
Exercise sheet 2. Prerequisites: sections 1-8. Week 6

Q1. Consider the ideals p1 := (x, y), p2 := (x, z) and m := (x, y, z) of K[x, y, z], where K is a field. Show

that p1 \ p2 \m2 is a minimal primary decomposition of p1 · p2. Determine the isolated and the embedded

prime ideals of p1 · p2.

Solution. For future reference, note that we have

m2 = ((x) + (y) + (z))2 = (x2
, y

2
, z

2
, xy, xz, yz)

and

p1 · p2 = ((x) + (y))((x) + (z)) = (x2
, xz, yx, yz).

We have p1 · p2 ✓ p1 \ p2 and that we also clearly have p1 · p2 ✓ m2 since p1, p2 ✓ m. Thus we have p1 · p2 ✓
p1 \ p2 \ m2. Note that p1 and p2 are prime since the rings K[x, y, z]/p1 ' K[z] and K[x, y, z]/p2 ' K[y]

are domains. Note also that m is a maximal ideal, since K[x, y, z]/m ' K is a field. Thus p1, p2 and m2 is

primary (see after Lemma 6.4 for the latter). The radicals of the ideals p1, p2 and m2 are p1, p2 and m (see

again Lemma 6.4 for the latter). These three ideals are distinct. Finally, we have p1 6◆ p2 \ m2 (because

z
2 62 p1 but z

2 2 p2 \ m2), p2 6◆ p1 \ m2 (because y
2 62 p2 but y

2 2 p1 \ m2) and m2 6◆ p1 \ p2 (because

x 62 m2 but x 2 p2 \ p2). Hence if p1 · p2 = p1 \ p2 \ m2 then this decomposition is indeed primary and

minimal. Thus we only have to show that p1 · p2 ◆ p1 \ p2 \m2. From the above, we have to show that

(x, y) \ (x, z) \ (x2
, y

2
, z

2
, xy, xz, yz) ✓ (x2

, xz, yx, yz)

Now note that we have P (x, y, z) 2 (x, y) i↵ P (0, 0, z) = 0 (because a polynomial lies in (x, y) i↵ it has no

monomial containing only the variable z). Similarly, we have P (x, y, z) 2 (x, z) i↵ P (0, y, 0) = 0. Thus we

have P (x, y, z) 2 (x, y) \ (x, z) i↵ P (0, y, 0) = P (0, 0, z) = 0.

Now an element Q(x, y, z) of (x2
, y

2
, z

2
, xy, xz, yz) has the form

Q(x, y, z) = P1(x, y, z)x
2 + P2(x, y, z)y

2 + P3(x, y, z)z
2 + P4(x, y, z)xy + P5(x, y, z)xz + P6(x, y, z)yz.

and Q(x, y, z) will thus lie in (x, y) \ (x, z) i↵

Q(0, y, 0) = Q(0, 0, z) = P2(0, y, 0) = P3(0, 0, z) = 0.

In other words, the element Q(x, y, z) 2 (x2
, y

2
, z

2
, xy, xz, yz) = m2 will lie in (x, y) \ (x, z) i↵ P2(x, y, z) 2

(x, z) and P3(x, y, z) 2 (x, y). Consequently, if Q(x, y, z) 2 p1 \ p2 \m2 then

Q(x, y, z) 2 (x2)+(x, z)(y2)+(x, y)(z2)+(xy)+(xz)+(yz) = (x2
, xy

2
, zy

2
, xz

2
, yz

2
, xy, xz, yz) = (x2

, xy, xz, yz) = p1·p2

as required.

The prime ideals associated with the decomposition are p1 = r(p1), p2 = r(p2) and m = r(m2). The ideal m

contains p1 and p2 and there are no other inclusions between the prime ideals. So m is an embedded ideal

and p1 and p2 are isolated ideals.

Q2. Let K be a field. Show that the ideal (x2
, xy, y

2) ✓ K[x, y] is a primary ideal, which is not irreducible.

Solution. We first show that (x2
, xy, y

2) is primary. This simply follows from the fact that (x, y) is maximal

ideal and from the fact that (x2
, xy, y

2) = (x, y)2 (see after Lemma 6.4).

Now note that (x2
, xy, y

2) = (x2
, y) \ (x, y2). Indeed, we clearly have (x2

, xy, y
2) ✓ (x2

, y) \ (x, y2). On

the other hand, if P (x, y) 2 (x2
, y) then P (x, y) has the form P1(x, y)x2 + P2(x, y)y. Since P1(x, y)x2 is
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already in (x2
, xy, y

2), we thus only have to show that a polynomial of the form P2(x, y)y, which lies in

(x, y2), necessarily lies in (x2
, xy, y

2). A polynomial in (x, y2) is of the form Q1(x, y)y2 +Q2(x, y)x. Now if

we have P2(x, y)y = Q1(x, y)y2+Q2(x, y)x then Q2(x, y) is divisible by y and hence Q2(x, y)x = Q
0
2(x, y)xy

for some polynomial Q0
2(x, y) so that P2(x, y)y 2 (y2, xy) ✓ (x2

, xy, y
2), as required.

Q3. Let R be a noetherian ring and let T be a finitely generated R-algebra. Let G be a finite subgroup of

the group of automorphisms of T as a R-algebra. Let T
G be the fixed point set of G (ie the subset of T ,

which is fixed by all the elements of G).

- Show that T is integral over TG.

- Show that TG is a subring of T , which contains the image of R and that TG is finitely generated over R.

Solution. It is clear from the definitions that TG is a subring which contains the image of R. Let t 2 T .

Then t satisfies the polynomial equation Y

g2G

(t� g(t)) = 0

The polynomial Mt(x) :=
Q

g2G
(x � g(t)) has coe�cients in T

G, because the coe�cients are symmetric

functions in the g(t), which are invariant under G. Hence t is integral over T
G. Since t was arbitrary, T

is integral over TG. Since T is also finitely generated as a T
G-algebra (because it is finitely generated as a

R-algebra), we thus see that T is finite over TG (see after Lemma 6.6). Hence T
G is finitely generated over

R by the Theorem of Artin-Tate.

Q4. Show that Z is integrally closed and that the integral closure of Z in Q(i) is Z[i].

Solution. We first prove that Z is integrally closed. Let p/q 2 Q, where p and q are coprime integers, and

let P (x) = x
n + an�1x

n�1 + · · · + a0 2 Z[x] be a monic polynomial. Suppose that P (p/q) = 0. Then we

have

q
n
P (p/q) = p

n + an�1p
n�1

q + an�2p
n�2

q
2 + · · ·+ a0q

n = 0.

Since an�1p
n�1

q+an�2p
n�2

q
2+ · · ·+a0q

n is divisible by q and p
n is coprime to q, this implies that q = ±1,

so p/q 2 Z.

To prove that the integral closure of Z in Q(i) is Z[i], note first that Z[i] is part of the integral closure of

Z in Q(i). Indeed we have (a + ib)2 � 2a(a + ib) + a
2 + b

2 = 0 for any a, b 2 Z. So we only have to prove

that Z[i] is integrally closed in Q(i) (see Lemma 8.6). Note furthermore that Q(i) is the fraction field of

Z[i]. To see this, write let r + it 2 Q(i), where r, t 2 Q (any element of Q(i) can be written in this form

because Q(i) ' Q[x]/(x2 +1)). Let r = p/q and t = u/v. We then have r+ it = (vp+ uqi)/(vq), which is a

fraction of elements of Z[i], proving our claim. Finally, recall that we know from Rings and Modules that

Z[i] is a Euclidean domain, where the Euclidean function is given by the norm (the norm of c+ id is c2 + d
2

if c + id 2 Z[i]). In particular, Z[i] is a PID and every ideal in Z[i] is generated by an element of smallest

norm.

To prove that Z[i] is integrally closed in Q(i), we may now proceed as for Z. Let

P (x) = x
n + an�1x

n�1 + · · ·+ a0 2 Z[i](x)

and let r + it = B/A, where A,B 2 Z[i]. Since Z[i] is a PID, it is factorial and we may thus assume that

(A,B) = Z[i]. We can now write as before

A
n
P (B/A) = B

n + an�1B
n�1

A+ an�2B
n�2

A
2 + · · ·+ a0A

n = 0.

60



Since an�1B
n�1

A+ an�2B
n�2

A
2 + · · ·+ a0A

n is divisible by A and B
n is coprime to A, this implies that

A is a unit, so B/A 2 Z[i].

Note that the proof above actually shows that any UFD (Unique Factorisation Domain) is integrally closed.

Q5. Let S be a ring and let R ✓ S be a subring of S. Suppose that R is integrally closed in S. Let P (x) 2
R[x] and suppose that P (x) = Q(x)J(x), where Q(x), J(x) 2 S[x] and Q(x) and J(x) are monic. Show

that Q(x), J(x) 2 R[x]. Use this to give a new proof of the fact that if T (x) 2 Z[x] and T (x) = T1(x)T2(x),

where T1(x), T2(x) 2 Q[x] are monic polynomials, then T1(x), T2(x) 2 Z[x].

Solution. We first prove the

Lemma. Let A be a ring and let U(x) 2 A[x] be a non zero monic polynomial. Then there exists a ring B

containing A, which is integral over A and such that

U(x) =

deg(U)Y

i=1

(x� bi)

for some bi 2 B, where we set
Qdeg(U)

i=1 (x� bi) = 1 if deg(U) = 0.

Proof of the lemma. By induction on the degree d = deg(U) of U(x). If d = 0, 1, there is nothing to

prove. So suppose that d > 1 and that the result holds for any smaller value of d. The ring C := A[y]/(P (y))

is integral over A by Proposition 8.2. The element y of C satisfies the equation P (y) = 0 by construction.

By Euclidean division (see Preamble), we thus have P (x) = (x� y)Z(x) for some Z(x) 2 C[x]. Since Z(x)

has degree < d, we may apply the inductive hypothesis and we obtain a ring B, which contains C and where

Z(x) splits. The polynomial P (x) also splits in B, so we are done.

We now apply the lemma to Q(x) and J(x) successively and we obtain a ring B, which contains S, such

that B is integral over S and such that

Q(x) =

deg(Q)Y

i=1

(x� bi)

and

J(x) =

deg(J)Y

i=1

(x� ci)

where bi, ci 2 B. Now we have P (bi) = P (ci) = 0 by construction, so the bi and ci are actually integral

over R. Since the integral closure of R in B is a subring, we conclude that the coe�cients of Q(x) and J(x)

are integral over R (and in S, by assumption). But since R is integrally closed in S, this means that these

coe�cients lie in R.

Note that we did not actually use the fact that B was integral over S in the proof.

Q6. Let R be a subring of a ring T and suppose that T is integral over R. Let p be prime ideal of R and

let q be a prime ideal of T . Suppose that q \ R = p. Let p1 ✓ p2 ✓ · · · ✓ pk be primes ideal of R and

suppose that p1 = p. Show that there are prime ideals q1 ✓ q2 ✓ · · · ✓ qk of T such that qi \R = pi for all

i 2 {1, . . . , k}.

Solution. By induction on k, we only need to treat the case k = 2. Consider the extension of rings

R/p ✓ T/q. This is also an integral extension. Furthermore, there is a unique prime ideal p02 in R/p, which

corresponds to p2 via the quotient map. By Theorem 8.8, there is a prime ideal q02 in T/q, which is such that

q02 \R/p = p02. The prime ideal q2 corresponding to q02 via the quotient map has the required properties.
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Q7. Let R be a ring. Let S be the set of ideals in R, which are not finitely generated.

(i) Let I be maximal element of S (with respect to the relation of inclusion). Show that I is prime.

(ii) Suppose that all the prime ideals of R are finitely generated. Prove that R is noetherian.

[Hint: exploit the fact that R/I is noetherian.]

Solution.

(i): Let x, y 62 I and suppose for contradiction that x, y 2 I. Let Ix := (x) + I and Iy = (y) + I. Write

J := Ix · Iy. By assumption Ix, Iy and hence J are finitely generated, and we have J ✓ I. Consider the

image I (mod J) of I in the R/Iy-module Ix/J . Note that Ix/J is finitely generated as a R/Iy-module since

Ix is finitely generated as a R-module. Note also that the ring R/Iy is noetherian, since every ideal of R/Iy

is the image of either the zero ideal or of an ideal of R strictly containing I. Hence I (mod J) is also finitely

generated as a R/Iy-module by Lemma 7.4. Let m1, . . . ,mk be preimages in I of a finite set of generators

of I (mod J) as a R/Iy-module and let y1, . . . , yl be generators of J . Then m1, . . . ,mk, y1, . . . , yl is a finite

set of generators of I, which is a contradiction.

(ii): If T is a totally ordered subset of S then the ideal J := [H2SH also lies in S (because if J were

finitely generated then a finite set of generators of J would lie in one of the ideals in T , and thus generate

it, which is a contradiction). The ideal J is an upper bound for T and thus we may apply Zorn’s lemma

to conclude that there are maximal elements in S, if S is not empty. By definition, S is empty i↵ R is

noetherian. Hence, by (i), if R is not noetherian, there is a prime ideal, which is not finitely generated. The

contraposition of this implication gives (i).

Q8. (optional). Let R be a ring. Let S be the set of non-principal ideals in R. Let I be a maximal element

of S. Prove that I is a prime ideal.

Solution.

Let x, y 62 I and suppose for contradiction that xy 2 I. Let Ix := (x)+I. By assumption, we have Ix = (gx)

for some gx 2 R. Let � : R ! Ix be the surjection of R-modules given by the formula �(r) = rgx. We then

have I ✓ �
�1(I).

Suppose first that I = �
�1(I). In other words, for all r 2 R, we have rgx 2 I i↵ r 2 I. This contradicts the

fact that ygx 2 I. So we conclude that I ( �
�1(I). From the definition of I, we then see that ��1(I) is a

principal ideal of R, and hence so is I = �(��1(I)). This is a contradiction, so we cannot have xy 2 I if

x, y 62 I. In other words, I is prime.
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