Exercise sheet 3. Prerequisites: sections 1-10. Week 8

Q1. Let R be a subring of a ring T. Suppose that T is integral over R. Let \mathfrak{p} be a prime ideal of R and let $\mathfrak{q}_{1}, \mathfrak{q}_{2}$ be prime ideals of T such that $\mathfrak{q}_{1} \cap R=\mathfrak{q}_{2} \cap R=\mathfrak{p}$ and $\mathfrak{q}_{1} \neq \mathfrak{q}_{2}$. Show that we have $\mathfrak{q}_{1} \nsubseteq \mathfrak{q}_{2}$ and $\mathfrak{q}_{2} \nsubseteq \mathfrak{q}_{1}$.

Solution. By symmetry, we only have to show that $\mathfrak{q}_{1} \nsubseteq \mathfrak{q}_{2}$. Suppose for contradiction that $\mathfrak{q}_{1} \subseteq \mathfrak{q}_{2}$. The $\operatorname{ring} R / \mathfrak{p}$ is can be viewed as a subring of T / \mathfrak{q}_{1} and by assumption we have $\mathfrak{q}_{2}\left(\bmod \mathfrak{q}_{1}\right) \cap R / \mathfrak{p}=(0)$. We may thus assume wrog that R and T to be domains and that \mathfrak{q}_{1} and \mathfrak{p} are zero ideals. Now let $e \in \mathfrak{q}_{2} \backslash\{0\}$ and let $P(x) \in R[x]$ be a non zero monic polynomial such that $P(e)=0$. Since T is a domain, we may assume that the constant coefficient of $P(x)$ is non zero (otherwise replace $P(x)$ by $P(x) / x^{k}$ for a suitable $k \geq 1$). But then $P(0)$ is a linear combination of positive powers of e (since $P(e)=0$), so $P(0) \in R \cap \mathfrak{q}_{2}=(0)$. This is a contradiction, since $P(0) \neq 0$.

Q2. Let R be a ring. Show that the two following conditions are equivalent:
(i) R is a Jacobson ring.
(ii) If $\mathfrak{p} \in \operatorname{Spec}(R)$ and R / \mathfrak{p} contains an element b such that $(R / \mathfrak{p})\left[b^{-1}\right]$ is a field, then R / \mathfrak{p} is a field.

Here we write $(R / \mathfrak{p})\left[b^{-1}\right]$ for the localisation of R / \mathfrak{p} at the multiplicative subset $1, b, b^{2}, \ldots$.
Solution.
(i) \Rightarrow (ii) : If R is a Jacobson, then so is R / \mathfrak{p} for any $\mathfrak{p} \in \operatorname{Spec}(R)$. Hence (ii) follows from Lemma 10.2.
(ii) \Rightarrow (i) : Note first that R is a Jacobson ring iff any prime ideal of R is the intersection of the maximal ideals containing it (this is straightforward). Now suppose that R is not Jacobson. Then there is a prime ideal \mathfrak{p} of R and an element $e \notin \mathfrak{p}$ such that e is in the Jacobson radical of \mathfrak{p}. In other words, $e(\bmod \mathfrak{p}) \neq 0$ and $e(\bmod \mathfrak{p})$ lies in the Jacobson radical of R / \mathfrak{p}. Now let \mathfrak{q} be an ideal maximal among the prime ideals of R / \mathfrak{p}, which do not contain $e(\bmod \mathfrak{p})$. The ideal \mathfrak{q} is prime, because it corresponds to a maximal ideal of $(R / \mathfrak{p})\left[(e(\bmod \mathfrak{p}))^{-1}\right]$ by Lemma 5.6 , and it is not maximal, since $e(\bmod \mathfrak{p})$ lies in the intersection of all the maximal ideals of R / \mathfrak{p}. The ring $(R / \mathfrak{p}) / \mathfrak{q}$ has by construction the property that any of its non zero prime ideals contains $(e(\bmod \mathfrak{p}))(\bmod \mathfrak{q})$. In particular, the $\operatorname{ring}((R / \mathfrak{p}) / \mathfrak{q})\left[((e(\bmod \mathfrak{p}))(\bmod \mathfrak{q}))^{-1}\right]$ is a field, because it is a domain and its only prime ideal is the zero ideal. On other hand, $((R / \mathfrak{p}) / \mathfrak{q})$ is a not field, since \mathfrak{q} is not maximal. Now if we let $q: R \rightarrow R / \mathfrak{p}$ be the quotient map, we have $((R / \mathfrak{p}) / \mathfrak{q}) \simeq R / q^{-1}(\mathfrak{q})$ and thus this contradicts (ii). We have thus proven the contraposition of the implication (ii) \Rightarrow (i).

Q3. Let k be field and let R be a finitely generated algebra over k. Show that the two following conditions are equivalent:
(i) $\operatorname{Spec}(R)$ is finite.
(ii) R is finite over k.

Solution. (i) \Rightarrow (ii) : Suppose that $\operatorname{Spec}(R)$ is finite. By Noether's normalisation lemma, there is an injection $k\left[x_{1}, \ldots, x_{d}\right] \rightarrow R$, which makes R into a finite $k\left[x_{1}, \ldots, x_{d}\right]$-algebra. Since the corresponding map of $\operatorname{spectra} \operatorname{Spec}(R) \rightarrow \operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{d}\right]\right)$ is surjective by Theorem 8.8 , this implies that $\operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{d}\right]\right)$ is finite. In particular, $k\left[x_{1}, \ldots, x_{d}\right]$ has only finitely many maximal ideals, say $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{t}$. Since $k\left[x_{1}, \ldots, x_{d}\right]$ is a Jacobson ring by Theorem 10.5, we have $\cap_{i} \mathfrak{m}_{i}=\mathfrak{r}((0))=0$ and so we may deduce from the Chinese remainder theorem that $k\left[x_{1}, \ldots, x_{d}\right] \simeq \oplus_{i} R / \mathfrak{m}_{i}$. Since $k\left[x_{1}, \ldots, x_{d}\right]$ is a domain, this implies that $t=1$. In particular, $k\left[x_{1}, \ldots, x_{d}\right]$ is field, which is only possible if $d=0$ (otherwise, x_{1} is a non unit). Hence R is
finite over k.
(ii) \Rightarrow (i) : This follows from Proposition 8.12.

Q4. Let k be an algebraically closed field. Let $P_{1}, \ldots, P_{d} \in k\left[x_{1}, \ldots, x_{d}\right]$. Suppose that the set

$$
\left\{\left(y_{1}, \ldots, y_{d}\right) \in k^{d} \mid P_{i}\left(y_{1}, \ldots, y_{d}\right)=0 \forall i \in\{1, \ldots, d\}\right\}
$$

is finite. Show that

$$
\operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{d}\right] /\left(P_{1}, \ldots, P_{d}\right)\right)
$$

is finite.
Solution. From Corollary 9.5 and Corollary 9.3, we deduce that $\mathfrak{r}\left(\left(\left(P_{1}, \ldots, P_{d}\right)\right)\right.$ is the intersection of finitely many maximal ideals of $k\left[x_{1}, \ldots, x_{d}\right]$, say $\mathfrak{m}_{1}, \ldots \mathfrak{m}_{t}$. From the Chinese remainder theorem, we deduce that

$$
k\left[x_{1}, \ldots, x_{d}\right] / \mathfrak{r}\left(\left(P_{1}, \ldots, P_{d}\right)\right) \simeq \prod_{i} k\left[x_{1}, \ldots, x_{d}\right] / \mathfrak{m}_{i} \simeq \prod_{i} k
$$

In particular, $\operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{d}\right] / \mathfrak{r}\left(\left(P_{1}, \ldots, P_{d}\right)\right)\right)$ is finite. Now we have

$$
\operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{d}\right] / \mathfrak{r}\left(\left(P_{1}, \ldots, P_{d}\right)\right)\right) \simeq \operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{d}\right] /\left(P_{1}, \ldots, P_{d}\right)\right)
$$

(see the remark after Lemma 4.4) so the conclusion follows.
Q5. Let R be a ring and let R_{0} be the prime ring of R (see the preamble of the notes for the definition). Suppose that R is a finitely generated R_{0}-algebra. Suppose also that R is a field. Prove that R is a finite field.

Solution. Since R_{0} is contained in a field, it is a domain and so R_{0} is either a finite field or it is isomorphic to \mathbb{Z}. Suppose first that R_{0} is a finite field. Then R is a finite field extension of a finite field by the weak Nullstellensatz and hence R is a finite field. Now suppose that $R \simeq \mathbb{Z}$. Then R contains the fraction field \mathbb{Q} of \mathbb{Z} and R is a finitely generated \mathbb{Q}-algebra, which is a field. By the weak Nullstellensatz again, we conclude that R is a finite field extension of \mathbb{Q}. From Corollary 10.3, we deduce that $\mathbb{Z} \simeq \mathbb{Q}$ (note that \mathbb{Z} is a Jacobson ring), which is a contradiction. So R_{0} must be finite field and so R is a finite field.

Q6. Let k be a field and let \mathfrak{m} be a maximal ideal of $k\left[x_{1}, \ldots, x_{d}\right]$. Show that there are polynomials $P_{1}\left(x_{1}\right), P_{2}\left(x_{1}, x_{2}\right), P_{3}\left(x_{1}, x_{2}, x_{3}\right), \ldots, P_{d}\left(x_{1}, \ldots, x_{d}\right)$ such that $\mathfrak{m}=\left(P_{1}, \ldots, P_{d}\right)$.
Solution. By induction on $d \geq 1$. If $d=1$ then this follows from the fact that $k\left[x_{1}\right]$ is a PID. We suppose that the statement holds for $d-1$. Let $K=k\left[x_{1}, \ldots, x_{d}\right] / \mathfrak{m}$. By the weak Nullstellensatz, this is a finite field extension of k. Let $\phi: k\left[x_{1}, \ldots, x_{d}\right] \rightarrow K$ be the natural surjective homomorphism of k-algebras. Let $L=\phi\left(k\left[x_{1}, \ldots, x_{d-1}\right]\right)$. This is a domain and by Lemma 8.9, L is a field, since it contains k and is contained inside an integral extension of k. Let $\psi: k\left[x_{1}, \ldots, x_{d-1}\right] \rightarrow L$ be the surjective homomorphism of k-algebras arising by restricting ϕ. The map ψ induces a surjective homomorphism of k-algebras

$$
\Psi: k\left[x_{1}, \ldots, x_{d}\right] \simeq\left(k\left[x_{1}, \ldots, x_{d-1}\right]\right)\left[x_{d}\right] \rightarrow L\left[x_{d}\right]
$$

and there is a surjective homomorphism of L-algebras

$$
\Lambda: L\left[x_{d}\right] \rightarrow K
$$

which sends x_{d} to $\phi\left(x_{d}\right)$. By construction, we have $\phi=\Lambda \circ \Psi$. In particular, we have $\mathfrak{m}:=\Psi^{-1}\left(\Lambda^{-1}(0)\right)$. Since $L\left[x_{d}\right]$ is a PID and $\phi\left(x_{d}\right)$ is algebraic over k, we have $\Lambda^{-1}(0)=\left(P\left(x_{d}\right)\right)$ for some non zero polynomial $P\left(x_{d}\right) \in L\left[x_{d}\right]$. Now let $P_{d}\left(x_{1}, \ldots, x_{d}\right) \in\left(k\left[x_{1}, \ldots, x_{d-1}\right]\right)\left[x_{d}\right]$ be a preimage by Ψ of $P\left(x_{d}\right)$.

We claim that $\mathfrak{m}=\left(\operatorname{ker}(\Psi), P_{d}\right)$. To see this, note that $\Psi\left(\left(\operatorname{ker}(\Psi), P_{d}\right)\right)=\left(P\left(x_{d}\right)\right)$ and so we have $\left(\operatorname{ker}(\Psi), P_{d}\right) \subseteq \mathfrak{m}$. On the other hand, if $e \in \mathfrak{m}$ then $\Psi(e) \in\left(P\left(x_{d}\right)\right)$ and thus there is an element $e^{\prime} \in\left(P_{d}\right)$ such that $\Psi(e)=\Psi\left(e^{\prime}\right)$ (since Ψ is surjective). In particular, we have $e-e^{\prime} \in \operatorname{ker}(\Psi)$, so that $e \in\left(\operatorname{ker}(\Psi), P_{d}\right)$. Now by the inductive assumption, $\operatorname{ker}(\Psi)$ is generated by polynomials

$$
P_{1}\left(x_{1}\right), P_{2}\left(x_{1}, x_{2}\right), P_{3}\left(x_{1}, x_{2}, x_{3}\right), \ldots, P_{d-1}\left(x_{1}, \ldots, x_{d-1}\right)
$$

and so \mathfrak{m} is generated by $P_{1}\left(x_{1}\right), P_{2}\left(x_{1}, x_{2}\right), P_{3}\left(x_{1}, x_{2}, x_{3}\right), \ldots, P_{d}\left(x_{1}, \ldots, x_{d}\right)$.
Q7. Let R be a domain. Show $R[x]$ is integrally closed if R is integrally closed.
Here are some hints for this exercise. Let K be the fraction field of R.
(i) Show first that it suffices to show that $R[x]$ is integrally closed in $K[x]$ (ie that the integral closure of $R[x]$ in $K[x]$ is $R[x])$.
(ii) Consider $Q(x) \in K[x]$ and suppose that $Q(x)$ is integral over $R[x]$. Show that $Q(x)+x^{t}$ satisfies an integral equation with coefficients in $R[x]$, whose constant coefficient is a monic polynomial, if t is sufficiently large.
(iii) Conclude.

Solution.

Suppose that R is integrally closed in its fraction field K. The fraction field of $R[x]$ is $K(x)=\operatorname{Frac}(K[x])$. Let $Q(x) \in K(x)$ and suppose that $Q(x)$ is integral over $R[x]$. Then $Q(x)$ is in particular integral over $K[x]$ and we saw that in the solution of Q4 that $K[x]$ is integrally closed, since it is a PID. So we deduce that $Q(x) \in K[x]$.

Now let

$$
Q^{n}+P_{n-1} Q^{n-1}+\cdots+P_{0}=0
$$

be a non trivial integral equation for Q over $R[x]$ (so that $P_{i} \in R[x]$ and $n \geq 1$). Let t be a natural number, which is strictly larger than the degrees of all the P_{i} and of Q. Let $T=Q-x^{t}$. The polynomial T is monic by construction and we have

$$
\left(T+x^{t}\right)^{n}+P_{n-1}\left(T+x^{t}\right)^{n-1}+\cdots+P_{0}=0
$$

so that T satisfies an integral equation of the type

$$
T^{n}+H_{n-1} T^{n-1}+\cdots+H_{0}=0
$$

where

$$
H_{0}=P_{0}+x^{t} P_{1}+x^{2 t} P_{2}+\cdots+x^{t n}
$$

Now note that H_{0} is a monic polynomial, because $t n>t i+\operatorname{deg}\left(P_{i}\right)$ for all $i \in\{0, \ldots, n-1\}$. Finally, note that in view of the penultimate equation, we have

$$
T\left(T^{n-1}+H_{n-1} T^{n-2}+\cdots+H_{1}\right)=-H_{0}
$$

and by Q5 of sheet 2 , we have $T \in R[x]$ (because $H_{0} \in R[x]$ and H_{0} and T are monic). Since $x^{t} \in R[x]$ we see that we also have $Q \in R[x]$, which is what was to be proven.

