
Exercise sheet 4. W1 of Hilary Term. All lectures.

Q1. Suppose in this exercise that char(k) = 0. Find the singularities of the following curves C in k2. For

each singular point P 2 C compute the dimension of mP /m2
P as a k-vector space. Here mP is the maximal

ideal of OC,P .

(1) Z(x6 + y6 � xy)

(2) Z(y2 + x4 + y4 � x3)

You may assume that the polynomials x6 + y6 � xy and y2 + x4 + y4 � x3 are irreducible.

Solution. (1) Note that dim(C) = 1 by Krull’s theorem and by Theorem 8.7. Thus we need to find the

points of C where the gradient of x6 + y6 � xy vanishes. The gradient of x6 + y6 � xy is h6x5
� y, 6y5 � xi.

Hence we need to solve the equations x6 + y6 � xy = 6x5
� y = 6y5 � x = 0. We have

(x/6)(6x5
� y)� (y/6)(6y5 � x) + 2y6 � xy = x6 + y6 � xy

and thus these equations are equivalent to

2y(y5 � x) = 6x5
� y = 6y5 � x = 0.

Now if y = 0 then x = 0. If y 6= 0 then y5 = x = x/6 so y = 0, which is a contradiction. So we must have

x = y = 0. So h0, 0i is the only singular point of C.

For P = h0, 0i the dimension of mP /m2
P as a k-vector space cannot be 1, since otherwise the ring OC,P

would be regular (apply Proposition 13.3). Since mP is generated as a k[x, y]-module by the elements x and

y, we see that mP /m2
P has dimension at most 2. Hence mP /m2

P has dimension 2.

(2) The reasoning is similar. Solve y2 + x4 + y4 � x3 = 4x3
� 3x2 = 2y + 4y3 = 0. Combining, we obtain

4(y2 + x4 + y4 � x3) + (1/4� x)(4x3
� 3x2)� y(2y + 4y3) = (�3/4)x2 + 2y2 = 0.

Now if x 6= 0 then x = 3/4 since 4x3
�3x2 = 0 and so y2 = 27/128. But then y(2y+4y3) = 6503409/67108864

which is a contradiction. So we have x = 0 and also y = 0. We conclude again that the origin is the only

singular point of C. By the same reasoning as above, we see that mP /m2
P has dimension 2.

Q2. (blowing up the origin in a�ne space) Let n > 1. Let x1, . . . , xn be variables for kn and let y1, . . . , yn
be homogenous variables for Pn�1(k). Note that contrary to what is customary, the index of the homogenous

variables runs between 1 and n here (not 0 and n� 1).

(1) Let Z be the subset of kn ⇥ Pn�1(k) defined by the equations {xiyj � xjyi = 0}i,j2{1,...,n} (note that

this makes sense because the polynomials are homogenous in the y-variables). Show that Z is a closed

subvariety of kn ⇥ Pn�1(k). The variety Z is called the blow-up of kn at the origin of kn. Let � : Z ! kn

the map obtained by restricting the projection kn ⇥ Pn�1(k) ! kn to Z.

(2) Show that ��1({0}) is canonically isomorphic to Pn�1(k). Show that the points of ��1(0) are in one-

to-one correspondence with the lines going through the origin of kn.

(3) Show that the restriction of � to the open subvariety ��1(kn\{0}) of Z induces an isomorphism

��1(kn\{0}) ' kn\{0}.

Solution. (1) On the open a�ne subset kn ⇥ Un�1
j0

, Z is given by the equations

{xiyj � xjyi = 0, xi � xj0yi = 0}i2{1,...,n},j2{1,...,j0�1,j0+1,...,n}.



The set Z \ kn ⇥ Un�1
j0

is thus closed in kn ⇥ Un�1
j0

. Since the kn ⇥ Un�1
j cover kn ⇥ Pn�1(k), we see that

Z is closed.

(2) It follows from the definitions that ��1({0}) = {0}⇥ Pn�1(k).

(3) Suppose that hX1, . . . , Xni 6= 0. Then there is an i0 such that Xi0 6= 0. The equations for Z then give

Yj = Xj(Yi0/Xi0) for all j. Up to multiplication of all the Yj by a non zero scalar factor, the only solution

to this set of equations is hX1, . . . , Xni. In particular, we have

��1(hX1, . . . , Xni) = {hX1, . . . , Xni}⇥ {[X1, . . . , Xn]}.

This shows that the morphism ��1(kn\{0}) ! kn\{0} is a bijection. To show that it is an isomorphism,

we shall provide an inverse morphism. For this, consider the morphism q : kn\{0} ! Pn�1(k) introduced

in Q6 of Sheet 3. We define a map kn\{0} ! Z by the formula g := Idkn\{0}
Q

q. By construction, this

gives an inverse of the morphism ��1(kn\{0}) ! kn\{0}.

Q3. (blowing up a point of an a�ne variety) Let X ✓ kn be a closed subvariety (ie an algebraic set). Let

v̄ := hv1, . . . , vni 2 X and suppose that {v̄} is not an irreducible component of X. Let ⌧v̄ : kn ! kn be

the map such that ⌧v̄(hw1, . . . , wni) = hw1 + v1, . . . , wn + vni for all w̄ = hw1, . . . , wni 2 kn (note that this

is an automorphism of the variety kn). Let Y := ⌧�v̄(X). Note that by construction we have 0 2 Y . Let

� : Z ! kn be the morphism defined in Q2.

We define the blow-up Bl(X, v̄) of X at v̄ to be the closure of ��1(Y \{0}) in Z.

(1) Show that �(Bl(X, v̄)) = Y .

Let b : Bl(X, v̄) ! X be the morphism ⌧v̄ � �|Bl(X,v̄).

(2) Suppose thatX is irreducible. Show that Bl(X, v̄) is an irreducible component of ��1(Y ) ✓ kn⇥Pn�1(k).

Show that b is a birational morphism. If X 6= kn, show that the irreducible components of ��1(Y ) are

Bl(X, v̄) and {0}⇥ Pn�1(k).

The closed set b�1({v}) = Bl(X, v̄) \ ({0}⇥ Pn�1(k)) is called the exceptional divisor of Bl(X, v̄).

Solution. (1) Note first that v̄ lies in the closure of X\{v̄}. To see this, let C be the irreducible component

of X containing v̄. Then C\{v̄} is non-empty (by assumption) and it is open in C (since {v̄} is closed).

Furthermore, C\{v̄} is not closed in C, for otherwise C would be disconnected and hence reducible. Thus

v̄ lies in the closure of C\{0} in C (which must be C) and hence v̄ lies in the closure of X\{v̄} in X.

Now since Pn�1(k) is complete (see Theorem 12.9), we know that �(Bl(X, v̄)) is closed. By (3) of Q2, we now

that �(Bl(X, v̄))\{v̄} = X\{v̄} and thus by the reasoning in the last paragraph, we see that v̄ 2 �(Bl(X, v̄)).

In particular, �(Bl(X, v̄)) = Y .

(2) From Q2 (3) we know that the natural morphism ��1(Y \{0}) ! Y \{0} is an isomorphism. Now if

X is irreducible, so is Y and so is Y \{0}. Hence Bl(X, v̄) is irreducible by Q4 (1) of Sheet 2. On the

other hand, Bl(X, v̄) ✓ ��1(Y ) since ��1(Y ) is closed in Z. Since Bl(X, v̄) contains the non empty open

subset set ��1(Y \{0}) of ��1(Y ), we see that Bl(X, v̄) is an irreducible component of ��1(Y ). Since

��1(Y \{0}) ! Y \{0} is an isomorphism, the morphism b is birational.

On the other hand, we have by construction ��1(Y ) = Bl(X, v̄) [ ({0} ⇥ Pn�1(k)). Now suppose that

X 6= kn. We then have {0}⇥ Pn�1(k) 6✓ Bl(X, v̄) because

dim({0}⇥ Pn�1(k)) = n� 1 > dim(Bl(X, v̄)) = dim(X) 6 n� 1
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(use Proposition 9.2, Q6 of Sheet 6 and Theorem 8.7). Since {0} ⇥ Pn�1(k) is irreducible (since it is

isomorphic to Pn�1(k)) we see that the irreducible components of ��1(Y ) are Bl(X, v̄) and {0}⇥ Pn�1(k).

Q4. Let C be the plane curve considered in (1) of Q1. Consider the blow-up B of C at each of its singular

points in turn. How many irreducible components does the exceptional divisor of B have? Is B non-singular?

Solution. Consider the curve Z(x1x2 � x6
1 � x6

2) ✓ k2 of (1) of Q1. Use the terminology of Q2 and Q3,

letting n = 2 and X = Z(x1x2 � x6
1 � x6

2) = Y (note that the point to blow-up is the origin by the solution

Q1 (1) so we do not have to translate X). We first compute ��1(X). Let ⇡ : kn ⇥ P1(k) ! kn be the

natural projection. By definition

��1(X) = ⇡�1(X) \ Z = Z(x1y2 � x2y1, x1x2 � x6
1 � x6

2)

Let U1 := {[1, Y2] |Y2 2 k} ✓ P1(k). In k2 ⇥ U1, we have

��1(X) \ (k2 ⇥ U1) = Z(x1y2 � x2, x1x2 � x6
1 � x6

2) = Z(x1y2 � x2, x
2
1y2 � x6

1 � x6
1y

6
2)

= Z(x1y2 � x2, x
2
1(y2 � x4

1 � x4
1y

6
2)) = Z(x1y2 � x2, x1) [ Z(x1y2 � x2, y2 � x4

1 � x4
1y

6
2))

= {0}⇥ U1 [ Z(x1y2 � x2, y2 � x4
1 � x4

2y
2
2)

Now Z(x1y2 � x2, y2 � x4
1 � x4

2y
2
2) does not contain {0} ⇥ U1 (since setting x1 = x2 = 0 implies that

y2 = 0) so we have Bl(X, 0) \ (k2 ⇥ U1) = Z(x1y2 � x2, y2 � x4
1 � x4

2y
2
2) by Q3 (2). Finally, note that

Z(x1y2 � x2, y2 � x4
1 � x4

2y
2
2) \ ({0} ⇥ U1) contains only the point {0} ⇥ {[1, 0]}. In other words, the

intersection of the exceptional divisor of Bl(X, 0) with {0}⇥ U1 is the point {0}⇥ {[1, 0]}.

Let now U2 := {[Y1, 1] |Y1 2 k} ✓ P1(k). We compute as before

��1(X) \ (k2 ⇥ U1) = Z(x1 � x2y1, x1x2 � x6
1 � x6

2) = Z(x1 � x2y1, y1x
2
2 � x6

2y
6
1 � x6

2)

= Z(x1 � x2y1, x2) [ Z(x1 � x2y1, y1 � x4
2y

6
1 � x4

2) = {0}⇥ U2 [ Z(x1 � x2y1, y1 � x4
2y

6
1 � x4

2)

We conclude as before that

Bl(X, 0) \ (k2 ⇥ U2) = Z(x1 � x2y1, y1 � x4
2y

6
1 � x4

2)

We compute Z(x1�x2y1, y1�x4
2y

6
1 �x4

2)\ ({0}⇥U2) = {0}⇥{[0, 1]}. So the intersection of the exceptional

divisor of Bl(X, 0) with {0}⇥ U2 is the point {0}⇥ [0, 1].

Putting everything together, we see that the exceptional divisor of Bl(X, 0) consists of the points {0}⇥{[1, 0]}

and {0}⇥ {[0, 1]}. In particular, the exceptional divisor of Bl(X, 0) has two irreducible components.

We now check non-singularity. We only have to check the non-singularity of Bl(X, 0) at {0}⇥ {[1, 0]} and

{0}⇥{[0, 1]} since Bl(X, 0)\{{0}⇥{[1, 0]}[{0}⇥{[0, 1]}} is isomorphic to X\{0} and X\{0} is non-singular

by the solution of Q1(1).

We first check non-singularity at {0}⇥ {[1, 0]}. Let Q1 := x1y2 � x2 and Q2 := y2 � x4
1 � x4

2y
2
2 . We have

 
@

@x1
Q1

@
@x2

Q1
@

@y2
Q1

@
@x1

Q2
@

@x2
Q2

@
@y2

Q2

!
=

 
0 �1 0

�4x3
1 �4x3

2y
2
2 1� 2x4

2y2

!

and evaluating at 0 we get the matrix  
0 �1 0

0 0 1

!
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which has rank 2. Using Lemma 13.5 we see that Bl(X, 0) is non-singular at {0}⇥ {[1, 0]}.

We now check non-singularity at {0}⇥ {[0, 1]}. Let Q1 := x1 � x2y1 and Q2 := y1 � x4
2y

6
1 � x4

2. We have
 

@
@x1

Q1
@

@x2
Q1

@
@y2

Q1

@
@x1

Q2
@

@x2
Q2

@
@y2

Q2

!
=

 
1 0 0

0 �4x3
2 � 4x3

2y
6
1 1� 6x4

2y
5
1

!

and evaluating at 0 we get the matrix  
1 0 0

0 0 1

!

which again has rank 2. Again using Lemma 13.5 we see that Bl(X, 0) is non-singular at {0}⇥ {[0, 1]}.

So all in all Bl(X, 0) is non-singular and its exceptional divisor has two irreducible components (which are

points).

Q5. Let C be the curve y2 = x3 in k2. Let b : Bl(C, 0) ! C of C be the blow-up of C at the origin.

(1) Show that Bl(C, 0) ' k.

(2) Show that the map b is a homeomorphism but is not an isomorphism.

Solution. Use the terminology of Q2 and Q3, letting n = 2 and X = Z(x2
2�x3

1) = Y (note that the point to

blow-up is the origin so we do not have to translate X). We first compute ��1(X). Let ⇡ : kn⇥P1(k) ! kn

be the natural projection. By definition

��1(X) = ⇡�1(X) \ Z = Z(x1y2 � x2y1, x
2
2 � x3

1)

Let U1 := {[1, Y2] |Y2 2 k} ⇢ P1(k). In k2 ⇥ U1, we have

��1(X) \ (k2 ⇥ U1) = Z(x1y2 � x2, x
2
2 � x3

1) = Z(x1y2 � x2, x
2
1y

2
2 � x3

1)

= Z(x1y2 � x2, x1) [ Z(x1y2 � x2, y
2
2 � x1) = ({0}⇥ U1) [ Z(x1y2 � x2, y

2
2 � x1)

The closed set Z(x1y2 � x2, y22 � x1) does not contain {0}⇥ U1. Also ��1(X) \ (k2 ⇥ U1) has at most two

irreducible components by Q2 (2) so we conclude that Z(x1y2 � x2, y22 � x1) = Bl(X, 0)\ (k2 ⇥U1). On the

other hand, Z(x1y2 � x2, y22 � x1) \ ({0}⇥ U1) = {0}⇥ {[1, 0]}.

We now repeat the above reasoning for U2 := {[Y1, 1] |Y1 2 k} ✓ P1(k) instead of U1. We have

��1(X) \ (k2 ⇥ U2) = Z(x1 � x2y1, x
2
2 � x3

1) = Z(x1 � x2y1, x
2
2 � x3

2y
3
1)

= Z(x1 � x2y1, x2) [ Z(x1 � x2y1, 1� x2y
3
2) = ({0}⇥ U2) [ Z(x1 � x2y1, 1� x2y

3
2)

As before, we have Z(x1 � x2y1, 1� x2y32))\ (k2 ⇥U2) = Bl(X, 0)\ (k2 ⇥U2). On the other hand, a simple

calculation shows that Z(x1 � x2y1, 1� x2y32) \ ({0}⇥ U2) = ;.

So we conclude that the exceptional divisor of Bl(X, 0) consist of only the point {0}⇥{[1, 0]}. In particular,

the map b : Bl(X, 0) ! X is bijective. Since Bl(X, 0) is complete, the morphism b sends closed sets to closed

sets (see Theorem 12.9 and Corollary 12.10) and thus (since b is bijective), b sends open sets to open sets.

Hence b is a homeomorphism. This answers part of (2). On the other hand

��1(X) \ k2 ⇥ (P1
\U1) = Z(x1y2 � x2y1, x

2
2 � x3

1, y1) = Z(x1, y1, x2) = {0}⇥ {[0, 1]}

and this set is not in Bl(X, 0) by the above. Hence

Bl(X, 0) = Z(x1y2 � x2, y
2
2 � x1) ✓ {0}⇥ U1 ✓ k3
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We claim that the map A(t) = ht2, t3, ti gives an isomorphism between k and Z(x1y2 � x2, y22 � x1). Indeed

this map has an inverse, which is the restriction to Z(x1y2 � x2, y22 � x1) of the map B : k3 ! k given by

the formula B(X1, X2, Y2) = Y2. To verify this, note first that we clearly have A(t) 2 Z(x1y2 � x2, y22 � x1)

and B(A(t)) = t. Secondly, for hX1, X2, Y2i 2 Z(x1y2 � x2, y22 � x1) we have

A(B(X1, X2, Y2)) = (Y 2
2 , Y

3
2 , Y2)

and we have Y 2
2 = X1, Y 3

2 = X1Y2 = X2. We conclude that Bl(X, 0) ' k.

Q6. Let V ✓ k2 be the algebraic set defined by the equation x1x2 = 0. Show that Bl(V, 0) has two disjoint

irreducible components and that each of these components is isomorphic to k.

Solution. Use the terminology of Q2 and Q3, letting n = 2 and X = Z(x1x2) = Y (note that the point to

blow-up is the origin so we do not have to translate X). We first compute ��1(X). Let ⇡ : kn⇥P1(k) ! kn

be the natural projection. By definition

��1(X) = ⇡�1(X) \ Z = Z(x1y2 � x2y1, x1x2)

Let U1 := {[1, Y2] |Y2 2 k} ✓ P1(k). In k2 ⇥ U1, we have

��1(X) \ (k2 ⇥ U1) = Z(x1y2 � x2, x1x2) = Z(x1y2 � x2, x1) [ Z(x1y2 � x2, x2)

= {0}⇥ U1 [ Z(x1y2, x2) = {0}⇥ U1 [ Z(x1, x2) [ Z(y2, x2) = {0}⇥ U1 [ Z(y2, x2)

Now note that by definition Bl(X, 0) is the closure of ��1(X\0). In particular, Bl(X, 0) is the union of the

closures of ��1(Z(x1)\0) and ��1(Z(x1)\0), ie the blow-ups of Z(x1) and of Z(x2), respectively. Now note

that ��1(Z(x1)\0)\ (k2 ⇥U1) = ; (see the solution to Q2 (3)). Noting also that Z(y2, x2) is irreducible, we

see that Bl(X, 0) \ (k2 ⇥ U1)) = Z(y2, x2).

A completely similar reasoning with U2 in place of U1 shows that Bl(X, 0) \ (k2 ⇥ U2) = Z(y1, x1). Hence

Bl(X, 0) ✓ Z(y2, x2) [ Z(y1, x1) ✓ k2 ⇥ P1(k), where we view the polynomials x1, x2, y1, y2 as homogenous

polynomials in the y-variables. On the other hand we have Z(y2, x2) \ Z(y1, x1) = Z(x1, x2, y1, y2) = ; and

Z(y2, x2) ' Z(y1, x1) ' k. Since Bl(X, 0) has two irreducible components of dimension 1 by the above, we

thus have Bl(X, 0) = Z(y2, x2) [ Z(y1, x1).

Q7. (1) Let f : X ! Y be a dominant morphism of varieties. Suppose that Y is irreducible. Show that

dim(X) > dim(Y ).

(2) Let f : X ! Y be a dominant morphism of irreducible varieties. Suppose that the field extension

(X)|(Y ) is algebraic. Show that there are a�ne open subvarieties U ✓ X and W ✓ Y such that

f(U) = W and such that the map of rings OX(U) ! OY (V ) is injective and finite.

(3) Let f : X ! Y be a dominant morphism of irreducible quasi-projective varieties. Show that there is

a y 2 Y such that we have dim(f�1({y})) > dim(X) � dim(Y ). [Hint. Reduce to the situation where Y

is a�ne and apply Noether’s normalisation lemma to show that you may assume wlog that Y = kn for

some n. Now use the existence of transcendence bases and (2) to show that there is an open subvariety

U ✓ X and an open subvariety W of kdim(X)�dim(Y )
⇥ kn such that f |U factors as a finite and surjective

morphism U ! W , followed by the projection to kn. Now deduce the result from (1) and a computation of

the dimension of the fibres of the projection kdim(X)�dim(Y )
⇥ kn ! kn.]

(4) Deduce that in the situation of (3), the set of y 2 Y such that we have dim(f�1({y})) > dim(X)�dim(Y )

is dense in Y .
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Solution. (1) Let {Xi} be the irreducible components ofX. Then f(Xi) is irreducible for all i and hence the

closure f(Xi) is also irreducible for all i (by Q4 (1) of Sheet 2). Hence we must have [if(Xi) = Y , otherwise f

is not dominant. Now if f(Xi) 6= Y for all i then Y is not irreducible, which is impossible. So there is an index

i0 such that f(Xi0) = Y . In that case we have a field extension (Xi0)|(Y ) and thus dim(Xi0) > dim(Y )

by Proposition 9.2. In now follows from the definition of dimension that dim(X) > dim(Y ).

(2) We first prove the following statement of commutative algebra. Let � : A ! B be a homomorphism of

finitely generated integral k-algebras. Suppose that Spm(�)(Spm(B)) is dense in Spm(A) and suppose that

the induced map Frac(�) : Frac(A) ! Frac(B) is an algebraic extension of fields. Then there is an element

f 2 A such that the induced map A[f�1] ! B[�(f)�1] is injective and finite.

To prove this assertion, note that by Q5 of Sheet 1 we already know that under the given assumptions, �

must be injective. Note also that since we have a commutative diagram

Frac(A)
Frac(�)

// Frac(B)

A

OO

�
// B

OO

all whose maps are injective, the induced map A[f�1] ! B[�(f)�1] is injective for any choice of f 2 A\{0}

(remember that A and B are integral domains). Thus we only have to show that there is f 2 A\{0} such

that the induced map A[f�1] ! B[�(f)�1] is finite. Now let b1, . . . , bl be generators of B as a k-algebra.

By assumption, each bi/1 2 Frac(B) satisfies a monic polynomial equation with coe�cients in Frac(A). Let

f 2 A be the product of the denominators of all the coe�cients of all these equations. Note that B[�(f)�1]

is generated as a k-algebra by 1/�(f) and by the elements bi/1 (use Lemma 5.3 in CA). In particular,

B[�(f)�1] is generated by the bi/1 as a A[f�1]-algebra. On the other hand, by construction, the elements

bi/1 all satisfy integral equations over A[f�1]. Hence A[f�1] ! B[�(f)�1] is a finite map of rings (see

section 8 in CA).

Note that the fact that A[f�1] ! B[�(f)�1] is injective and finite implies that the induced map

Spm(B[�(f)�1]) ! Spm(A[f�1])

is surjective (use Th. 8.8 and Cor. 8.10 in CA).

Returning to the problem at hand, note that we may wlog assume that X and Y are a�ne (take an a�ne

open Y 0 in Y and an a�ne open X 0 in f�1(Y 0) and replace X by X 0 (resp. Y by Y 0). Applying the result

of commutative algebra that we just proved to A = OX(X) and B = OY (Y ) we obtain the desired result.

(3) Note that Th. 9.1 (Noether’s normalisation lemma), Prop. 8.12, Th. 8.8 and Cor. 8.10 in CA imply

that for some n > 0 there is a surjective morphism h : Y ! kdim(Y ), such that the fibre h�1(v̄) of h over v̄

is finite for all v̄ 2 kn. Since the fibres of the composed morphism h � f are finite disjoint unions of fibres

of f , we may thus replace f by h � f and suppose that Y = kn for some n > 0.

Now consider the field extension (X)|(Y ). Choose a transcendence basis b1, . . . , b� 2 (X) of (X)

over (Y ). Write (Y ) = (kn) = k(x1, . . . , xn). The set x1, . . . , xn, b1, . . . , b� is then by construction

a transcendence basis for (X) over k. Since we know that dim(kn) = n (see Theorem 8.4), we de-

duce from Proposition 9.2 that � = dim(X) � dim(Y ). Now the subfield (Y )(b1, . . . , b�) of (X) is

isomorphic as a k-algebra to k(x1, . . . , xn, y1, . . . , y�), which is the function field of kn+�. The inclusion

k(x1, . . . , xn) ,! k(x1, . . . , xn, y1, . . . , y�) is induced by the natural projection morphism ⇡ : kn+�
! kn (un-

roll the definitions). Hence we have a rational dominant map a : X ! kn+� such that the rational dominant
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map associated with the morphism f : X ! Y is the composition of a with the rational dominant map

associated with ⇡ (apply Proposition 9.4 and Q3 of Sheet 3). Applying (2) we obtain open a�ne subvarietes

U ✓ X and W ✓ kn+� and a surjective morphism g : U ! W , which represents a. Let now now f 0 = ⇡ � g.

Note that by Q3 of Sheet 3 again, we have f 0 = f |U . Let y 2 ⇡(W ) = f 0(U) = f(U). We compute

dim(f�1(y)) > dim(f�1(y) \ U) = dim((f 0)�1(y))

= dim(g�1(⇡�1(y) \W )) > dim(⇡�1(y) \W ) = dim(⇡�1(y)) = � = dim(X)� dim(Y )

Here we used Q6 of Sheet 2 for the first inequality and we used (1) for the inequality

dim(g�1(⇡�1(y) \W ) > dim(⇡�1(y) \W )

(remember that g is surjective). To justify the equality

dim(⇡�1(y) \W ) = dim(⇡�1(y)) = �

note that ⇡�1(y) ' k�. We thus have dim(⇡�1(y) \ W ) = dim(⇡�1(y)) by Proposition 9.2 and we have

dim(⇡�1(y)) = � by Theorem 8.4.

(4) Let U ✓ Y be an open subvariety. Applying (3) to the morphism f�1(U) ! U , we see that there is a

point y 2 U such that dim(f�1(y)) > dim(f�1(U))� dim(U) = dim(X)� dim(Y ). Since U was arbitrary,

this shows what we want.

Q8. (1) Show that all the morphisms from P2(k) to P1(k) are constant. [Hint: Use Q7 and the projective

dimension theorem.]

(2) Deduce from (1) that for any n > 2 the morphisms from Pn(k) to P1(k) are constant. [Hint: Use (1)

and Q7 of Sheet 2.]

Solution. (1) Let f : P2(k) ! P1(k) is a morphism. Suppose for contradiction that f is not constant.

By Corollary 12.10, the image f(P2(k)) is closed, and it is also irreducible, since P2(k) is irreducible.

Hence f(P2(k)) = P1(k) (because dim(P1(k)) = 1). Now let y1, y2 2 P1(k) be such that y1 6= y2 and

dim(f�1(y1)), dim(f�1(y1)) > dim(P2(k)) � dim(P1(k)) = 1. This exists by Q7. Since dim(P2(k)) = 2 we

then actually have dim(f�1(y1)) = dim(f�1(y1)) = 1. Let C1 (resp. C2) be an irreducible component of

dim(f�1(y1)) (resp. dim(f�1(y2))) such that dim(C1) = dim(C2) = 1. We have dim(C1)+dim(C2)� 2 = 0

and so by Proposition 11.2 we have C1 \ C2 6= ;. This is a contradiction.

(2) Let n > 2. First note that P2(k) is isomorphic to the closed subvariety Z(x3, x4, . . . , xn) of Pn(k). To

see this note that the image of the morphism ◆ : P2(k) ! Pn(k) given by the formula

[X0, X1, X2] 7! [X0, X1, X2, 0 . . . ((n� 2)-times) . . . , 0]

is Z(x3, x4, . . . , xn). This morphism is an isomorphism onto Z(x3, x4, . . . , xn) because the morphism

Pn(k)\Z(x0, x1, x2) ! P2(k)

given by the formula

[X0, X1, X2, . . . , Xn] 7! [X0, X1, X2]

gives an inverse to ◆ when restricted to Z(x3, x4, . . . , xn).

Let now f : Pn(k) ! P1(k) be a morphism. Suppose for contradiction that f is not constant. Let

v̄1, v̄2 2 Pn(k) be two points such that f(v̄1) 6= f(v̄2). Let M be an invertible (n+ 1)⇥ (n+ 1)-matrix such
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that M([1, 0, 0, . . . , 0]) = v̄1 and M([0, 1, 0, 0, . . . , 0]) = v̄2. Let �M : Pn(k) ! Pn(k) be the automorphism

defined by M (see Q7 of Sheet 2). The morphism f � �M � ◆ : P2(k) ! P1(k) is then not constant, which is

a contradiction by (1).
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