Exercise sheet 2. Prerequisites: sections 1-8. Week 6

Q1. Consider the ideals $\mathfrak{p}_{1}:=(x, y), \mathfrak{p}_{2}:=(x, z)$ and $\mathfrak{m}:=(x, y, z)$ of $K[x, y, z]$, where K is a field. Show that $\mathfrak{p}_{1} \cap \mathfrak{p}_{2} \cap \mathfrak{m}^{2}$ is a minimal primary decomposition of $\mathfrak{p}_{1} \cdot \mathfrak{p}_{2}$. Determine the isolated and the embedded prime ideals of $\mathfrak{p}_{1} \cdot \mathfrak{p}_{2}$.

Solution. For future reference, note that we have

$$
\mathfrak{m}^{2}=((x)+(y)+(z))^{2}=\left(x^{2}, y^{2}, z^{2}, x y, x z, y z\right)
$$

and

$$
\mathfrak{p}_{1} \cdot \mathfrak{p}_{2}=((x)+(y))((x)+(z))=\left(x^{2}, x z, y x, y z\right)
$$

We have $\mathfrak{p}_{1} \cdot \mathfrak{p}_{2} \subseteq \mathfrak{p}_{1} \cap \mathfrak{p}_{2}$ and that we also clearly have $\mathfrak{p}_{1} \cdot \mathfrak{p}_{2} \subseteq \mathfrak{m}^{2}$ since $\mathfrak{p}_{1}, \mathfrak{p}_{2} \subseteq \mathfrak{m}$. Thus we have $\mathfrak{p}_{1} \cdot \mathfrak{p}_{2} \subseteq$ $\mathfrak{p}_{1} \cap \mathfrak{p}_{2} \cap \mathfrak{m}^{2}$. Note that \mathfrak{p}_{1} and \mathfrak{p}_{2} are prime since the rings $K[x, y, z] / \mathfrak{p}_{1} \simeq K[z]$ and $K[x, y, z] / \mathfrak{p}_{2} \simeq K[y]$ are domains. Note also that \mathfrak{m} is a maximal ideal, since $K[x, y, z] / \mathfrak{m} \simeq K$ is a field. Thus $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ and \mathfrak{m}^{2} is primary (see after Lemma 6.4 for the latter). The radicals of the ideals $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ and \mathfrak{m}^{2} are $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ and \mathfrak{m} (see again Lemma 6.4 for the latter). These three ideals are distinct. Finally, we have $\mathfrak{p}_{1} \nsupseteq \mathfrak{p}_{2} \cap \mathfrak{m}^{2}$ (because $z^{2} \notin \mathfrak{p}_{1}$ but $z^{2} \in \mathfrak{p}_{2} \cap \mathfrak{m}^{2}$), $\mathfrak{p}_{2} \nsupseteq \mathfrak{p}_{1} \cap \mathfrak{m}^{2}$ (because $y^{2} \notin \mathfrak{p}_{2}$ but $y^{2} \in \mathfrak{p}_{1} \cap \mathfrak{m}^{2}$) and $\mathfrak{m}^{2} \nsupseteq \mathfrak{p}_{1} \cap \mathfrak{p}_{2}$ (because $x \notin \mathfrak{m}^{2}$ but $x \in \mathfrak{p}_{2} \cap \mathfrak{p}_{2}$). Hence if $\mathfrak{p}_{1} \cdot \mathfrak{p}_{2}=\mathfrak{p}_{1} \cap \mathfrak{p}_{2} \cap \mathfrak{m}^{2}$ then this decomposition is indeed primary and minimal. Thus we only have to show that $\mathfrak{p}_{1} \cdot \mathfrak{p}_{2} \supseteq \mathfrak{p}_{1} \cap \mathfrak{p}_{2} \cap \mathfrak{m}^{2}$. From the above, we have to show that

$$
(x, y) \cap(x, z) \cap\left(x^{2}, y^{2}, z^{2}, x y, x z, y z\right) \subseteq\left(x^{2}, x z, y x, y z\right)
$$

Now note that we have $P(x, y, z) \in(x, y)$ iff $P(0,0, z)=0$ (because a polynomial lies in (x, y) iff it has no monomial containing only the variable z). Similarly, we have $P(x, y, z) \in(x, z)$ iff $P(0, y, 0)=0$. Thus we have $P(x, y, z) \in(x, y) \cap(x, z)$ iff $P(0, y, 0)=P(0,0, z)=0$.
Now an element $Q(x, y, z)$ of $\left(x^{2}, y^{2}, z^{2}, x y, x z, y z\right)$ has the form

$$
Q(x, y, z)=P_{1}(x, y, z) x^{2}+P_{2}(x, y, z) y^{2}+P_{3}(x, y, z) z^{2}+P_{4}(x, y, z) x y+P_{5}(x, y, z) x z+P_{6}(x, y, z) y z
$$

and $Q(x, y, z)$ will thus lie in $(x, y) \cap(x, z)$ iff

$$
Q(0, y, 0)=Q(0,0, z)=P_{2}(0, y, 0)=P_{3}(0,0, z)=0
$$

In other words, the element $Q(x, y, z) \in\left(x^{2}, y^{2}, z^{2}, x y, x z, y z\right)=\mathfrak{m}^{2}$ will lie in $(x, y) \cap(x, z)$ iff $P_{2}(x, y, z) \in$ (x, z) and $P_{3}(x, y, z) \in(x, y)$. Consequently, if $Q(x, y, z) \in \mathfrak{p}_{1} \cap \mathfrak{p}_{2} \cap \mathfrak{m}^{2}$ then
$Q(x, y, z) \in\left(x^{2}\right)+(x, z)\left(y^{2}\right)+(x, y)\left(z^{2}\right)+(x y)+(x z)+(y z)=\left(x^{2}, x y^{2}, z y^{2}, x z^{2}, y z^{2}, x y, x z, y z\right)=\left(x^{2}, x y, x z, y z\right)=\mathfrak{p}_{1} \cdot \mathfrak{p}_{2}$ as required.

The prime ideals associated with the decomposition are $\mathfrak{p}_{1}=\mathfrak{r}\left(\mathfrak{p}_{1}\right), \mathfrak{p}_{2}=\mathfrak{r}\left(\mathfrak{p}_{2}\right)$ and $\mathfrak{m}=\mathfrak{r}\left(\mathfrak{m}^{2}\right)$. The ideal \mathfrak{m} contains \mathfrak{p}_{1} and \mathfrak{p}_{2} and there are no other inclusions between the prime ideals. So \mathfrak{m} is an embedded ideal and \mathfrak{p}_{1} and \mathfrak{p}_{2} are isolated ideals.

Q2. Let K be a field. Show that the ideal $\left(x^{2}, x y, y^{2}\right) \subseteq K[x, y]$ is a primary ideal, which is not irreducible.
Solution. We first show that $\left(x^{2}, x y, y^{2}\right)$ is primary. This simply follows from the fact that (x, y) is maximal ideal and from the fact that $\left(x^{2}, x y, y^{2}\right)=(x, y)^{2}$ (see after Lemma 6.4).

Now note that $\left(x^{2}, x y, y^{2}\right)=\left(x^{2}, y\right) \cap\left(x, y^{2}\right)$. Indeed, we clearly have $\left(x^{2}, x y, y^{2}\right) \subseteq\left(x^{2}, y\right) \cap\left(x, y^{2}\right)$. On the other hand, if $P(x, y) \in\left(x^{2}, y\right)$ then $P(x, y)$ has the form $P_{1}(x, y) x^{2}+P_{2}(x, y) y$. Since $P_{1}(x, y) x^{2}$ is
already in $\left(x^{2}, x y, y^{2}\right)$, we thus only have to show that a polynomial of the form $P_{2}(x, y) y$, which lies in $\left(x, y^{2}\right)$, necessarily lies in $\left(x^{2}, x y, y^{2}\right)$. A polynomial in $\left(x, y^{2}\right)$ is of the form $Q_{1}(x, y) y^{2}+Q_{2}(x, y) x$. Now if we have $P_{2}(x, y) y=Q_{1}(x, y) y^{2}+Q_{2}(x, y) x$ then $Q_{2}(x, y)$ is divisible by y and hence $Q_{2}(x, y) x=Q_{2}^{\prime}(x, y) x y$ for some polynomial $Q_{2}^{\prime}(x, y)$ so that $P_{2}(x, y) y \in\left(y^{2}, x y\right) \subseteq\left(x^{2}, x y, y^{2}\right)$, as required.

Q3. Let R be a noetherian ring and let T be a finitely generated R-algebra. Let G be a finite subgroup of the group of automorphisms of T as a R-algebra. Let T^{G} be the fixed point set of G (ie the subset of T, which is fixed by all the elements of G).

- Show that T is integral over T^{G}.
- Show that T^{G} is a subring of T, which contains the image of R and that T^{G} is finitely generated over R.

Solution. It is clear from the definitions that T^{G} is a subring which contains the image of R. Let $t \in T$. Then t satisfies the polynomial equation

$$
\prod_{g \in G}(t-g(t))=0
$$

The polynomial $M_{t}(x):=\prod_{g \in G}(x-g(t))$ has coefficients in T^{G}, because the coefficients are symmetric functions in the $g(t)$, which are invariant under G. Hence t is integral over T^{G}. Since t was arbitrary, T is integral over T^{G}. Since T is also finitely generated as a T^{G}-algebra (because it is finitely generated as a R-algebra), we thus see that T is finite over T^{G} (see after Lemma 6.6). Hence T^{G} is finitely generated over R by the Theorem of Artin-Tate.

Q4. Show that \mathbb{Z} is integrally closed and that the integral closure of \mathbb{Z} in $\mathbb{Q}(i)$ is $\mathbb{Z}[i]$.
Solution. We first prove that \mathbb{Z} is integrally closed. Let $p / q \in \mathbb{Q}$, where p and q are coprime integers, and let $P(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbb{Z}[x]$ be a monic polynomial. Suppose that $P(p / q)=0$. Then we have

$$
q^{n} P(p / q)=p^{n}+a_{n-1} p^{n-1} q+a_{n-2} p^{n-2} q^{2}+\cdots+a_{0} q^{n}=0
$$

Since $a_{n-1} p^{n-1} q+a_{n-2} p^{n-2} q^{2}+\cdots+a_{0} q^{n}$ is divisible by q and p^{n} is coprime to q, this implies that $q= \pm 1$, so $p / q \in \mathbb{Z}$.
To prove that the integral closure of \mathbb{Z} in $\mathbb{Q}(i)$ is $\mathbb{Z}[i]$, note first that $\mathbb{Z}[i]$ is part of the integral closure of \mathbb{Z} in $\mathbb{Q}(i)$. Indeed we have $(a+i b)^{2}-2 a(a+i b)+a^{2}+b^{2}=0$ for any $a, b \in \mathbb{Z}$. So we only have to prove that $\mathbb{Z}[i]$ is integrally closed in $\mathbb{Q}(i)$ (see Lemma 8.6). Note furthermore that $\mathbb{Q}(i)$ is the fraction field of $\mathbb{Z}[i]$. To see this, write let $r+i t \in \mathbb{Q}(i)$, where $r, t \in \mathbb{Q}$ (any element of $\mathbb{Q}(i)$ can be written in this form because $\left.\mathbb{Q}(i) \simeq \mathbb{Q}[x] /\left(x^{2}+1\right)\right)$. Let $r=p / q$ and $t=u / v$. We then have $r+i t=(v p+u q i) /(v q)$, which is a fraction of elements of $\mathbb{Z}[i]$, proving our claim. Finally, recall that we know from Rings and Modules that $\mathbb{Z}[i]$ is a Euclidean domain, where the Euclidean function is given by the norm (the norm of $c+i d$ is $c^{2}+d^{2}$ if $c+i d \in \mathbb{Z}[i]$). In particular, $\mathbb{Z}[i]$ is a PID and every ideal in $\mathbb{Z}[i]$ is generated by an element of smallest norm.

To prove that $\mathbb{Z}[i]$ is integrally closed in $\mathbb{Q}(i)$, we may now proceed as for \mathbb{Z}. Let

$$
P(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbb{Z}[i](x)
$$

and let $r+i t=B / A$, where $A, B \in \mathbb{Z}[i]$. Since $\mathbb{Z}[i]$ is a PID, it is factorial and we may thus assume that $(A, B)=\mathbb{Z}[i]$. We can now write as before

$$
A^{n} P(B / A)=B^{n}+a_{n-1} B^{n-1} A+a_{n-2} B^{n-2} A^{2}+\cdots+a_{0} A^{n}=0
$$

Since $a_{n-1} B^{n-1} A+a_{n-2} B^{n-2} A^{2}+\cdots+a_{0} A^{n}$ is divisible by A and B^{n} is coprime to A, this implies that A is a unit, so $B / A \in \mathbb{Z}[i]$.

Note that the proof above actually shows that any UFD (Unique Factorisation Domain) is integrally closed.
Q5. Let S be a ring and let $R \subseteq S$ be a subring of S. Suppose that R is integrally closed in S. Let $P(x) \in$ $R[x]$ and suppose that $P(x)=Q(x) J(x)$, where $Q(x), J(x) \in S[x]$ and $Q(x)$ and $J(x)$ are monic. Show that $Q(x), J(x) \in R[x]$. Use this to give a new proof of the fact that if $T(x) \in \mathbb{Z}[x]$ and $T(x)=T_{1}(x) T_{2}(x)$, where $T_{1}(x), T_{2}(x) \in \mathbb{Q}[x]$ are monic polynomials, then $T_{1}(x), T_{2}(x) \in \mathbb{Z}[x]$.

Solution. We first prove the
Lemma. Let A be a ring and let $U(x) \in A[x]$ be a non zero monic polynomial. Then there exists a ring B containing A, which is integral over A and such that

$$
U(x)=\prod_{i=1}^{\operatorname{deg}(U)}\left(x-b_{i}\right)
$$

for some $b_{i} \in B$, where we set $\prod_{i=1}^{\operatorname{deg}(U)}\left(x-b_{i}\right)=1$ if $\operatorname{deg}(U)=0$.
Proof of the lemma. By induction on the degree $d=\operatorname{deg}(U)$ of $U(x)$. If $d=0,1$, there is nothing to prove. So suppose that $d>1$ and that the result holds for any smaller value of d. The ring $C:=A[y] /(P(y))$ is integral over A by Proposition 8.2. The element y of C satisfies the equation $P(y)=0$ by construction. By Euclidean division (see Preamble), we thus have $P(x)=(x-y) Z(x)$ for some $Z(x) \in C[x]$. Since $Z(x)$ has degree $<d$, we may apply the inductive hypothesis and we obtain a ring B, which contains C and where $Z(x)$ splits. The polynomial $P(x)$ also splits in B, so we are done.

We now apply the lemma to $Q(x)$ and $J(x)$ successively and we obtain a ring B, which contains S, such that B is integral over S and such that

$$
Q(x)=\prod_{i=1}^{\operatorname{deg}(Q)}\left(x-b_{i}\right)
$$

and

$$
J(x)=\prod_{i=1}^{\operatorname{deg}(J)}\left(x-c_{i}\right)
$$

where $b_{i}, c_{i} \in B$. Now we have $P\left(b_{i}\right)=P\left(c_{i}\right)=0$ by construction, so the b_{i} and c_{i} are actually integral over R. Since the integral closure of R in B is a subring, we conclude that the coefficients of $Q(x)$ and $J(x)$ are integral over R (and in S, by assumption). But since R is integrally closed in S, this means that these coefficients lie in R.

Note that we did not actually use the fact that B was integral over S in the proof.
Q6. Let R be a subring of a ring T and suppose that T is integral over R. Let \mathfrak{p} be prime ideal of R and let \mathfrak{q} be a prime ideal of T. Suppose that $\mathfrak{q} \cap R=\mathfrak{p}$. Let $\mathfrak{p}_{1} \subseteq \mathfrak{p}_{2} \subseteq \cdots \subseteq \mathfrak{p}_{k}$ be primes ideal of R and suppose that $\mathfrak{p}_{1}=\mathfrak{p}$. Show that there are prime ideals $\mathfrak{q}_{1} \subseteq \mathfrak{q}_{2} \subseteq \cdots \subseteq \mathfrak{q}_{k}$ of T such that $\mathfrak{q}_{i} \cap R=\mathfrak{p}_{i}$ for all $i \in\{1, \ldots, k\}$.

Solution. By induction on k, we only need to treat the case $k=2$. Consider the extension of rings $R / \mathfrak{p} \subseteq T / \mathfrak{q}$. This is also an integral extension. Furthermore, there is a unique prime ideal $\mathfrak{p}_{2}^{\prime}$ in R / \mathfrak{p}, which corresponds to \mathfrak{p}_{2} via the quotient map. By Theorem 8.8 , there is a prime ideal $\mathfrak{q}_{2}^{\prime}$ in T / \mathfrak{q}, which is such that $\mathfrak{q}_{2}^{\prime} \cap R / \mathfrak{p}=\mathfrak{p}_{2}^{\prime}$. The prime ideal \mathfrak{q}_{2} corresponding to $\mathfrak{q}_{2}^{\prime}$ via the quotient map has the required properties.

Q7. Let R be a ring. Let \mathcal{S} be the set of ideals in R, which are not finitely generated.
(i) Let I be maximal element of \mathcal{S} (with respect to the relation of inclusion). Show that I is prime.
(ii) Suppose that all the prime ideals of R are finitely generated. Prove that R is noetherian.
[Hint: exploit the fact that R / I is noetherian.]

Solution.

(i): Let $x, y \notin I$ and suppose for contradiction that $x, y \in I$. Let $I_{x}:=(x)+I$ and $I_{y}=(y)+I$. Write $J:=I_{x} \cdot I_{y}$. By assumption I_{x}, I_{y} and hence J are finitely generated, and we have $J \subseteq I$. Consider the image $I(\bmod J)$ of I in the R / I_{y}-module I_{x} / J. Note that I_{x} / J is finitely generated as a R / I_{y}-module since I_{x} is finitely generated as a R-module. Note also that the ring R / I_{y} is noetherian, since every ideal of R / I_{y} is the image of either the zero ideal or of an ideal of R strictly containing I. Hence $I(\bmod J)$ is also finitely generated as a R / I_{y}-module by Lemma 7.4. Let m_{1}, \ldots, m_{k} be preimages in I of a finite set of generators of $I(\bmod J)$ as a R / I_{y}-module and let y_{1}, \ldots, y_{l} be generators of J. Then $m_{1}, \ldots, m_{k}, y_{1}, \ldots, y_{l}$ is a finite set of generators of I, which is a contradiction.
(ii): If \mathcal{T} is a totally ordered subset of \mathcal{S} then the ideal $J:=\cup_{H \in \mathcal{S}} H$ also lies in \mathcal{S} (because if J were finitely generated then a finite set of generators of J would lie in one of the ideals in \mathcal{T}, and thus generate it, which is a contradiction). The ideal J is an upper bound for \mathcal{T} and thus we may apply Zorn's lemma to conclude that there are maximal elements in \mathcal{S}, if \mathcal{S} is not empty. By definition, \mathcal{S} is empty iff R is noetherian. Hence, by (i), if R is not noetherian, there is a prime ideal, which is not finitely generated. The contraposition of this implication gives (i).
Q8. (optional). Let R be a ring. Let \mathcal{S} be the set of non-principal ideals in R. Let I be a maximal element of \mathcal{S}. Prove that I is a prime ideal.

Solution.

Let $x, y \notin I$ and suppose for contradiction that $x y \in I$. Let $I_{x}:=(x)+I$. By assumption, we have $I_{x}=\left(g_{x}\right)$ for some $g_{x} \in R$. Let $\phi: R \rightarrow I_{x}$ be the surjection of R-modules given by the formula $\phi(r)=r g_{x}$. We then have $I \subseteq \phi^{-1}(I)$.

Suppose first that $I=\phi^{-1}(I)$. In other words, for all $r \in R$, we have $r g_{x} \in I$ iff $r \in I$. This contradicts the fact that $y g_{x} \in I$. So we conclude that $I \subsetneq \phi^{-1}(I)$. From the definition of I, we then see that $\phi^{-1}(I)$ is a principal ideal of R, and hence so is $I=\phi\left(\phi^{-1}(I)\right)$. This is a contradiction, so we cannot have $x y \in I$ if $x, y \notin I$. In other words, I is prime.

