Exercise sheet 4. Prerequisites: all lectures. W1 of Trinity Term

Q1. Let R be a noetherian domain. Let \mathfrak{m} be a maximal ideal in R. Let $r \in R \backslash\{0\}$ and suppose that (r) is a \mathfrak{m}-primary ideal. Show that $\operatorname{ht}((r))=1$.

Solution. By assumption, the nilradical of (r) is \mathfrak{m}. Since the nilradical is the intersection of all the prime ideals containing (r), we see that every prime ideal containing (r) also contains \mathfrak{m}. On the other hand, a prime ideal containing \mathfrak{m} must be equal to \mathfrak{m}. We conclude that \mathfrak{m} is the only prime ideal containing (r). In particular, \mathfrak{m} is minimal among the prime ideals containing (r) and thus $h t((r))=h t(\mathfrak{m}) \leq 1$ by Krull's principal ideal theorem. On the other hand, $\operatorname{ht}(\mathfrak{m})=1$, since we have the chain $\mathfrak{m} \supsetneq(0)$ (note that R is a domain).
Q2. Let A, B be integral domains and suppose that $A \subseteq B$. Suppose that A is integrally closed and that B is integral over A. Let

$$
\mathfrak{p}_{0} \supsetneq \mathfrak{p}_{1} \supsetneq \cdots \supsetneq \mathfrak{p}_{n}
$$

be a descending chain of prime ideals in A. Let $k \in\{0, \ldots, n-1\}$ and let

$$
\mathfrak{q}_{0} \supsetneq \mathfrak{q}_{1} \supsetneq \cdots \supsetneq \mathfrak{q}_{k}
$$

be a descending chain of prime ideals in B, such that $\mathfrak{q}_{i} \cap A=\mathfrak{p}_{i}$ for all $i \in\{0, \ldots, k\}$. Then there is a descending chain of prime ideals

$$
\mathfrak{q}_{k} \supsetneq \mathfrak{q}_{k+1} \supsetneq \cdots \supsetneq \mathfrak{q}_{n}
$$

such that $\mathfrak{q}_{i} \cap A=\mathfrak{p}_{i}$ for all $i \in\{k+1, \ldots, n\}$. This is the "going-down theorem". See AT, Th. 5.16, p. 64. Let L (resp. K) be the fraction field of B (resp. A). Prove the going-down theorem when L is a (finite) Galois extension of K.

Solution. One immediately reduces the question to $n=1$ and $k=0$. Let \bar{A} be the integral closure of A in L. Note that by assumption we have $B \subseteq \bar{A}$ and that \bar{A} is integral over B (since it is integral over A). Let $\mathfrak{q}_{0}^{\prime}$ be a prime ideal of \bar{A} such that $\mathfrak{q}_{0}^{\prime} \cap B=\mathfrak{q}_{0}$ (this exists by the (part of the) going-up theorem). Let \mathfrak{a} be a prime ideal of \bar{A} such that $\mathfrak{a} \cap A=\mathfrak{p}_{1}$ (again this exists by the going-up theorem). According to Q6 of sheet 2 , there is a prime ideal \mathfrak{b} in \bar{A} such that $\mathfrak{b} \supsetneq \mathfrak{a}$ and such that $\mathfrak{b} \cap A=\mathfrak{p}_{0}$. According to Proposition 12.10, there is an element $\sigma \in \operatorname{Gal}(L \mid K)$ such that $\sigma(\mathfrak{b})=\mathfrak{q}_{0}^{\prime}$. We have $\sigma(\mathfrak{a}) \cap A=\mathfrak{p}_{1}$ and $\sigma(\mathfrak{a}) \subsetneq \sigma(\mathfrak{b})=\mathfrak{q}_{0}^{\prime}$. Hence $\sigma(\mathfrak{a}) \cap B \subseteq \mathfrak{q}_{0}^{\prime} \cap B=\mathfrak{q}_{0}$ and $(\sigma(\mathfrak{a}) \cap B) \cap A=\sigma(\mathfrak{a}) \cap A=\mathfrak{p}_{1}$. Furthermore, we have $\sigma(\mathfrak{a}) \cap B \subsetneq \mathfrak{q}_{0}$ because $\sigma(\mathfrak{a}) \cap A=\mathfrak{p}_{1} \subsetneq \mathfrak{q}_{0} \cap A=\mathfrak{p}_{0}$. So we may set $\mathfrak{q}_{1}:=\sigma(\mathfrak{a}) \cap B$.
Q3. Let R be an integrally closed domain. Let $K:=\operatorname{Frac}(R)$. Let $L \mid K$ be an algebraic field extension. Show that an element $e \in L$ is integral over R iff the minimal polynomial of e over K has coefficients in R.
Solution. Let $P(x) \in K[x]$ be the minimal polynomial of e. If $P(x) \in R[x]$ then e is integral over R by the definition of integrality. On other hand, suppose that e is integral over R and let $Q(x) \in R[x]$ be a monic polynomial such that $Q(e)=0$. Then $P(x)$ divides $Q(x)$ by the definition of the minimal polynomial and $P(x) \in R[x]$ by Q 5 of sheet 2 .

Q4. Let R be a PID. Suppose that $2=1+1$ is a unit in R. Let $c_{1}, \ldots, c_{t} \in R$ be distinct irreducible elements and let $c:=c_{1} \cdots c_{t}$. Show that the ring $R[x] /\left(x^{2}-c\right)$ is a Dedekind domain. Use this to show that $\mathbb{R}[x, y] /\left(x^{2}+y^{2}-1\right)$ is a Dedekind domain.
Solution. Let $K:=\operatorname{Frac}(R)$. Notice first that c is not a square in K.
Indeed, suppose for contradiction that there is an element $e \in K$ such that $e^{2}=c$. Write $e=f / g$, with
$f, g \in R$ and f and g coprime. We then have $f^{2} / g^{2}=c$ and hence $f^{2}=g^{2} c$. In particular, c_{1} divides f and thus c_{1}^{2} divides $g^{2} c$. Since $(f, g)=1$, we deduce that c_{1}^{2} divides c, which contradicts our assumptions.

We deduce that the polynomial $x^{2}-c$ is irreducible over K, since it has no roots in K. Let $L:=K[y] /\left(y^{2}-c\right)$. Note that L is a field, since $y^{2}-c$ is irreducible. Now let $\phi: R[x] \rightarrow L$ be the homomorphism of R-algebras, which sends x to $y\left(\bmod \left(y^{2}-c\right)\right)$. We have $\phi(Q(x))=Q(y)=0$ iff $x^{2}-c$ divides $Q(x)$ in $K[x]$. On the other hand, if $x^{2}-c$ divides $Q(x)$ in $K[x]$, then $x^{2}-c$ divides $Q(x)$ in $R[x]$ by the unicity statement in the Euclidean algorithm (see preamble). Hence $\operatorname{ker}(\phi)=\left(x^{2}-c\right)$. We thus see that $R[x] /\left(x^{2}-c\right)$ can be identified with the sub- R-algebra of L generated by y. Under this identification, the elements of $R[x] /\left(x^{2}-c\right)$ correspond to the elements of the form $\lambda+\mu y$, with $\lambda, \mu \in R$, whereas the elements of K can all be written as $\lambda+\mu y$, with $\lambda, \mu \in K$.

We claim that that L is the fraction field of $R[x] /\left(x^{2}-c\right)$. Note first that the fraction field of $R[x] /\left(x^{2}-c\right)$ naturally embeds in L, since L is field containing $R[x] /\left(x^{2}-c\right)$. To prove the claim, we only have to show that every element of L can be written as a fraction in L of elements of $R[x] /\left(x^{2}-c\right)$. This simply follows from the fact that if $f, g, h, j \in R$ and $f / g+(h / j) y \in L$, then

$$
f / g+(h / j) y=\frac{f j+h g y}{g j}
$$

Now to prove that $R[x] /\left(x^{2}-c\right)$ is a Dedekind domain, we have to show that it is noetherian, that is has dimension 1 and that it is integrally closed. The ring $R[x] /\left(x^{2}-c\right)$ is clearly noetherian (by the Hilbert basis theorem and Lemma 7.2). Also, the ring $R[x] /\left(x^{2}-c\right)$ is integral over R by construction and R has dimension one by Lemma 11.19. We deduce from Lemma 11.29 that $R[x] /\left(x^{2}-c\right)$ also has dimension 1 . To show that $R[x] /\left(x^{2}-c\right)$ is integrally closed, we have to show that the integral closure of $R[x] /\left(x^{2}-c\right)$ in L is $R[x] /\left(x^{2}-c\right)$. The integral closure of $R[x] /\left(x^{2}-c\right)$ in L is also the integral closure of R in L by Lemma 8.6 (since $R[x] /\left(x^{2}-c\right)$ consists of elements, which are integral over R). Furthermore, by Q3 an element $\lambda+\mu y \in L$ is integral iff its minimal polynomial $P(t) \in K[t]$ has coefficients in R. Thus we have to show that if $\lambda+\mu y \in L$ has a minimal polynomial $P(t) \in R[t]$ then $\lambda, \mu \in R$. We prove this statement.

If $\mu=0$ then $\lambda+\mu y \in R$ and thus the minimal polynomial of $\lambda+\mu y$ is $t-\lambda$. So the statement certainly holds in this situation.

If $\mu \neq 0$, we note that the polynomial

$$
(t-(\lambda+\mu y))(t-(\lambda-\mu y))=t^{2}-2 \lambda+\lambda^{2}-\mu^{2} y^{2}=t^{2}-2 \lambda+\lambda^{2}-c \mu^{2}
$$

annihilates $\lambda+\mu y$ and has coefficients in K. It must thus coincide with the minimal polynomial $P(t)$ of $\lambda+\mu y$, since we know that $\operatorname{deg}(P(t))>1$.

Thus we have to show that if $-2 \lambda \in R$ and $\lambda^{2}-c \mu^{2} \in R$, then $\lambda, \mu \in R$. So suppose that $-2 \lambda \in R$ and $\lambda^{2}-c \mu^{2} \in R$. We have $\lambda \in R$, since -2 is a unit in R by assumption. Hence $c \mu^{2} \in R$. We claim that $\mu \in R$. Indeed, let $\mu=f / g$, where $f, g \in R$ and f and g are coprime. Then $c f^{2}=g^{2} r$ for some $r \in R$. Let $i \in\{1, \ldots, t\}$ and suppose first that c_{i} divides g. Then c_{i}^{2} divides $r g^{2}$ and since c_{i} appears with multiplicity one in c by assumption, we thus see that c_{i} divides f, which is a contradiction (because $(f, g)=1$). Hence c_{i} does not divide g and thus c_{i} divides r. Since all the c_{i} are distinct, we thus see that c divides r and thus $(f / g)^{2}=r / c=: d \in R$. Hence $f^{2}=g^{2} d$. Since f and g are coprime, we see that f^{2} divides d and hence $d / f^{2} \in R$. Since $g^{2}\left(d / f^{2}\right)=1$, we conclude that g is a unit and hence $\mu=f / g \in R$.
To see that $\mathbb{R}[x, y] /\left(x^{2}+y^{2}-1\right)$ is a Dedekind domain, note that $\mathbb{R}[x, y] /\left(x^{2}+y^{2}-1\right) \simeq(\mathbb{R}[x])[y] /\left(y^{2}-\left(1-x^{2}\right)\right)$ and apply the first statement of the question with $R=\mathbb{R}[x]$ and $c=1-x^{2}=(1-x)(1+x)$.

Q5. Let R be a PID. Suppose that $2=1+1$ is invertible in R. Let $c_{1}, c_{2} \in R$ be two distinct irreducible elements and let $c:=c_{1} \cdot c_{2}$. Show that the decomposition of the ideal (c) in $R[x] /\left(x^{2}-c\right)$ into a product of prime ideals is $(c)=\left(x, c_{1}\right)^{2} \cdot\left(x, c_{2}\right)^{2}$ (noting that $R[x] /\left(x^{2}-c\right)$ is a Dedekind domain by Q4).

Solution. Note first that $\left(x, c_{i}\right)(i=1,2)$ is indeed a prime ideal of $R[x] /\left(x^{2}-c\right)$, because

$$
\left(R[x] /\left(x^{2}-c\right)\right) /\left(x, c_{i}\right)=R[x] /\left(x^{2}-c, x, c_{i}\right)=R /\left(-c, c_{i}\right)=R /\left(c_{i}\right)
$$

which is a domain, since c_{i} is irreducible.
We only have to show that $\left(c_{i}\right)=\left(x, c_{i}\right)^{2}$.
We first show that $\left(c_{i}\right) \subseteq\left(x, c_{i}\right)^{2}$. For this, note that $c_{i}^{2} \in\left(x, c_{i}\right)^{2}$ by definition and

$$
\left(x-c_{i}\right)\left(x+c_{i}\right)=x^{2}-c_{i}^{2}=c-c_{i}^{2}=c_{i}\left(c_{j}-c_{i}\right) \in\left(x, c_{i}\right)^{2}
$$

where $j=1$ if $i=2$ and $j=2$ if $i=1$. But $\operatorname{gcd}_{R}\left(c_{i}^{2}, c_{i}\left(c_{j}-c_{i}\right)\right)=c_{i}$ (because $c_{j}-c_{i}$ is coprime to c_{i} in R, since c_{j} is irreducible and distinct from c_{i}), and in particular $c_{i} \in\left(x, c_{i}\right)^{2}$, so that $\left(c_{i}\right) \subseteq\left(x, c_{i}\right)^{2}$.

To show that $\left(c_{i}\right) \supseteq\left(x, c_{i}\right)^{2}$, we only have to show that $\left(x, c_{i}\right)^{2}\left(\bmod \left(c_{i}\right)\right)=\left(\left(x, c_{i}\right)\left(\bmod \left(c_{i}\right)\right)\right)^{2}=0$ in $\left(R[x] /\left(x^{2}-c\right)\right) /\left(c_{i}\right)$. Now we have $\left(R[x] /\left(x^{2}-c\right)\right) /\left(c_{i}\right)=R[x] /\left(x^{2}-c, c_{i}\right)=\left(R /\left(c_{i}\right)\right)[x] / x^{2}$. The image $\left(x, c_{i}\right)\left(\bmod \left(c_{i}\right)\right)$ of $\left(x, c_{i}\right)$ in $\left(R /\left(c_{i}\right)\right)[x] / x^{2}$ is generated by x, so that $\left(\left(x, c_{i}\right)\left(\bmod \left(c_{i}\right)\right)\right)^{2}=0$.

Q6. Let R be a ring (not necessarily noetherian). Suppose that $\operatorname{dim}(R)<\infty$.
Show that $\operatorname{dim}(R[x]) \leq 1+2 \operatorname{dim}(R)$.
Solution. Let

$$
\mathfrak{q}_{0} \supsetneq \mathfrak{q}_{1} \supsetneq \mathfrak{q}_{2} \supsetneq \cdots \supsetneq \mathfrak{q}_{d}
$$

be a descending chain of prime ideals in $R[x]$, where $d \geq 0$. By restriction, we obtain a descending chain of prime ideals

$$
\mathfrak{q}_{0} \cap R \supseteq \mathfrak{q}_{1} \cap R \supseteq \mathfrak{q}_{2} \cap R \supseteq \cdots \supseteq \mathfrak{q}_{d} \cap R \quad(*)
$$

(possibly with repetitions) in R. For each $i \in\{0, \ldots, d\}$, let $\rho(i) \geq 0$ be the largest integer k such that $\mathfrak{q}_{i} \cap R=\mathfrak{q}_{i+1} \cap R=\cdots=\mathfrak{q}_{i+k} \cap R$. By Lemma 11.21 (and the remark before it) and Lemma 11.19 we have $\rho(i) \leq 1$ for all $i \in\{0, \ldots, d\}$. Now let

$$
\mathfrak{q}_{i_{0}} \cap R=\mathfrak{q}_{0} \cap R \supsetneq \mathfrak{q}_{i_{1}} \cap R \supsetneq \cdots \supsetneq \mathfrak{q}_{i_{\delta}} \cap R
$$

be an enumeration of all the prime ideals appearing in the chain (*), in decreasing order of inclusion. We have

$$
d+1=\left(1+\rho\left(i_{0}\right)\right)+\left(1+\rho\left(i_{1}\right)\right)+\cdots+\left(1+\rho\left(i_{\delta}\right)\right) \leq 2(\delta+1)
$$

so that $d \leq 2 \delta+1$. Now we have $\delta \leq \operatorname{dim}(R)$ and the required inequality follows.
Q7. Let R be a Dedekind domain. Let \mathfrak{a} be a non zero ideal in R. Show that every ideal in R / \mathfrak{a} is principal. Show that every ideal in a Dedekind domain can be generated by two elements.

Solution. We first prove the first statement. Since R is a Dedekind domain, we have a primary decomposition

$$
\mathfrak{a}=\bigcap_{i=1}^{k} \mathfrak{p}_{i}^{m_{i}}
$$

for some prime ideals \mathfrak{p}_{i}. Using Lemma 12.2 and the Chinese remainder theorem, we see that we have

$$
R / \mathfrak{a} \simeq \bigoplus_{i=1}^{k} R / \mathfrak{p}_{i}^{m_{i}}
$$

Now an ideal I of $\bigoplus_{i=1}^{k} R / \mathfrak{p}_{i}^{m_{i}}$ is of the form $\bigoplus_{i=1}^{k} I_{i}$, where I_{i} is an ideal of $R / \mathfrak{p}_{i}^{m_{i}}$. This follows from the fact that if $e \in I$ and $e=\oplus_{i=1}^{k} e_{i}$ then $e_{i}=e \cdot(0, \ldots, 1, \ldots, 0) \in I$, where 1 appears in the i-th place in the expression $(0, \ldots, 1, \ldots, 0)$. Hence, if we can find generators $g_{i} \in I_{i}$ for I_{i} in $R / \mathfrak{p}_{i}^{m_{i}}$, then $\left(g_{1}, \ldots, g_{k}\right)$ will be a generator of I. We proceed to show that any ideal in $R / \mathfrak{p}_{i}^{m_{i}}$ can be generated by one element. Consider the exact sequence

$$
0 \rightarrow \mathfrak{p}_{i}^{m_{i}} \rightarrow R \rightarrow R / \mathfrak{p}_{i}^{m_{i}} \rightarrow 0
$$

Localising this sequence at $R \backslash \mathfrak{p}_{i}$, we get the sequence of $R_{\mathfrak{p}}$-modules

$$
0 \rightarrow\left(\mathfrak{p}_{i}^{m_{i}}\right)_{\mathfrak{p}_{i}} \rightarrow R_{\mathfrak{p}_{i}} \rightarrow\left(R / \mathfrak{p}_{i}^{m_{i}}\right)_{\mathfrak{p}_{i}} \rightarrow 0
$$

Now the $R_{\mathfrak{p}}$-submodule $\left(\mathfrak{p}_{i}^{m_{i}}\right)_{\mathfrak{p}_{i}}$ of $R_{\mathfrak{p}}$ is the ideal generated by the image of $\mathfrak{p}_{i}^{m_{i}}$ in $R_{\mathfrak{p}}$ (see the beginning of the proof of Lemma 5.6). If we let \mathfrak{m} be the maximal ideal of $R_{\mathfrak{p}}$, this is also $\mathfrak{m}^{m_{i}}$. On the other hand, \mathfrak{p}_{i} is contained in the nilradical of $\mathfrak{p}_{i}^{m_{i}}$ and since \mathfrak{p}_{i} is maximal (by Lemma 12.1) it coincides with the radical of $\mathfrak{p}_{i}^{m_{i}}$. Hence $R / \mathfrak{p}_{i}^{m_{i}}$ has only one maximal ideal, namely $\mathfrak{p}_{i}\left(\bmod \mathfrak{p}_{i}^{m_{i}}\right)$. Since the image of $R \backslash \mathfrak{p}_{i}$ in $R / \mathfrak{p}_{i}^{m_{i}}$ lies outside $\mathfrak{p}_{i}\left(\bmod \mathfrak{p}_{i}^{m_{i}}\right)$, we see that this image consists of units. Hence $\left(R / \mathfrak{p}_{i}^{m_{i}}\right)_{\mathfrak{p}_{i}} \simeq R / \mathfrak{p}_{i}^{m_{i}}$. All in all, there is thus an isomorphism

$$
R_{\mathfrak{p}_{i}} / \mathfrak{m}^{m_{i}} \simeq R / \mathfrak{p}_{i}^{m_{i}}
$$

Now by Proposition 12.4, every ideal in $R_{\mathfrak{p}_{i}} / \mathfrak{m}^{m_{i}}$ is principal, and so we have proven the first statement.
For the second one, let $e \in \mathfrak{a}$ be any non-zero element. Then the ideal $\mathfrak{a}(\bmod (e)) \subseteq R /(e)$ is generated by one element, say g. Let $g^{\prime} \in R$ be a preimage of g. Then $\mathfrak{a}=\left(e, g^{\prime}\right)$.

Q8. (optional) Let A (resp. B) be a noetherian local ring with maximal ideal \mathfrak{m}_{A} (resp. \mathfrak{m}_{B}). Let $\phi: A \rightarrow B$ be a ring homomorphism and suppose that $\phi\left(\mathfrak{m}_{A}\right) \subseteq \mathfrak{m}_{B}$ (such a homomorphism is said to be 'local').
Suppose that
(1) B is finite over A via ϕ;
(2) the map $\mathfrak{m}_{A} \rightarrow \mathfrak{m}_{B} / \mathfrak{m}_{B}^{2}$ induced by ϕ is surjective;
(3) the map $A / \mathfrak{m}_{A} \rightarrow B / \mathfrak{m}_{B}$ induced by ϕ is bijective.

Prove that ϕ is surjective. [Hint: use Nakayama's lemma twice].
Solution. By Corollary 3.6, the image of of \mathfrak{m}_{A} in \mathfrak{m}_{B} generates \mathfrak{m}_{B} as a B-module. In other words, $\phi\left(\mathfrak{m}_{A}\right) B=\mathfrak{m}_{B}$. On the other hand, since B is finitely generated as a A-module, the homomorphism ϕ is surjective iff the induced map $A / \mathfrak{m}_{A} \rightarrow B / \phi\left(\mathfrak{m}_{A}\right) B$ is surjective, again by Corollary 3.6. Now $B / \phi\left(\mathfrak{m}_{A}\right) B=$ B / \mathfrak{m}_{B} by the above and by (3) the map $A / \mathfrak{m}_{A} \rightarrow B / \mathfrak{m}_{B}$ is surjective. The conclusion follows.
Q9. (optional) Let R be a Dedekind domain. Show that R is a PID iff it is a UFD.
Solution. See https://planetmath.org/pidandufdareequivalentinadedekinddomain

