1]}. In particular, the exceptional divisor of BI(X,0) has two irreducible components.

We now check non-singularity. We only have to check the non-singularity of BI(X,0) at {0} x {[1,0]} and
{0} x{[0, 1]} since BI(X,0)\{{0} x {[1,0]}uU{0} x {[0,1]}} is isomorphic to X\{0} and X\{0} is non-singular
by the solution of Q1(1).

We first check non-singularity at {0} x {[1,0]}. Let Q1 := z1y2 — 72 and Qs := yo — x§ — z3y3. We have

a%lQl 3%2621 a%le _ 0 -1 0
Q2 5Q2 Qe —4x}  —dafys 11— 23y,

and evaluating at 0 we get the matrix
0 -1 0
0 0 1
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which has rank 2. Using Lemma 13.5 we see that BI(X, 0) is non-singular at {0} x {[1,0]}.

We now check non-singularity at {0} x {[0,1]}. Let Q1 := 71 — x2y; and Q2 = y; — x5y — 3. We have

a%lQl 3%2621 %Ql (1 0 0
,9%1@2 3%2@2 ,9%2@2 0 —4da3 — 423y 1 — 625y}

and evaluating at 0 we get the matrix
1 00
0 0 1

which again has rank 2. Again using Lemma 13.5 we see that BI(X,0) is non-singular at {0} x {[0,1]}.

So all in all BI(X,0) is non-singular and its exceptional divisor has two irreducible components (which are

points).

Q5. Let C be the curve y? = 23 in k2. Let b : BI(C,0) — C of C be the blow-up of C' at the origin.
(1) Show that B1(C,0) ~ k.

(2) Show that the map b is a homeomorphism but is not an isomorphism.

Solution. Use the terminology of Q2 and Q3, letting n = 2 and X = Z(2% —3) = Y (note that the point to
blow-up is the origin so we do not have to translate X). We first compute ¢~1(X). Let 7 : k" x P*(k) — k"
be the natural projection. By definition

¢~ NX) =7 X)N Z = L(x1y2 — T2y1, 75 — 27)
Let Uy == {[1,Y2] | Y5 € k} C PL(k). In k? x Uy, we have
¢ (X)) N (k* x Ur) = Z(x1y2 — 22,73 — 23) = Z(T1y2 — 22, 27Y5 — 73)
= Z(z1ys — 22, 21) UZ(21y2 — 22,95 — 21) = ({0} x U1) UZ(z1y2 — 22, Y5 — 1)

The closed set Z(z1y2 — 2,y3 — 1) does not contain {0} x U;. Also ¢~ 1(X) N (k% x Uy) has at most two
irreducible components by Q2 (2) so we conclude that Z(x1y2 — z2,y32 — z1) = BI(X,0) N (k? x Uy). On the
other hand, Z(z1y2 — 22,935 — x1) N ({0} x Uy) = {0} x {[1,0]}.

We now repeat the above reasoning for U, := {[Y1,1]| Y1 € k} C P!(k) instead of U;. We have
¢~ (X) N (K x Up) = Z(wy — moy1, 05 — x7) = Z(x1 — Tay1, 5 — 25Y7)
= Z(w1 — zoy1, x2) UZ(21 — m2y1, 1 — m2y3) = ({0} x Us) UZ(z1 — 2291, 1 — 2293)

As before, we have Z(z1 — z2y1, 1 — 22y3)) N (k? x U) = BI(X,0) N (k? x Uy). On the other hand, a simple
calculation shows that Z(zy — may1, 1 — x2y3) N ({0} x Ua) = 0.

So we conclude that the exceptional divisor of BI(X,0) consist of only the point {0} x {[1,0]}. In particular,
the map b : BI(X,0) — X is bijective. Since BI(X,0) is complete, the morphism b sends closed sets to closed
sets (see Theorem 12.9 and Corollary 12.10) and thus (since b is bijective), b sends open sets to open sets.

Hence b is a homeomorphism. This answers part of (2). On the other hand
¢ H(X) NE? x (PN\UY) = Z(a1ys — zay1, x5 — a7, 91) = Z(@1, 41, 02) = {0} x {[0,1]}
and this set is not in B1(X,0) by the above. Hence

BI(X,0) = Z(z1y2 — x2,y32 — x1) C {0} x U; C &3
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We claim that the map A(t) = (t?,¢3,t) gives an isomorphism between k and Z(x1y2 — 22, y3 — 21). Indeed
this map has an inverse, which is the restriction to Z(x1ys — x2,y2 — 1) of the map B : k3 — k given by
the formula B(X1, X»,Ys) = Y,. To verify this, note first that we clearly have A(t) € Z(z1y2 — 22,y3 — 1)
and B(A(t)) = t. Secondly, for (X1, Xo,Ya) € Z(z1y2 — x2,y35 — x1) we have

A(B(X17X27 sz)) = (Y227 Y237}/é)

and we have Y7 = X1, Y5> = X1Y5 = Xy. We conclude that BI(X,0) ~ k.

Q6. Let V C k? be the algebraic set defined by the equation 2125 = 0. Show that BI(V,0) has two disjoint
irreducible components and that each of these components is isomorphic to k.

Solution. Use the terminology of Q2 and Q3, letting n = 2 and X = Z(z122) =Y (note that the point to
blow-up is the origin so we do not have to translate X). We first compute ¢~ !(X). Let 7 : k® x P*(k) — k"
be the natural projection. By definition

¢~ 1 (X) =n X)) N Z = Z(z1ys — w2y1, 1122)
Let Uy := {[1,Y3] | Y2 € k} C P}(k). In k? x Uy, we have

¢*1(X) n (kz x Uy) = L(z1ys — T2, 7172) = Z(T1y2 — T2, 71) U Z(T1Y2 — T2, T2)
= {O} X U1 U Z(Jflyg,.rg) = {0} X U1 U Z(l‘l,.i?g) U Z(yQ,CCz) = {0} X U1 U Z(y2,332)

Now note that by definition BI(X,0) is the closure of ¢~!(X\0). In particular, BI(X,0) is the union of the
closures of ¢~ 1(Z(z1)\0) and ¢~1(Z(z1)\0), ie the blow-ups of Z(x1) and of Z(x2), respectively. Now note
that ¢~ (Z(x1)\0) N (k% x Uy) = 0 (see the solution to Q2 (3)). Noting also that Z(ya, z2) is irreducible, we
see that BI(X,0) N (k? x Uy)) = Z(ya, 72).

A completely similar reasoning with Us in place of U; shows that BI(X,0) N (k? x Uy) = Z(y1,21). Hence
BI(X,0) C Z(y2,22) UZ(y1,21) C k? x P1(k), where we view the polynomials 21,2, %1,%2 as homogenous
polynomials in the y-variables. On the other hand we have Z(ys2, z2) N Z(y1, x1) = Z(x1, x2,y1,y2) = 0 and
Z(y2,x2) ~ Z(y1,21) =~ k. Since Bl(X,0) has two irreducible components of dimension 1 by the above, we
thus have BI(X,0) = Z(y2, z2) U Z(y1, T1)-

Q7. (1) Let f : X — Y be a dominant morphism of varieties. Suppose that Y is irreducible. Show that
dim(X) > dim(Y).

(2) Let f : X — Y be a dominant morphism of irreducible varieties. Suppose that the field extension
k(X)|k(Y) is algebraic. Show that there are affine open subvarieties U C X and W C Y such that
f(U) =W and such that the map of rings Ox (U) — Oy (V) is injective and finite.

(3) Let f: X — Y be a dominant morphism of irreducible quasi-projective varieties. Show that there is
ay € Y such that we have dim(f~1({y})) > dim(X) — dim(Y). [Hint. Reduce to the situation where Y
s affine and apply Noether’s normalisation lemma to show that you may assume wlog that Y = k™ for
some n. Now use the existence of transcendence bases and (2) to show that there is an open subvariety
U C X and an open subvariety W of k3(X)=dim(Y) s pn sych that f|y factors as a finite and surjective
morphism U — W, followed by the projection to k™. Now deduce the result from (1) and a computation of

the dimension of the fibres of the projection k3™(X)=dim(Y) s g n ]

(4) Deduce that in the situation of (3), the set of y € Y such that we have dim(f~!({y})) > dim(X)—dim(Y)
is dense in Y.
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Solution. (1) Let {X;} be the irreducible components of X. Then f(X;) is irreducible for all ¢ and hence the
closure f(X;) is also irreducible for all i (by Q4 (1) of Sheet 2). Hence we must have U; f(X;) = Y, otherwise f
is not dominant. Now if f(X;) # Y for all i then Y is not irreducible, which is impossible. So there is an index
ip such that f(X;,) =Y. In that case we have a field extension x(X;,)|<(Y") and thus dim(X;,) > dim(Y")

by Proposition 9.2. In now follows from the definition of dimension that dim(X) > dim(Y").

(2) We first prove the following statement of commutative algebra. Let ¢ : A — B be a homomorphism of
finitely generated integral k-algebras. Suppose that Spm(¢)(Spm(B)) is dense in Spm(A) and suppose that
the induced map Frac(¢) : Frac(4) — Frac(B) is an algebraic extension of fields. Then there is an element
f € A such that the induced map A[f~!] — B[#(f)~!] is injective and finite.

To prove this assertion, note that by Q5 of Sheet 1 we already know that under the given assumptions, ¢
must be injective. Note also that since we have a commutative diagram

Frac(A) FM Frac(B)

[, 1

A—— B

all whose maps are injective, the induced map A[f~1] — Bl¢(f)™!] is injective for any choice of f € A\{0}
(remember that A and B are integral domains). Thus we only have to show that there is f € A\{0} such
that the induced map A[f~!] — B¢(f)~!] is finite. Now let by,...,b; be generators of B as a k-algebra.
By assumption, each b;/1 € Frac(B) satisfies a monic polynomial equation with coefficients in Frac(A). Let
f € A be the product of the denominators of all the coefficients of all these equations. Note that B[o(f)~}]
is generated as a k-algebra by 1/¢(f) and by the elements b;/1 (use Lemma 5.3 in CA). In particular,
Blo(f)7!] is generated by the b;/1 as a A[f~!]-algebra. On the other hand, by construction, the elements
b;/1 all satisfy integral equations over A[f~1]. Hence A[f~!] — B[o(f)~!] is a finite map of rings (see
section 8 in CA).

Note that the fact that A[f~1] — B[¢(f)™!] is injective and finite implies that the induced map

Spm(B[o(f)7']) — Spm(A[f 1)
is surjective (use Th. 8.8 and Cor. 8.10 in CA).

Returning to the problem at hand, note that we may wlog assume that X and Y are affine (take an affine
open Y’ in Y and an affine open X’ in f~!(Y”’) and replace X by X’ (resp. Y by Y”’). Applying the result
of commutative algebra that we just proved to A = Ox(X) and B = Oy (Y) we obtain the desired result.

(3) Note that Th. 9.1 (Noether’s normalisation lemma), Prop. 8.12, Th. 8.8 and Cor. 8.10 in CA imply
that for some n > 0 there is a surjective morphism & : Y — k4™ such that the fibre h='(2) of h over ©

is finite for all v € k™. Since the fibres of the composed morphism h o f are finite disjoint unions of fibres

of f, we may thus replace f by h o f and suppose that Y = k™ for some n > 0.

Now consider the field extension x(X)|x(Y). Choose a transcendence basis by,...,bs € k(X) of k(X)
over k(Y). Write k(YY) = k(k™) = k(z1,...,2,). The set x1,...,2,,b1,...,bs5 is then by construction

a transcendence basis for x(X) over k. Since we know that dim(k™) = n (see Theorem 8.4), we de-
duce from Proposition 9.2 that § = dim(X) — dim(Y’). Now the subfield «(Y)(b1,...,bs) of k(X) is
isomorphic as a k-algebra to k(x1,...,2n,Y1,.-.,¥s), which is the function field of k"*°. The inclusion
E(z1,...,2n) < k(21,..., %0, y1,...,ys) is induced by the natural projection morphism 7 : "+ — k™ (un-

roll the definitions). Hence we have a rational dominant map a : X — k"*9 such that the rational dominant
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map associated with the morphism f : X — Y is the composition of a with the rational dominant map
associated with 7 (apply Proposition 9.4 and Q3 of Sheet 3). Applying (2) we obtain open affine subvarietes
U C X and W C k"9 and a surjective morphism g : U — W, which represents a. Let now now f' = 7o g.
Note that by Q3 of Sheet 3 again, we have f' = f|y. Let y € m(W) = f/(U) = f(U). We compute

dim(f ™ (y)) = dim(f ™" (y) NU) = dim((f) " (y))
= dim(g (7 (y) N W)) > dim(z(y) N W) = dim(7(y)) = 6 = dim(X) — dim(Y)

Here we used Q6 of Sheet 2 for the first inequality and we used (1) for the inequality
dim(g~" (7~ (y) N W) > dim(z "} (y) N W)
(remember that g is surjective). To justify the equality
dim(7~" (y) N W) = dim(7 ' (y)) = ¢
note that 7=1(y) ~ k°. We thus have dim(7~!(y) N W) = dim(7~!(y)) by Proposition 9.2 and we have

dim(7~*(y)) = & by Theorem 8.4.

(4) Let U C Y be an open subvariety. Applying (3) to the morphism f~1(U) — U, we see that there is a
point y € U such that dim(f~1(y)) > dim(f~*(U)) — dim(U) = dim(X) — dim(Y). Since U was arbitrary,
this shows what we want.

Q8. (1) Show that all the morphisms from P?(k) to P!(k) are constant. [Hint: Use Q7 and the projective

dimension theorem.]

(2) Deduce from (1) that for any n > 2 the morphisms from P"(k) to P!(k) are constant. [Hint: Use (1)
and Q7 of Sheet 2.]

Solution. (1) Let f : P?(k) — P(k) is a morphism. Suppose for contradiction that f is not constant.
By Corollary 12.10, the image f(P?(k)) is closed, and it is also irreducible, since P?(k) is irreducible.
Hence f(P%(k)) = P'(k) (because dim(P!(k)) = 1). Now let yi,y2 € P'(k) be such that y; # y» and
dim(f~(y1)), dim(f~(y1)) = dim(P?(k)) — dim(P!(k)) = 1. This exists by Q7. Since dim(P?(k)) = 2 we
then actually have dim(f~1(y1)) = dim(f~!(y1)) = 1. Let Cy (resp. C3) be an irreducible component of
dim(f~(y1)) (resp. dim(f~1(yz2))) such that dim(C;) = dim(Cs) = 1. We have dim(C;) +dim(Cy) —2 = 0
and so by Proposition 11.2 we have Cy N Cs # 0. This is a contradiction.

(2) Let n > 2. First note that P?(k) is isomorphic to the closed subvariety Z(ws,z4,...,x,) of P*(k). To
see this note that the image of the morphism ¢ : P?(k) — P"(k) given by the formula

[Xo,Xl,XQ] — [X(),Xl,XQ, 0... ((n — 2)—t1mes) A ,0]
is Z(xs3,24,...,2y). This morphism is an isomorphism onto Z(xs3, x4, ..., 2,) because the morphism
P"(k)\Z(wo, z1,22) — P*(k)

given by the formula
[Xo, X1, Xo, ..., Xpn] = [Xo, X1, X2]
gives an inverse to ¢ when restricted to Z(zs, z4,...,Tn).

Let now f : P"(k) — P'(k) be a morphism. Suppose for contradiction that f is not constant. Let
01,09 € P™(k) be two points such that f(71) # f(02). Let M be an invertible (n + 1) X (n + 1)-matrix such
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that M([1,0,0,...,0]) = v; and M([0,1,0,0,...,0]) = 3. Let ¢ps : P"(k) — P"(k) be the automorphism
defined by M (see Q7 of Sheet 2). The morphism f o ¢y ot : P%(k) — P*(k) is then not constant, which is

a contradiction by (1).

(0]



