
A3: Rings and Modules, 2022–2023

Tom Sanders

We begin with the course overview as described on https://courses.maths.ox.ac.

uk/course/view.php?id=1042.

Course Overview:

The first abstract algebraic objects which are normally studied are groups, which arise

naturally from the study of symmetries. The focus of this course is on rings, which generalise

the kind of algebraic structure possessed by the integers: a ring has two operations, addition

and multiplication, which interact in the usual way. The course begins by studying the

fundamental concepts of rings (already met briefly in core Algebra): what are maps between

them, when are two rings isomorphic etc. much as was done for groups. As an application, we

get a general procedure for building fields, generalising the way one constructs the complex

numbers from the reals. We then begin to study the question of factorization in rings,

and find a class of rings, known as Unique Factorization Domains, where any element can

be written uniquely as a product of prime elements generalising the case of the integers.

Finally, we study modules, which roughly means we study linear algebra over certain rings

rather than fields. This turns out to have powerful applications to ordinary linear algebra

and to abelian groups.

Learning Outcomes:

Students should become familiar with rings and fields, and understand the structure theory

of modules over a Euclidean domain along with its implications. The material underpins

many later courses in algebra and number theory, and thus should give students a good

background for studying these more advanced topics.

Course Synopsis:

Recap on rings (not necessarily commutative) and examples: Z, fields, polynomial rings

(in more than one variable), matrix rings. Zero-divisors, integral domains. Units. The

characteristic of a ring. Discussion of fields of fractions and their characterisation (proofs

non-examinable). [2]
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Homomorphisms of rings. Quotient rings, ideals and the first isomorphism theorem and

consequences, e.g. Chinese remainder theorem. Relation between ideals in R and R/I.

Prime ideals and maximal ideals, relation to fields and integral domains. Examples of

ideals. Application of quotients to constructing fields by adjunction of elements; examples

to include C = R[X]/⟨X2 + 1⟩ and some finite fields. Degree of a field extension, the tower

law. [4]

Euclidean Domains. Examples. Principal Ideal Domains. EDs are PIDs. Unique factorisa-

tion for PIDs. Gauss’s Lemma and Eisenstein’s Criterion for irreducibility. [3]

Modules: Definition and examples: vector spaces, abelian groups, vector spaces with an

endomorphism. Submodules and quotient modules and direct sums. The first isomorphism

theorem. [2]

Row and column operations on matrices over a ring. Equivalence of matrices. Smith Normal

form of matrices over a Euclidean Domain. [1.5]

Free modules and presentations of finitely generated modules. Structure of finitely generated

modules of a Euclidean domain. [2]

Application to rational canonical form and Jordan normal form for matrices, and structure

of finitely generated Abelian groups. [1.5]
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Part I

Rings
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1 Rings: a recap

A set R containing two (possibly equal) elements 0 and 1, and supporting two binary

operations + and × is a ring if

• R equipped with + is a commutative group with identity 0;

• × is an associative binary operation on R with identity 1;

• × is distributive over +.

Occasionally we shall have multiple rings and it will be instructive to clarify which particular

ring we are referring to. We shall do this with subscripts writing, for example, +R or 1R

instead of + and 1 above.

The operation + is the addition of the ring, 0 is the zero of the ring, and the set R

with the operation + is the additive group of the ring. For each x ∈ R we write −x for the

unique inverse of x w.r.t. addition, and the map R → R;x↦ −x is the negation of the ring;

we write x − y for x + (−y).
We call a map φ ∶ R → S between rings additive if it is a homomorphism of the additive

groups.

Observation 1.1. Identities are self-inverse so −0 = 0; inverses are symmetric so −(−x) = x
for all x ∈ R; and inversion is a homomorphism of the additive group since a group operation

is commutative (if and) only if inversion is a homomorphism of the group.

Group homomorphisms map identities to identities and inverses to inverses, so if φ ∶ R →
S is additive then φ(0R) = 0S and φ(−x) = −φ(x) for all x ∈ R.

The operation × is the multiplication of the ring, and we write xy in place of x × y,

and in the absence of parentheses multiplication precedes addition in the usual way. We say

R is a commutative ring if the multiplication is commutative.

Remark 1.2. The modern notion of commutative ring can be traced back to Emmy Noether

[Noe21, §1] (translated into English in [Ber14]), though unlike us her definition does not

assume the multiplication has an identity; Poonen [Poo19] defends our position.

We call a map φ ∶ R → S between rings multiplicative if φ(xy) = φ(x)φ(y) for all x, y ∈
R, and we call it a ring homomorphism if φ is additive, multiplicative, and φ(1R) = 1S.

Observation 1.3. The composition of additive (resp. multiplicative) maps is additive (resp.

multiplicative), and hence the composition of ring homomorphisms is a ring homomorphism.

Definition 1.4. For a set A ⊂X and a function f ∶X → Y we write f(A) ∶= {f(x) ∶ x ∈ A}.

For sets A ⊂ X, B ⊂ Y , and a function X × Y → Z denoted by infixing the symbol

∗ between the two arguments, we write A ∗ B ∶= {a ∗ b ∶ a ∈ A, b ∈ B}; and denoted by

juxtaposing the two arguments, we write AB ∶= {ab ∶ a ∈ A, b ∈ B}.
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For x ∈X and y ∈ Y , in the case of infix notation we put x∗A ∶= {x}∗A and A∗y ∶= A∗{y};

and in the case of juxtaposition we put xA ∶= {x}A and Ay ∶= A{y}.

Units and the trivial ring

An element x ∈ R is a unit if it is invertible w.r.t. multiplication i.e. if there is some y ∈ R
such that xy = yx = 1. We write∗ U(R) for the set of units of R, and R∗ for the set of

non-zero elements of R. Inverses w.r.t. associative binary operations are unique when they

exist, so for x ∈ U(R) we can unambiguously write x−1 for the inverse of x.

Observation 1.5. Identities are self-inverse and so 1 is a unit and 1−1 = 1, and inverses a

symmetric so if x ∈ U(R) then x−1 ∈ U(R) and (x−1)−1 = x.

For x, y ∈ U(R) we have (y−1x−1)(xy) = 1 = (xy)(y−1x−1), and so xy ∈ U(R), and the

multiplication on R restricts to a well-defined binary operation on U(R). This operation

is a fortiori associative; it has an identity – 1; and if x ∈ U(R) then x−1 is an inverse of x

w.r.t. this binary operation. In particular, U(R) is a group called the group of units with

identity the same as the multiplicative identity of R, such that the inverse of x in the group

U(R) is the same as the inverse of x as an element of the ring R.

Remark 1.6. If R is a finite commutative ring then U(R) is a finite commutative group, but

exactly which finite commutative groups occur as the group of units of a ring is an open

problem called Fuchs’ problem [Fuc58, Problem 72, p299].

Given y ∈ R, the map R → R;x ↦ yx (resp. R → R;x ↦ xy) is called left (resp. right)

multiplication by y.

Observation 1.7. The fact that multiplication is distributive over addition in R is exactly to

say that all the left and right multiplication maps are group homomorphisms of the additive

group of R.

Group homomorphisms map identities to identities and inverses to inverses, so x0 = 0x = 0

for all x ∈ R – we say zero annihilates; and x(−y) = −(xy) = (−x)y for all x, y ∈ R – we

say that negation distributes. In particular (−1)x = −x for all x ∈ R.

Example 1.8. The set {0}, with 1 = 0, and addition and multiplication given by 0 + 0 =
0×0 = 0, is a ring called the trivial or zero ring. A ring in which 1 ≠ 0 is called a non-trivial

ring.

If R is not non-trivial then it is trivial: Indeed, since 0 = 1, for all x ∈ R we have

x = 1x = 0x = 0 since zero annihilates and so R = {0}. There is only one function into a set

of size one, and so the addition and multiplication on R are uniquely determined and must

be that of the trivial ring.

∗ !△Some authors (e.g. [Lan02, p84] and [Lam07, xiv]) write R∗ for the group of units of R.
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Example 1.9. The zero map zR ∶ R → {0};x↦ 0 from a ring R to the trivial ring is a ring

homomorphism.

The integers and characteristic

We write Z for the integers; N∗ for the positive integers, that is {1,2,3, . . .}; and N0 for the

non-negative integers, that is {0,1,2, . . .}.

Example 1.10. Z with their usual addition, multiplication, zero and 1 form a non-trivial

commutative ring for which U(Z) = {−1,1}.

Theorem 1.11 (The One Ring). † Suppose that R is a ring. Then there is a unique ring

homomorphism χR ∶ Z→ R, and we have

χR(n −m) =
n times

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(1R +⋯ + 1R)−

m times
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(1R +⋯ + 1R)

Remark 1.12. The proof is omitted. It is a series of inductions and to do it properly we

would need to be careful about what our definitions of N∗ and Z are.

If there is n ∈ N∗ such that χR(n) = 0R then there is a smallest such n and we call this

the characteristic of the ring; if there is no such n then the characteristic is said to be 0.

Example 1.13. For N ∈ N∗, we write ZN for the integers modulo N . This is a commutative

ring whose zero is 0 (mod N), and with multiplicative identity 1 (mod N). If N = 1 then

0 ≡ 1 (mod N) and so the ring is trivial; otherwise it is non-trivial.

The characteristic of ZN is N since n ∈ N∗ has χZN (n) = 0ZN if and only if n ≡ 0 (mod N),
so n ⩾ N and χZN (N) = 0ZN .

Isomorphisms and subrings

A ring isomorphism is a map φ ∶ R → S that is a ring homomorphism with an inverse

that is a ring homomorphism.

Example 1.14. The identity map ιR ∶ R → R;x↦ x is a ring isomorphism.

A ring S is a subring of a ring R if the inclusion map j ∶ S → R; s ↦ s is a well-

defined – all this does is ensure that S ⊂ R – ring homomorphism called the inclusion

homomorphism; S is proper if S ≠ R.

Example 1.15. C with its usual addition, multiplication, zero and 1 is a non-trivial com-

mutative ring and Z is a proper subring of C.

†Following [Tol04, Book I, Chapter 2, p66] one might describe the integes as the one ring (up to unique

isomorphism) ruling (uniquely embedding in) all others.
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Observation 1.16. The 0 and 1 of a subring are the same as for the containing ring and so

a subring of a non-trivial ring is non-trivial, and the characteristic of a subring is the same

as the characteristic of the ring it is contained in.
!△ In particular, the trivial ring is not a subring of any non-trivial ring R despite the

fact that the inclusion map taking 0 to 0R is both additive and multiplicative. It follows

that the requirement that ring homomorphisms send 1 to 1 cannot be dropped from the

definition.

Proposition 1.17 (Subring test). Suppose that R is a ring and S ⊂ R has 1 ∈ S and

x − y, xy ∈ S for all x, y ∈ S. Then the addition and multiplication on R restrict to well-

defined operations on S giving it the structure of a subring of R.

Proof. First S is non-empty and x−y ∈ S whenever x, y ∈ S so by the subgroup test addition

onR restricts to a well-defined binary operation on S giving it the structure of a commutative

group. Since S is closed under multiplication, multiplication on R restricts to a well-defined

binary operation on S that is a fortiori associative and distributive, and since 1 ∈ S and 1

is a fortiori an identity for S, we have that S with these restricted operations is a ring. The

map S → R; s ↦ s is then well-defined since S is a subset of R, and a ring homomorphism

as required.

Given a subset satisfying the hypotheses of the above lemma, we make the common

abuse of calling it a subring on the understanding that we are referring to the restricted

operations described by the lemma.

Example 1.18. For d ∈ N∗ we write Z[
√
−d] for the set {z + w

√
−d ∶ z,w ∈ Z}, which is a

subring of C by the subring test. Z[i] – the case d = −1 – is called the set of Gaussian

integers.

We have U(Z[i]) = {1,−1, i,−i}: Certainly all the elements of {1,−1, i,−i} are units. In

the other direction, suppose (z+wi)(x+yi) = 1 for some x, y ∈ Z. Taking absolute values we

have (z2 +w2)(x2 + y2) = 1, so z2 +w2 = 1, and hence (z,w) ∈ {(1,0), (−1,0), (0,1), (0,−1)}
as required.

For d > 1 we have U(Z[
√
−d]) = {−1,1} since certainly 1 and −1 are units, and if z+w

√
−d

is a unit then taking absolute values as above we get x, y ∈ Z such that (z2+dw2)(x2+dy2) = 1;

since d > 1 we get w = 0 and z ∈ {−1,1} as required.

Example 1.19. Given a ring R we write Z(R) for the centre of R, that is the set of x ∈ R
that commute with all other elements of R i.e. such that xy = yx for all y ∈ R.

The centre is a subring by the subring test: 1x = x = x1 for all x ∈ R, so 1 ∈ Z(R).
Secondly, for x,x′ ∈ Z(R), and y ∈ R we have (x − x′)y = xy + (−x′)y = xy + x′(−y) =
yx+(−y)x′ = yx+y(−x′) = y(x−x′) and (xx′)y = x(x′y) = x(yx′) = (xy)x′ = (yx)x′ = y(xx′).
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Example 1.20. The ring of integers has no proper subrings, since any such subring must

contain 1 and so by induction N∗ and hence N∗ −N∗ = Z.
!△The set N∗ contains 1 and if x, y ∈ N∗ then x + y, xy ∈ N∗, but N∗ is not a subring of

Z because it does not contain 0. It follows that x − y may not be replaced by x + y in the

hypotheses of the subring test.

Observation 1.21. For φ ∶ R → S a ring homomorphism, Imφ is a subring of S by the subring

test: 1S = φ(1R) ∈ Imφ; and if x, y ∈ Imφ then there are z,w ∈ R such that x = φ(z) and

y = φ(w) so xy = φ(zw) ∈ Imφ and x − y = φ(x) − φ(y) = φ(x − y) ∈ Imφ.

Fields

We say that a commutative ring R is a field if U(R) = R∗. A subring that is also a field is

called a subfield. Throughout these notes F always denotes a field.

Example 1.22. The complex numbers C are a field with R as a subfield.

Proposition 1.23. Suppose that φ ∶ F → R is a ring homomorphism and R is non-trivial.

Then φ is an injection and Imφ is a subfield of R.

Proof. If φ(x) = φ(y) and x ≠ y then x−y ∈ F∗ and so there is u such that (x−y)u = 1 whence

0 = 0φ(u) = (φ(x) − φ(y))φ(u) = φ((x − y)u) = φ(1) = 1, which contradicts the non-triviality

of R.

The image of φ is a subring of R which is non-trivial since R is non-trivial, and it is

commutative since φ(x)φ(y) = φ(xy) = φ(yx) = φ(y)φ(x). If φ(y) ≠ 0 then since φ is an

injection, y ≠ 0 and so y−1 exists and φ(y)φ(y−1) = φ(1) = 1, whence φ(y) is a unit in Imφ,

and Imφ is a subfield.

Proposition 1.24. Suppose that φ ∶ F→ R is a ring homomorphism. Then the map F×R →
R; (λ, r) ↦ λ.r ∶= φ(λ)r is a scalar multiplication of the field F on the additive group of R

giving an F-vector space such that the right multiplication maps on R are linear, and if φ

maps F into the centre of R then so are the left multiplication maps. In particular if R is

commutative then the left and right multiplication maps are linear.

Conversely, if R is a ring which is also an F-vector space in such a way that all the right

multiplication maps are linear then the map F → R;λ ↦ λ.1R is a ring homomorphism and

if all the left multiplication maps are also linear then its image is in the centre of R.

Proof. The additive group of R is a commutative group by definition. We also have (λµ).v =
φ(λµ)v = (φ(λ)φ(µ))v = φ(λ)(φ(µ)v) = λ.(µ.v); 1F.v = φ(1F)v = 1Rv = v; (λ + µ).v =
φ(λ + µ)v = (φ(λ) + φ(µ))v = φ(λ)v + φ(µ)v = λ.v + µ.v; and λ.(v + w) = φ(λ)(v + w) =
φ(λ)v + φ(λ)w = λ.v + λ.w. It follows R is an F-vector space as claimed.
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Right multiplication by r is linear since it is a group homomorphism and λ.(vr) =
φ(λ)(vr) = (φ(λ)v)r = (λ.v)r. Finally, left multiplication by r is a group homomorphism,

and if it commutes with all elements of the image of φ (which is certainly true if φ maps to

the centre of R), then λ.(rv) = φ(λ)(rv) = (φ(λ)r)v = (rφ(λ))v = r(φ(λ)v) = r(λ.v), and so

left multiplication by r is linear.

Conversely, write φ for the given map then φ(1F) = 1F.1R = 1R; φ(x + y) = (x + y).1R =
x.1R + y.1R = φ(x) + φ(y); and φ(xy) = (xy).1R = x.(y.1R) = x.φ(y) = x.(1Rφ(y)) =
(x.1R)φ(y) = φ(x)φ(y) since the map R → R; z ↦ zφ(y) is linear. It follows that φ is a

ring homomorphism as claimed. If all left multiplication maps are linear then for r ∈ R we

have rφ(λ) = r(λ.1) = λ.(r1R) = λ.(1Rr) = (λ.1)r = φ(λ)r and so φ(λ) ∈ Z(R).

We call the vector space structure of the proposition the F-(vector) space structure

on R induced by φ.

Example 1.25. The inclusion map R → C induces the usual R-vector space structure on

the additive group of C. {1, i} is a basis for this vector space, which is another way of saying

that every complex number can be written uniquely in the form a + bi for reals a and b.

Example 1.26. Complex conjugation, C → C; z ↦ z is a ring homomorphism that is

different from the identity. The identity map induces a C-vector space structure with λ.z ∶=
λz, and complex conjugation a different structure with λ.z ∶= λz.

Zero divisors and integral domains

In a ring R we call an element y ∈ R a left (resp. right) zero-divisor if the left (resp.

right) multiplication-by-y map has a non-trivial kernel i.e. if there is some x ≠ 0 such that

yx = 0 (resp. xy = 0). A non-trivial commutative ring R is an integral domain if it has no

non-zero zero-divisors.

Example 1.27. Z is an integral domain – it is our prototypical example.

Observation 1.28. If x ∈ U(R) then x is not a left (resp. right) zero-divisor since if xy = 0

(resp. yx = 0) then 0 = x−10 = x−1(xy) = 1y = y (resp. 0 = 0x−1 = (yx)x−1 = y1 = y).

Example 1.29. Every field F is an integral domain since it is certainly a non-trivial com-

mutative ring and every non-zero element is a unit and so not a zero-divisor.

Example 1.30 (Example 1.13, contd.). By Bezout’s Lemma if gcd(a,N) = 1 then there are

α,β ∈ Z such that αa + βN = 1 and so αa ≡ 1 (mod N). Since ZN is commutative it follows

that aα ≡ 1 (mod N) and so a is a unit in ZN . On the other hand, if gcd(a,N) > 1 then

a(N/gcd(a,N)) ≡ 0 (mod N) and N/gcd(a,N) /≡ 0 (mod N), so a is a zero-divisor and

hence not a unit. It follows that U(ZN) = {a (mod N) ∶ gcd(a,N) = 1}.
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If p > 1 is prime then for all a, either p ∣ a or gcd(a, p) = 1. Hence U(Zp) = Z∗
p and so Zp

is a field; we denote it Fp to emphasise this fact.

If N > 1 is composite, say N = ab for a, b > 1 then ab ≡ 0 (mod N) but a, b /≡ 0 (mod N)
and so ZN is not even an integral domain.

If N = 1 then ZN is trivial, and so not even non-trivial!

Observation 1.31. If R is an integral domain and S is a subring of R then S is an inte-

gral domain: S is certainly non-trivial and commutative since R is, and for y ∈ S, the

multiplication-by-y map on S is the restriction of the multiplication-by-y map on R, and so

if the kernel of the latter is trivial then so is the kernel of the former.

Example 1.32. For d ∈ N∗, the ring Z[
√
−d], and in particular the Gaussian integers, is a

subring of C and so an integral domain.

Example 1.33. The algebraic integers, denoted Z, are the complex numbers α for which

there is d ∈ N∗ and ad−1, . . . , a0 ∈ Z such that αd + ad−1αd−1 +⋯+ a1α+ a0 = 0. We shall make

use of arguments from the modules part of the course to show that Z is a subring of C, and

given this we conclude Z is an integral domain.

Z is not a field since 1/2 /∈ Z, because if it were then there would be ad−1, . . . , a0 ∈ Z such

that 1 + 2(ad−1 +⋯ + a02d−1) = 0; a contradiction.

Proposition 1.34. Suppose that R is a ring with no non-zero zero divisors that is also a

finite dimensional vector space in such a way that left and right multiplication maps are

linear. Then U(R) = R∗, and in particular if R is an integral domain then R is a field.

Proof. For a ∈ R the map R → R;x ↦ xa is linear, and since R is an integral domain it is

injective if a ∈ R∗. Since R is finite dimensional the Rank-Nullity theorem tells us that the

map is surjective, and hence there is x ∈ R such that xa = 1. Similarly there is y such that

ay = 1, and finally x = x1 = x(ay) = (xa)y = 1y = y so a ∈ U(R) as required.

Products of rings

For rings R1, . . . ,Rn the product group R1 × ⋯ ×Rn of the additive groups of the rings Ri

may be equipped with a binary operation defined by (xy)i ∶= xiyi for 1 ⩽ i ⩽ n making it

into a ring with identity 1 = (1R1 , . . . ,1Rn). This ring is called the direct product of the

Ris.

Observation 1.35. The group of units of a product ring is equal to the product group of the

groups of units of the rings i.e. U(R1 ×⋯ ×Rn) = U(R1) ×⋯ ×U(Rn).

Example 1.36. The maps πi ∶ R1 × ⋯ × Rn → Ri;x ↦ xi are ring homomorphisms called

projection homomorphisms.
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Example 1.37. The map R → Rn;x↦ (x, . . . , x) is a ring homomorphism called the diag-

onal homomorphism (into Rn).

The diagonal homomorphism F→ Fn induces an F-vector space structure on Fn which is

the usual F-vector space structure on Fn i.e. having scalar multiplication λ.v = (λv1, . . . , λvn)
for λ ∈ F and v ∈ Fn. !△The ring Fn has more structure than the vector space Fn because

the former comes with a multiplication.

Example 1.38. For R a ring, R2 is never an integral domain: if R is trivial then 1R2 =
(1R,1R) = (0R,0R) = 0R2 , so R2 is trivial. Otherwise (0R,1R)(1R,0R) = (0R,0R) = 0R2

(0R,1R), (1R,0R) ∈ (R2)∗ and so these are non-zero zero-divisors.

Prototypical rings

Groups of symmetries are the prototypes for abstract groups and rings have a similar pro-

totype in which the underlying set is replaced by a commutative group.

Proposition 1.39. Suppose that M and N are commutative groups with binary opera-

tions +M and +N , and identities 0M and 0N respectively. Then Hom(M,N), the set of

group homomorphisms M → N , is itself a commutative group under + defined pointwise on

Hom(M,N) by

(φ + ψ)(x) ∶= φ(x) +N ψ(x) for all x ∈M,

with identity z ∶ M → N ;x ↦ 0N , and the inverse of φ is the pointwise negation, meaning

for all x ∈M , (−φ)(x) is the inverse of φ(x) in N .

Proof. Suppose that φ,ψ ∈ Hom(M,N). Then for all x, y ∈M we have

(φ + ψ)(x +M y) = φ(x +M y) +N ψ(x +M y)

= (φ(x) +N φ(y)) +N (ψ(x) +N ψ(y))

= (φ(x) +N ψ(x)) +N (φ(y) +N ψ(y))

= (φ+ψ)(x) +N (φ+ψ)(y).

φ and ψ are group

homomorphisms

associativity and

commutativity of +N

definition of pointwise

addition

It follows that φ + ψ ∈ Hom(M,N). Pointwise addition is commutative and associative

because addition on N is commutative and associative. The map z is a homomorphism

because z(x)+N z(y) = 0N +N 0N = 0N = z(x+M y), and it is an identity for pointwise addition

because 0N is an identity for N . Finally, if φ ∈ Hom(M,N) then −φ ∈ Hom(M,N) because

it is the composition of the homomorphism φ and negation which is a homomorphism on N

since +N is commutative, and this map is an inverse for φ(x) under pointwise addition by

design.

Remark 1.40. To show that Hom(M,N) is a closed under pointwise addition and negation

it is essential that N be commutative.
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Proposition 1.41. Suppose that M , N , and P are commutative groups, and +N and +P
are the group operations on N and Hom(M,N), and P and Hom(N,P ) respectively. If

φ ∈ Hom(M,N) and ψ ∈ Hom(N,P ), then ψ ○ φ ∈ Hom(M,P ); if π ∈ Hom(M,N) then

ψ ○ (φ+N π) = (ψ ○φ) +P (ψ ○π); and if π ∈ Hom(N,P ) then (ψ +P π) ○φ = (ψ ○φ)+P (π ○φ).

Proof. The composition of homomorphisms is a homomorphism which says exactly that if

φ ∈ Hom(M,N) and ψ ∈ Hom(N,P ), then ψ ○ φ ∈ Hom(M,P ). Now, if φ,π ∈ Hom(M,N)
and ψ ∈ Hom(N,P ), then

ψ ○ (φ+Nπ)(x) = ψ(φ(x) +N π(x)) = ψ(φ(x)) +P ψ(π(x)) = ((ψ ○ φ)+P (ψ ○ π))(x)

by definition and the fact that ψ is a homomorphism, and we have that ψ ○ (φ+Nπ) =
(ψ ○ φ)+P (ψ ○ π) as claimed. On the other hand, if φ ∈ Hom(M,N) and ψ,π ∈ Hom(N,P ),
then

(ψ+Pπ) ○ φ(x) = ψ(φ(x)) +P π(φ(x)) = ((ψ ○ φ)+P (π ○ φ))(x)

by definition. The result is proved.

Remark 1.42. For the identity ψ ○ (φ+Nπ) = (ψ ○ φ)+P (ψ ○ π) we used the homomorphism

property of ψ, while the identity (ψ+Pπ) ○ φ = (ψ ○ φ)+P (π ○ φ) followed simply from the

definition; c.f. Exercise I.1.

Theorem 1.43. Suppose that M is a commutative group. Then the set Hom(M,M)
equipped with pointwise addition as its addition and functional composition as its multi-

plication is a ring whose zero is the map M →M ;x↦ 0M and whose multiplicative identity

is the map M →M ;x↦ x.

Proof. Hom(M,M) is a commutative group with the given identity under this addition, and

by the second part the proposed multiplication distributes over this addition. It remains to

note that composition of functions is associative so the proposed multiplication is associative,

and the map M →M ;x ↦ x is certainly a homomorphism and an identity for composition.

Matrix rings

Given a ring R, we write Mn,m(R) for the set of n ×m matrices with entries in R, and

Mn(R) ∶= Mn,n(R). For A,A′ ∈ Mn,m(R) and B ∈ Mm,p(R) we define matrices A + A′ ∈
Mn,m(R) and AB ∈Mn,p(R) by

(A +A′)i,j ∶= Ai,j +A′
i,j and (AB)i,k ∶=

m

∑
j=1
Ai,jBj,k. (1.1)

We write 0n×m for the matrix in Mn,m(R) with 0R in every entry, and In for the n×n matrix

with 1Rs on the diagonal and 0Rs elsewhere.
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Proposition 1.44 (Algebra of matrices). Suppose that R is a ring. Then Mn,m(R) is a

commutative group under + with identity 0n×m and for which the inverse of A ∈ Mn,m(R)
is the matrix −A with (−A)i,j = −Ai,j. Furthermore, if A ∈ Mn,m(R), B,B′ ∈ Mm,l(R),

and C,C ′ ∈ Mp,n(R) then C(AB) = (CA)B, A(B + B′) = (AB) + (AB′), (C + C ′)A =
(CA) + (C ′A), AIm = A and InA = A.

Remark 1.45. We omit the proof. One can proceed directly using a change of variables and

distributivity, or using some of the language of modules.

The commutative group Mn(R) with multiplication Mn(R)×Mn(R) →Mn(R); (A,B) ↦
AB is a ring with multiplicative identity In as a result of the algebra of matrices. A matrix

ring is a subring of Mn(R).

Remark 1.46. For A ∈Mn(R) the determinant of A is defined to be

detA ∶= ∑
σ∈Sn

sign(σ)A1,σ(1)⋯An,σ(n),

where Sn is the symmetry group of permutations of {1, . . . , n}, and sign(σ) is the sign of

the permutation σ.

We shall see in the second half of the course that for R commutative, A ∈ U(Mn(R)) if

and only if detA ∈ U(R), generalising what we already know for fields since detA ∈ U(F)
if and only if detA ≠ 0F. For non-commutative rings Exercise I.5 gives an example to show

that this equivalence can fail.

Example 1.47. For R non-trivial the ring M2(R) is not commutative:

⎛
⎝

1 1

0 1

⎞
⎠
⎛
⎝

1 0

1 1

⎞
⎠
=
⎛
⎝

2 1

1 1

⎞
⎠
≠
⎛
⎝

1 1

1 2

⎞
⎠
=
⎛
⎝

1 0

1 1

⎞
⎠
⎛
⎝

1 1

0 1

⎞
⎠
.

Example 1.48. Given a ring R, the map

∆ ∶ R →Mn(R);λ↦

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

λ 0 ⋯ 0

0
. . .

. . .
...

...
. . .

. . . 0

0 ⋯ 0 λ

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

is a ring homomorphism called the diagonal homomorphism (into Mn(R)).

The diagonal homomorphism into Mn(F) induces the usual F-vector space structure

on Mn(F) with scalar multiplication (λ.A)i,j = λAi,j. Writing E(i,j) for the matrix with

E
(i,j)
i,j = 1 and E

(i,j)
k,l = 0 for (k, l) ≠ (i, j), the set {E(i,j) ∶ 1 ⩽ i, j ⩽ n} is a basis for this vector

space.
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Example 1.49. The quaternions are the set

H ∶=
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

z w

−w z

⎞
⎠
∶ z,w ∈ C

⎫⎪⎪⎬⎪⎪⎭
.

They form a subring of M2(C) by the subring test, and in particular H has zero 02×2 and

multiplicative identity I2. Now,

A ∶=
⎛
⎝

z w

−w z

⎞
⎠
≠ 02×2 if and only if detA = ∣z∣2 + ∣w∣2 ≠ 0,

and hence if A ∈ H∗ then the inverse of A in M2(C) exists and it is also in H. Hence A ∈ U(H)
and since H is non-trivial, U(H) = H∗. The quaternions are not, however, commutative and

so this is not a field. A not-necessarily commutative ring in which U(R) = R∗ is called a

division ring or skew field.

Frobenius showed that any real division ring that is also a vector space over R in such a

way that left and right multiplication is linear, is isomorphic (via a map that is both a ring

isomorphism and a linear isomorphism) to either R, C, or H.

The ring homomorphism

R→ H;λ↦
⎛
⎝
λ 0

0 λ

⎞
⎠

has image equal to the centre of H, and so induces a real vector space structure on H in

which left and right multiplication maps. The vector space if 4-dimensional and

⎛
⎝

1 0

0 1

⎞
⎠
,
⎛
⎝
i 0

0 −i
⎞
⎠
,
⎛
⎝

0 1

−1 0

⎞
⎠
, and

⎛
⎝

0 i

i 0

⎞
⎠

form a basis. As element of the group U(H), these generate an 8 element subgroup called

the quaternion group and denoted Q8.

There is another natural ring homomorphism: the map

C→ H;λ↦
⎛
⎝
λ 0

0 λ

⎞
⎠
,

which induces a 2-dimensional C-vector space structure on H in which right multiplication

maps are linear, but left multiplication maps are not (in general).

In fact there is no C-vector space structure on H such that all left and right multiplication

maps are linear: If there were it would give rise to a ring homomorphism C → H mapping

into the centre of H. The centre of H is isomorphic to R, and hence we would have a ring

homomorphism C → R which we see in Exercise I.3 is not possible. !△ In particular, H is

not a subspace of the usual C-vector space M2(C) as defined in Example 1.48 because in

that structure the left and right multiplication maps are linear, and since H is a subring if

it were also subspace they would restrict to be linear on H.
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Polynomial rings

Proposition 1.50 (Algebra of polynomials). Suppose that R is a subring of S, λ ∈ S
commutes with all elements of R, and a0, a1, . . . , b0, b1, ⋅ ⋅ ⋅ ∈ R have ai = 0 for all i > n and

bj = 0 for all j >m. Then

(
n

∑
i=0
aiλ

i) + (
m

∑
j=0
bjλ

j) =
max{n,m}

∑
i=0

(ai + bi)λi and − (
n

∑
i=0
aiλ

i) =
n

∑
i=0

(−ai)λi,

and

(
n

∑
i=0
aiλ

i)(
m

∑
j=0
bjλ

j) =
n+m
∑
k=0

(
k

∑
j=0
ak−jbj)λk.

Remark 1.51. We omit the proof though it is not difficult: it makes essential use of distribu-

tivity and changes of variables.

For a non-trivial ring R there is a non-trivial ring R[X] called the polynomial ring

over R with variable X with R as a subring, and a distinguished element X ∈ R[X] which

commutes with all elements of R[X], i.e. pX =Xp for all p ∈ R[X], such that

R[X] = {a0 + a1X +⋯ + anXn ∶ n ∈ N0, a0, . . . , an ∈ R}, (1.2)

and

a0 + a1X +⋯ + anXn = 0R ⇒ a0, . . . , an = 0R. (1.3)

Remark 1.52. We omit the proof that such a ring exists, but the idea is to take the additive

group of functions N0 → R with a finite number of non-zero entries and group operation

coordinate-wise addition, and identify Xn with the function taking m to 0R if m ≠ n and 1R

if m = n.

For more variables we define R[X1, . . . ,Xn] ∶= R[X1, . . . ,Xn−1][Xn] and call it the poly-

nomial ring over R in the variables X1, . . . ,Xn.

The algebra of polynomials and (1.3) allows the equating of coefficients, meaning

that if a0 + a1X +⋯+ anXn = b0 + b1X +⋯+ bmXm for a0, a1, . . . , b0, b1, ⋅ ⋅ ⋅ ∈ R with ai = 0 for

i > n and bj = 0 for j >m, then ai = bi for all i.

If p ∈ R[X]∗ then there is a minimal d ∈ N0 and unique elements a0, a1, . . . , ad ∈ R with

ad ≠ 0R such that p(X) = a0 + a1X + ⋯ + adXd. We call this minimal d the degree of p

and denote it deg p; we call ai the coefficient of X i; ad the lead coefficient and a0 the

constant coefficient.

A polynomial is monic if its lead coefficient is 1, and the constant polynomials are

those for which the constant coefficient is the only coefficient that may be non-zero.

Example 1.53. The inclusion homomorphism F → F[X] induces an F-vector space struc-

ture on F[X] in such a way that all multiplication maps are linear. In this space, (1.2) says

exactly that {1,X,X2, . . .} is a spanning set, while (1.3) tells us it is linearly independent.
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Proposition 1.54. Suppose that φ ∶ R → S is a ring homomorphism from a non-trivial

ring, and λ ∈ S commutes with all elements of the image of φ. Then there is a unique ring

homomorphism R[X] → S extending φ and mapping X to λ, and we have

a0 + a1X +⋯ + adXd ↦ φ(a0) + φ(a1)λ +⋯ + φ(ad)λd.

Proof. The proposed map is well-defined because we can equate coefficients. It extends φ

since the constant polynomial r is mapped to φ(r), and it certainly maps X to λ. Finally, it

is additive and multiplicative by the algebra of polynomials, and certainly maps 1 to 1 since

it extends φ, and φ maps 1 to 1. It follows that the given map is a ring homomorphism.

Any other ring homomorphism ψ with ψ(r) = r for all r ∈ R, and ψ(X) = λ must agree

with the given map on R[X] by the homomorphism property of ψ, and hence uniqueness

follows.

We call the homomorphism of this proposition the evaluation homomorphism at λ

extending φ and write p(λ) for the image of p under this map. !△The notation p(λ) does

not make explicit reference to φ.

For R a subring of S and λ ∈ S commuting with all elements of R, the image of the

evaluation homomorphism at λ extending the inclusion homomorphism R → S is denoted

R[λ] and is a subring of S.

Remark 1.55. This proposition for polynomial rings should be compared with Theorem 1.11

for the integers.

We say that α is a root of p if p(α) = 0.

Theorem 1.56 (Factor theorem). Suppose R is a non-trivial ring and α is a root of p.

Then there is q ∈ R[X] such that p(X) = q(X)(X − α).

Proof. Write p(X) = a0 + a1X +⋯ + anXn and note that

p(X) = p(X) − p(α) =
n

∑
i=0
ai(X i − αi) = (

n

∑
i=0
ai(X i−1 +X i−2α +⋯ +Xαi−2 + αi−1)) (X − α).

Integral domains produce polynomial rings where the degree function behaves nicely:

Proposition 1.57. Suppose that R is a non-trivial commutative ring. Then TFAE:

(i) R is an integral domain;

(ii) R[X] is an integral domain;

(iii) for every p, q ∈ R[X]∗ we have pq ∈ R[X]∗ and deg pq = deg p + deg q.
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Proof. Certainly (ii) implies (i) since R is a subring of R[X], and (iii) implies (ii) since

R[X] is a non-trivial commutative ring, and so the fact it is an integral domain follows by

forgetting the degree equation in (iii).

To see (i) implies (iii) suppose that p, q ∈ R[X]∗ have degree n andm, and lead coefficients

an and bm respectively. Then by the algebra of polynomials we see that deg pq ⩽ n +m and

the coefficient of Xn+m is anbm. The coefficient of Xn+m is non-zero since R is an integral

domain and an, bm ∈ R∗. We conclude that pq ∈ R[X]∗ and deg pq = n +m = deg p + deg q as

required.

Example 1.58. Z[X] is an integral domain since Z is an integral domain.

Example 1.59. F[X1, . . . ,Xn] is an integral domain by induction on n: for the base case

every field is an integral domain, and for the inductive step we have Proposition 1.57.

Example 1.60. When R is an integral domain we have U(R[X]) = U(R). To see this,

suppose that p ∈ U(R[X]). Then there is some q ∈ U(R[X]) such that pq = 1, and so

0 = deg p + deg q, whence deg p = 0 and deg q = 0. Thus p(X) = a0 and q(X) = b0 for some

a0, b0 ∈ R∗. Since a0b0 = 1 and R is commutative we have b0a0 = a0b0 = 1, so p(X) = a0 ∈ U(R)
as required. Conversely, if p ∈ U(R) then p ∈ U(R[X]) and we are done.

2 Ideals and quotients

Subrings are an important substructure of rings, but just as groups have subgroups and

normal subgroups, rings have subrings and a further type of structure called an ideal. Normal

subgroups are connected to quotient groups, and ideals are connected to quotient rings in

the same way.

Given an ring R, a left (resp. right) ideal in R is a subgroup I of the additive group

of R that is closed under multiplication on the left (resp. right) by all elements of R i.e. I

is a subgroup with rx ∈ I (resp. xr ∈ I) for all r ∈ R and x ∈ I. An ideal in R – also called

a two-sided ideal – is a left ideal and right ideal.

Remark 2.1. Left and right ideals are connected with the module structure of rings which

we will examine more closely in the second part of the course. For now, two-sided ideals are

our focus.

Observation 2.2. If R is commutative then every left ideal (resp. right) ideal is a (two-sided)

ideal and hence a right (resp. left) ideal.

Example 2.3. In any ring R the sets {0} and R are ideals called the zero ideal and unit

ideal respectively.
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Observation 2.4. If I is a left (resp. right) ideal containing a unit x then for all r ∈ R,

rx−1x ∈ I (resp. xx−1r ∈ I) so I = R. In particular, any left, right, or two-sided ideal

containing a unit is the unit ideal.

Example 2.5. Every non-zero element of a field is a unit, and so any non-zero ideal is the

unit ideal. In other words, fields have only two ideals.

Example 2.6. Since every non-zero element of the quaternions H is a unit, the only ideals

in H are the zero ideal and the unit ideal.

For x ∈ R the set Rx is a left ideal, and xR is a right ideal but neither, in general, is an

ideal. The set

⟨x⟩ ∶= {r1xr′1 +⋯ + rnxr′n ∶ n ∈ N0, r1, . . . , rn, r
′
1, . . . , r

′
n ∈ R}

is a subgroup by the subgroup test and is closed under multiplication on the left and right

by elements of R and so is an ideal. !△ In general ⟨x⟩ ≠ RxR.

Example 2.7. In the ring M2(F) put

A ∶=
⎛
⎝

1 0

0 0

⎞
⎠

and P ∶=
⎛
⎝

0 1

1 0

⎞
⎠

so that A + PAP =
⎛
⎝

1 0

0 1

⎞
⎠
.

Then I2 = A +PAP ∈ ⟨A⟩, but A is not invertible so none of the matrices in M2(F)AM2(F)
is invertible, and hence ⟨A⟩ ≠M2(F)AM2(F).

If there is x ∈ R such that I = ⟨x⟩ then we say I is principal and is generated by x.

Example 2.8. For N ∈ N∗, the ideal ⟨N⟩ in Z is the set of multiples of N . Moreover, if I is

a non-zero ideal in Z then it has a minimal positive element N . If z ∈ I, then by the division

algorithm we can write z = Nw + r for some q ∈ Z and 0 ⩽ r < N . But r = z −Nw ∈ I and

hence r = 0 by minimality of N , and so I = ⟨N⟩. In particular, every ideal in Z is principal.

Observation 2.9. Given (left, right, resp. two-sided) ideals I1, . . . , In in a ring R, I1 +⋯+ In
and ⋂nj=1 Ij are both (left, right, resp. two-sided) ideals.

For x1, . . . , xn ∈ R we define ⟨x1, . . . , xn⟩ ∶= ⟨x1⟩+⋯+⟨xn⟩, and call it the ideal generated

by x1, . . . , xn. We say that an ideal is finitely generated if I = ⟨x1, . . . , xn⟩ for some

x1, . . . , xn.

Remark 2.10. Rings in which every ideal is finitely generated are called Noetherian rings

and these, and their close cousins for left and right ideals, are very important but will not

be our focus in this course.

Example 2.11. The algebraic integers contain an ideal that is not finitely generated. Ex-

ercise II.4 develops a proof of this.
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Example 2.12. The ideal ⟨2,X⟩ in Z[X] is the set of polynomials with even constant

coefficient. Certainly the polynomials with even constant coefficient form an ideal in Z[X]
containing 2 and X, and conversely every such polynomial is in ⟨2,X⟩ since it can be written

in the form 2q(X) +Xp(X) for some p ∈ Z[X] and constant polynomial q ∈ Z[X].
The ideal ⟨2,X⟩ is not principal. To see this, suppose that p ∈ ⟨2,X⟩ were such that

⟨2,X⟩ = ⟨p⟩. Since 2 ∈ ⟨p⟩ = p(X)Z[X] there is r ∈ Z[X] such that 2 = pr. But 0 = deg 2 =
deg p + deg r, so deg p = 0; say p(X) = a for a ∈ Z∗. Since X ∈ ⟨p⟩ = p(X)Z[X] there is

q ∈ Z[X] such that X = p(X)q(X), and hence 1 = p(1)q(1) = aq(1). Hence p(X) = ±1 and

⟨p⟩ = Z[X] contradicting the fact that ⟨2,X⟩ ≠ Z[X].

Quotient rings

Ideals are particularly important because they let us generalise the construction of the rings

ZN from Z.

Theorem 2.13. Suppose that R is a ring and I is an ideal. Then the commutative group

R/I may be endowed with a multiplication such that the quotient map q ∶ R → R/I;x↦ x+ I
is a surjective ring homomorphism with kernel‡ I. If R is commutative then so is this

multiplication.

Proof. I is a subgroup of a commutative group and so normal, and so by the quotient group

construction R/I is a commutative group and q is a surjective group homomorphism with

kernel I. The key is now to show that q(xy) = q(x′y′) whenever x+I = x′+I and y+I = y′+I.

By distributivity of multiplication and negation we have that xy−x′y′ = (x−x′)y+x′(y−y′).
But then x − x′ ∈ I and y − y′ ∈ I and so xy − x′y′ ∈ Iy + x′I ⊂ I since I is closed under

multiplication by any element of R (in this case y on the right and x′ on the left). We

conclude that q(xy) = q(x′y′) as required, and so we may define ×̂ on R/I: first, for u, v ∈ R/I
let x, y ∈ R be such that q(x) = u and q(y) = v. Then put u×̂v ∶= q(xy); this is well-defined

by the previous.

For u, v,w ∈ R/I, let x, y, z ∈ R be such that u = q(x), v = q(y) and w = q(z). Then

(u×̂v)×̂w = q((xy)z) = q(x(yz)) = u×̂(v×̂w) so that ×̂ is associative. q(1)q(x) = q(x) =
q(x)q(1) so q(1) is an identity for ×̂ since q is surjective. Finally, for q(x) ∈ R/I, we have

q(x)×̂(q(y) + q(z)) = q(x(y + z)) = q(xy + xz) = q(xy) + q(xz) = q(x)×̂q(y) + q(x)×̂q(z) and

since q is surjective it follows that left multiplication by q(x) is a homomorphism. So is

right multiplication by a similar argument, and hence (again since q is surjective) it follows

that ×̂ distributes over addition.

Finally, we have seen that q(1) is the identity; q is a homomorphism of the additive

group by definition of the quotient group; and q is multiplicative by definition. Thus q is

‡A ring homomorphism is, in particular, a group homomorphism and so has a kernel.
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a ring homomorphism. Moreover, ×̂ is visibly commutative if the multiplication on R is

commutative. The result is proved.

Since the map q above is a surjective ring homomorphism the multiplication on R/I is

determined by q: 1R/I = 1 + I; (x + I) ×R/I (y + I) = (xy) + I for all x, y ∈ R; and if x ∈ U(R)
then x + I ∈ U(R/I) and (x + I)−1 = x−1 + I, where the first (⋅)−1 is multiplicative inversion

in R/I, and the second is in R.

By the ring R/I we mean this ring structure and we call this the quotient ring of R

by the ideal I.

Example 2.14. The ring of integers Z has ⟨N⟩ as an ideal, and the quotient ring Z/⟨N⟩ is

none other than the ring ZN .

Formally ZN is realised as a set of cosets, but this can lead to burdensome notation so

in practice we just do arithmetic with the integers as usual, but with a coarser notion of

equality: that of equivalence (mod N). The fact that we can do this is exactly the fact

that the quotient map q is a ring homomorphism.

The same notational convenience is useful in polynomial rings. If f ∈ F[X]∗ we write

p ≡ q (mod f) to mean that p + ⟨f⟩ = q + ⟨f⟩ or, equivalently, that p − q is a multiple of f .

We can do arithmetic in F[X]/⟨f⟩ by doing it first in F[X] and then declaring two results

to be equivalent if they differ by a multiple of f .

Proposition 2.15. Suppose that f ∈ F[X]∗ has degree d. The map F × F[X]/⟨f⟩ →
F[X]/⟨f⟩; (λ, p (mod f)) ↦ λp (mod f) is a scalar multiplication of F on the additive

group of F[X]/⟨f⟩ such that the ring multiplication maps are linear and 1,X, . . . ,Xd−1 is a

basis.

Proof. For the first part it is enough to note that the inclusion map F → F[X] composed

with the quotient map F[X] → F[X]/⟨f⟩ induces an F-vector space structure with the given

scalar multiplication such that the ring multiplication maps are linear.

To see that 1,X, . . . ,Xd is spanning, note that by the division algorithm for polynomials,

for every g ∈ F[X] there is q, r ∈ F[X] with g(X) = f(X)q(X) + r(X) and r(X) = a0 +⋯ +
ad−1Xd−1, whence g(X) ≡ a0 +⋯ + ad−1Xd−1 (mod f).

To see that 1,X, . . . ,Xd is linearly independent, suppose that a0, . . . , ad−1 ∈ F have a0 +
a1X + ⋯ + ad−1Xd−1 ≡ 0 (mod f). If the ais are not all 0 then the polynomial r(X) =
a0 + a1X +⋯ + ad−1Xd−1 has a degree, and its degree is at most d − 1. This contradicts the

fact it is divisible by f .

Example 2.16. The ring R[X]/⟨X2⟩ is called the ring of dual numbers, and in this

ring we have (1 + X)n ≡ 1 + nX (mod X2). So for a polynomial f we have f(1 + X) ≡
f(1) + f ′(1)X (mod X2) where f ′ denotes the usual derivative of f .
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Example 2.17. In the ring R[X]/⟨X2 + 1⟩, we have

(a + bX) + (c + dX) ≡ (a + c) + (b + d)X (mod X2 + 1)

and

(a + bX)(c + dX) ≡ (ac − bd) + (bc + ad)X (mod X2 + 1).

These are the same rules for arithmetic as those on the complex numbers with X replaced

by i. Put formally, the map

φ ∶ C→ R[X]/⟨X2 + 1⟩;a + bi↦ a + bX (mod X2 + 1)

is a ring homomorphism. Moreover, φ is a surjection because {1,X} is a basis for the

codomain, so every f ∈ R[X]/⟨X2 + 1⟩ can be written as f ≡ a + bX (mod X2 + 1) for some

a, b ∈ R, and hence f ≡ φ(a + bi) (mod X2 + 1); and φ is an injection because it is a group

homomorphism, and if φ(a + bi) ≡ 0 (mod X2 + 1) then a + bi = 0 since {1,X} is a basis.

Thus C and R[X]/⟨X2 + 1⟩ are isomorphic.

The Chinese remainder theorem

Theorem 2.18. Suppose that R is a ring and I1, . . . , In are ideals with Ii + Ij = R for all

i ≠ j. Then the map

ψ ∶ R → (R/I1) ×⋯ × (R/In);x↦ (x + I1, . . . , x + In)

is a surjective ring homomorphism.

Proof. The given map is certainly a ring homomorphism; the content of this proof is sur-

jectivity: For j ≠ i let yi,j ∈ Ij have 1 − yi,j ∈ Ii, and put wi ∶= yi,1⋯yi,i−1 ⋅ yi,i+1⋯yi,n. Then

wi + Ij = Ij for all j ≠ i; and wi + Ii = 1 + Ii. In particular for all 1 ⩽ i ⩽ n we have

ψ(wi) = (0R/I1 , . . . ,0R/Ii−1
,1R/Ii ,0R/Ii+1

, . . . ,0R/In) and so if z ∈ Rn then ψ(z1w1 +⋯+ znwn) =
(z1 + I1, . . . , zn + In) and the map is surjective as claimed.

Remark 2.19. For G a group and H1,H2 ⩽ G with H1H2 = G the map G → (G/H1) ×
(G/H2);x ↦ (xH1, xH2) is surjective though the codomain need not even be a group; the

substance of Theorem 2.18 is in the fact it applies for n > 2.

Remark 2.20. The history of this theorem is involved – see [She88] – but the starting point

is work of Sun Zi (孫子) from around 400AD with the particular problem of finding an

integer z such that z ≡ 2 (mod 3), z ≡ 3 (mod 5), and z ≡ 2 (mod 7). To connect this to

Theorem 2.18 note that 3, 5, and 7 are coprime in pairs, so Bezout’s Lemma tells us that

⟨3⟩ + ⟨5⟩ = Z, ⟨3⟩ + ⟨7⟩ = Z, and ⟨5⟩ + ⟨7⟩ = Z,
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and hence the map

Z→ Z3 ×Z5 ×Z7; z ↦ (z (mod 3), z (mod 5), z (mod 7))

is surjective from which we can conclude that an integer satisfying the desired congruences

exists.

The first isomorphism theorem and consequences

Theorem 2.21 (First isomorphism theorem). Suppose that φ ∶ R → S is a ring homomor-

phism. Then kerφ is an ideal in R, and the map

φ̃ ∶ R/kerφ→ S;x + kerφ↦ φ(x)

is a well-defined injective ring homomorphism. In particular, R/kerφ is isomorphic to Imφ.

Proof. Since φ is a group homomorphism the kernel is an additive subgroup of R. Now

suppose x ∈ kerφ and r ∈ R. Then φ(xr) = φ(x)φ(r) = 0φ(r) = 0 since zero annihilates, and

similarly φ(rx) = 0. It follows that xr, rx ∈ kerφ so that kerφ is an ideal.

The map φ̃ is a well-defined injective group homomorphism by the first isomorphism

theorem for groups. In addition,

φ̃((x + kerφ)(y + kerφ)) = φ̃((xy) + kerφ)

= φ(xy) = φ(x)φ(y) = φ̃(x + kerφ)φ̃(y + kerφ),

and φ̃(1R + kerφ) = φ(1R) = 1S. The result is proved.

Example 2.22. For R a subring of S and λ ∈ S commuting with all elements of R, the

kernel of the evaluation homomorphism at λ extending the inclusion homomorphism R → S,

that is the set {p ∈ R[X] ∶ p(λ) = 0} of polynomials of which λ is a root, is an ideal.

The first isomorphism theorem is often used to show that a given ring homomorphism

is well-defined by showing that it arises by factoring a homomorphism that is more easily

seen to be well-defined.

Example 2.23. The map ψ from Theorem 2.18 is a surjective ring homomorphism with

kerψ = {x ∈ R ∶ x ∈ Ii for all i} = I1 ∩⋯∩ In, and hence by the first isomorphism theorem we

have an isomorphism between R/(I1 ∩⋯ ∩ In) and (R/I1) × ⋯ × (R/In) when I1, . . . , In are

ideals in R with Ii + Ij = R for all i ≠ j.

Example 2.24. Given a ring homomorphism φ ∶ R → S and an ideal J contained in kerφ,

the map R/J → S;x + J ↦ φ(x) is a well-defined ring homomorphism: Apply the first

isomorphism theorem to the map R → (R/J) × S;x ↦ (x + J,φ(x)). The kernel of this

map is J since J ⊂ kerφ and hence the map R/J → (R/J) × S;x + J ↦ (x + J,φ(x)) is a

well-defined ring homomorphism and the result follows by composition with projection onto

the second factor.
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Relationship between ideals in R and R/I

Given an ideal I in R we write IdealsI(R) for the set of ideals J in R with I ⊂ J , and

Ideals(R)(= Ideals{0}(R)) for the set of ideals of R.

Theorem 2.25. Suppose that R is a ring and I is an ideal in R. Then the map

φ ∶ IdealsI(R) → Ideals(R/I); I ′ ↦ q(I ′)

is a well-defined inclusion-preserving bijection.

Proof. Since q is a surjective ring homomorphism, if I ′ is an ideal in R then q(I ′) is an

ideal and the map is well-defined. It is visibly inclusion-preserving. If J is an ideal in R/I
then q−1(J) is an ideal in R since q is a ring homomorphism. Since I = 0R/I ∈ J we have

I ⊂ q−1(J), and hence q−1(J) ∈ IdealsI(R). Since q is surjective q(q−1(J)) = J , and so φ

is surjective. Finally, if I ′ ≠ I ′′ are two ideals containing I then I ′ + I = I ′ ≠ I ′′ = I ′′ + I
and so, without loss of generality, there is x ∈ I ′′ such that (x + I) ∩ I ′ = ∅. It follows that

q(x) /∈ q(I ′), and hence q(I ′) ≠ q(I ′′). In particular, φ is injective.

This result also goes by the name of the Correspondence theorem and sometimes the

Fourth Isomorphism theorem for rings.

Example 2.26 (Example 1.13, contd.). ZN is a ring in which every ideal is principal. To

see this, let φ ∶ Ideals⟨N⟩(Z) → Ideals(ZN) be the map from the Correspondence theorem

and suppose J is an ideal in ZN . Since every ideal in Z is principal, φ−1(J) = ⟨M⟩ for some

M ∈ N∗, and furthermore ⟨M⟩ ⊃ ⟨N⟩. Since φ is a bijection, J = φ(⟨M⟩) = {Mz (mod N) ∶
z ∈ Z} = ⟨M (mod N)⟩ is principal.

Proper, prime, and maximal ideals

Some of the properties of ideals are reflected in properties of quotient rings, and we will look

at three important ones now. An ideal I is proper if 1 /∈ I or, equivalently, I ≠ R.

Observation 2.27. An ideal I is proper if and only if R/I is non-trivial since 1R/I ≠ 0R/I if

and only if 1 + I ≠ I, if and only if 1 /∈ I.

We say that an ideal I is prime if it is proper and whenever ab ∈ I we have either a ∈ I
or b ∈ I.

Proposition 2.28. Suppose that R is a commutative ring and I is an ideal in R. Then I

is prime if and only if R/I is an integral domain. In particular R is an integral domain if

and only if {0R} is prime.
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Proof. For ‘only if’ we have (a+ I)(b+ I) = 0R/I = I, so ab ∈ I and therefore a ∈ I or b ∈ I by

primality. Consequently a + I = I = 0R/I or b + I = I = 0R/I i.e. R/I is an integral domain.

(R/I is non-trivial since I is proper.) In the other direction, I is proper since R/I is non-

trivial, and if ab ∈ I then (a + I)(b + I) = 0R/I , and a + I = 0R/I = I or b + I = 0R/I = I. We

conclude a ∈ I or b ∈ I as required.

We say that an ideal I is maximal if I is proper and whenever I ⊂ J ⊂ R for some ideal

J we have J = I or J = R.
!△Maximal here is maximal with respect to inclusion amongst proper ideals; all ideals

in R are contained in the ideal R.

Proposition 2.29. Suppose that R is a commutative ring and I is an ideal in R. Then I

is maximal if and only if R/I is a field.

Proof. Suppose that R/I is a field. Then R/I is non-trivial and so I is proper; suppose J

is an ideal with I ⊊ J ⊂ R. Then there is x ∈ J ∖ I and since R/I is a field some y ∈ R such

that xy + I = 1 + I whence 1 ∈ xR + I ⊂ J and so J = R, whence I is maximal as claimed.

Conversely, if I is maximal and x ∈ R has x + I ≠ I then I + xR is an ideal properly

containing I and so by maximality equals R. It follows that there is some y ∈ R such that

1 ∈ xy+I whence (x+I)(y+I) = 1R/I so that U(R/I) = (R/I)∗ and R/I is a field as required.

(R/I is non-trivial as I is proper.)

Discussion of fields of fractions and their characterisation

A subring of an integral domain is an integral domain and so, in particular, a subring of a

field is an integral domain. Conversely we have the following:

Theorem 2.30. Suppose that R is an integral domain. Then there is a field F containing

R as a subring.

Remark 2.31. The proof of this is omitted, but such a field can be constructed in a similar

way to the way to which one constructs the integers from the naturals by ‘adding in’ the

negative numbers.

For R an integral domain and F a field containing R the field of fractions of R in F
is the field FracF(R) ∶= {ab−1 ∶ a ∈ R, b ∈ R∗}. This is a subring of F containing R by the

subring test since it contains 1 = 1.1−1, and is closed under subtraction and multiplication

since

ac−1 − bd−1 = (ad − bc)(cd)−1 and (ac−1)(bd−1) = (ab)(cd)−1.

Now, if ab−1 ≠ 0 then a ∈ R∗ so ba−1 ∈ FracF(R), and hence FracF(R) is closed under

multiplicative inverses and so a field.
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For the most part the containing field F will be clear – indeed it will very often be C –

in which case we write Frac(R) for FracF(R).

Example 2.32. The field of fractions of Z in C is Q, and this is the prototype.

Observation 2.33. If R ⊂ K ⊂ F for fields K and F, then FracF(R) ⊂ K. In particular,

FracF(K) = K.

Our definition of field of fractions characterises it in the following sense:

Theorem 2.34. Suppose that F and K are fields containing R as a subring. Then there is

a unique isomorphism φ ∶ FracF(R) → FracK(R) such that φ(r) = r for all r ∈ R.

Remark 2.35. Again we omit the proof, but the idea is to define φ by φ(rs−1) ∶= rs−1 for

r ∈ R and s ∈ R∗. !△ s−1 on the left is the inverse of s in F, and on the right in K.

Example 2.36. We write Q(i) for their field of fractions of the Gaussian integers inside C.

Since Z ⊂ Z[i] we must have Q ⊂ Q(i), and since i ∈ Z[i] we must have Q + iQ ⊂ Q(i). On

the other hand by the subring test Q + iQ is a subring of C, and if 0 ≠ a + bi ∈ Q[i] then

(a + bi)−1 = a

a2 + b2
+ i −b
a2 + b2

∈ Q + iQ,

so Q + iQ is a field and hence Q(i) = Q + iQ.
!△Complex conjugation Q(i) → Q(i); z ↦ z is an isomorphism that is different from the

identity map Q(i) → Q(i); z ↦ z isomorphism, but complex conjugation is not the identity

on Z[i], and hence this does not violate the uniqueness of the isomorphism in Theorem 2.34.

Field extensions

We say that K is a field extension of F if K is a field and F is a subfield of K. Given a

field extension K of F, the inclusion map F → K induces an F-vector space structure on K
(such that the multiplication maps on K are F-linear) and we call the dimension of this the

degree of the field extension, denoted ∣K ∶ F∣.
Given a field extension K of F, we say α ∈ K is F-algebraic if there is some p ∈ F[X]∗

such that p(α) = 0, and it is F-transcendental if there is no such polynomial.

Example 2.37. C is a field extension of R of degree 2, and any z ∈ C is R-algebraic since

p(X) ∶=X2 − 2 Re zX + ∣z∣2 has p ∈ R[X]∗ and p(z) = 0.

Example 2.38. R is an infinite degree field extension of Q, and α in R is Q-algebraic (resp.

Q-transcendental) if and only if it is algebraic (resp. transcendental) in the usual sense.
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For F a subfield of K, and α ∈ K, the set F[α] (recall the definition from Example 2.22)

is an integral domain since it is a subring of a field, but in general F[α] is not a field. We

write F(α) for FracK(F[α]), the field of fractions of F[α], and call it the field F adjoined

by α – we ‘construct F(α) by adjoining α to F’.

Example 2.39. The ring Q[
√

2] contains Q as a subfield and is a ring by the subring test,

and so an integral domain. It follows by Proposition 1.34 that it is in fact a field and so

Q(
√

2) = Q[
√

2].
The ring Q[

√
2 +

√
3] is certainly contained in Q +

√
2Q +

√
3Q +

√
6Q which itself is a

ring by the subring test and hence an integral domain. This ring contains Q as a subfield

and so has an induced Q-vector space structure in which it is (at most) 4-dimensional – in

particular it is finite dimensional – and so by Proposition 1.34 in fact it is a field, and hence

it contains the field Q(
√

2 +
√

3), and we conclude the latter is a field extension of Q of

degree at most 4.

Theorem 2.40 (Tower Law). Suppose that L is a field extension of K and K is a field

extension of F. Then L is a field extension of F, and if either ∣L ∶ F∣ < ∞ or ∣L ∶ K∣, ∣K ∶ F∣ < ∞
then ∣L ∶ F∣ = ∣L ∶ K∣∣K ∶ F∣.

Proof. The first part is immediate because the relation ‘is a subfield of’ is transitive, and

certainly if ∣L ∶ F∣ < ∞ then ∣L ∶ K∣, ∣K ∶ F∣ < ∞. Let e1, . . . , en be a basis for L as a vector

space over K, and let f1, . . . , fm be a basis for K as a vector space over F. Now, for x ∈ L
there are scalars λ1, . . . , λn ∈ K such that x = λ1e1+⋯+λnen, and since f1, . . . , fm is spanning,

for each 1 ⩽ j ⩽ n there are scalars µ1,j, . . . , µm,j ∈ F such that λj = µ1,jf1+⋯+µm,jfm. Hence

x = ∑n
j=1∑m

i=1 µi,jfiej, so we have that (fiej)m,ni=1,j=1 is an F-spanning subset of L. Now suppose

µ1,1, . . . , µm,n ∈ F are such that ∑n
j=1∑m

i=1 µi,jfiej = 0L. Then ∑n
j=1 (∑m

i=1 µi,jfi) ej = 0L, but

∑m
i=1 µi,jfi ∈ K for each 1 ⩽ j ⩽ n and since e1, . . . , en are K-linearly independent we have

∑m
i=1 µi,jfi = 0K for all 1 ⩽ j ⩽ n. But now f1, . . . , fm are F-linearly independent and so

µi,j = 0F for all 1 ⩽ i ⩽ m and 1 ⩽ j ⩽ n. It follows that (fiej)m,ni=1,j=1 is a basis for L as an

F-vector space as required.

Remark 2.41. If F is a finite field, and ∣K ∶ F∣ = n, ∣L ∶ K∣ =m, and ∣L ∶ F∣ = k then ∣K∣ = ∣F∣n,

∣L∣ = ∣K∣m, and ∣L∣ = ∣F∣k from which it follows that k = nm. The proof above is really just

the observation that we only need to use the ‘relative size of F in K’.

Example 2.42 (Example 2.39, contd.). The field Q(
√

2 +
√

3) contains
√

2 = 1
2((

√
2 +√

3)3 − 9(
√

2+
√

3)), and hence also contains
√

3. Now,
√

3 /∈ Q(
√

2). Indeed, suppose for a

contradiction that there were a, b ∈ Q with
√

3 = a + b
√

2 (which would have to be the case

since Q[
√

2] = Q(
√

2)). Then squaring both sides and using the irrationality of
√

2 (which

exactly says that 1 and
√

2 are rationally independent), we have 2ab = 0. But b ≠ 0 since√
3 is irrational; and a ≠ 0 since

√
3/

√
2 is irrational. We have a contradiction.
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By the Tower Law ∣Q(
√

2 +
√

3) ∶ Q(
√

2)∣∣Q(
√

2) ∶ Q∣ = ∣Q(
√

2 +
√

3) ∶ Q∣ ⩽ 4. However,

∣Q(
√

2) ∶ Q∣ ⩾ 2, since
√

2 /∈ Q; and ∣Q(
√

2+
√

3) ∶ Q(
√

2)∣ ⩾ 2 since
√

3 /∈ Q(
√

2). Hence both

of these extensions are of degree exactly 2, and ∣Q(
√

2 +
√

3) ∶ Q∣ is 4.

3 Divisibility

Divisibility in Z is a mysterious relation of intrinsic mathematical interest as well as wider

importance. It is similar to divisibility in rings of the form F[X], and in this section we

look to understand the source of these similarities.

In a commutative ring R we say a is a divisor of b, or a divides b, or b is a multiple

of a, and write a ∣ b, if there is x ∈ R such that b = ax(= xa); or, equivalently, if b ∈ ⟨a⟩; or,

equivalently, if ⟨b⟩ ⊂ ⟨a⟩.

Observation 3.1. If a ∣ b1, . . . , bn, and x1, . . . , xn, y1, . . . , yn ∈ R then a ∣ x1b1y1 +⋯ + xnbnyn.

The relation ∣ is reflexive and transitive – relations that are reflexive and transitive are

sometimes called preorders, and we shall think of divisibility with the language of order in

mind. When a ∣ b and b ∣ a we say that a and b are associates and write a ∼ b; ∼ is an

equivalence relation.

Example 3.2. Divisibility in fields is very simple: all elements divide zero, and every

non-zero element divides every other non-zero element, and so all non-zero elements are

associates.

Lemma 3.3. Suppose that R is an integral domain. Then

(i) for all x ∈ R∗, xa ∣ xb if and only if a ∣ b;

(ii) a ∼ b if and only if there is u ∈ U(R) such that a = bu.

Proof. For (i) the ‘if’ is immediate. To prove the ‘only if’ suppose xa ∣ xb. Then there is

z ∈ R such that x(az) = (xa)z = xb. x ≠ 0 and so left multiplication by x is injective, and

az = b i.e. a ∣ b.
For (ii), again the ‘if’ part is immediate. To prove the ‘only if’ suppose a ∼ b. Then a ∣ b

and b ∣ a, so there are v,w ∈ R such that av = b and bw = a, and hence b(wv) = (bw)v = av =
b = b1. If b ≠ 0 then left multiplication by b is injective and 1 = wv(= vw) so w ∈ U(R) and

we may take u = w; if b = 0 then a = 0, and we may take u to be any unit.

Remark 3.4. The commutative rings where (i) holds are exactly the integral domains, since

if R is a commutative ring that is not an integral domain then there are x, a ∈ R∗ with

xa = 0, and so xa ∣ x0, but a /∣ 0.

Commutative rings where (ii) holds are sometimes called associator rings. Exercise I.6

asks for a proofs that C(R) with the operations of pointwise addition and multiplication,
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which is a commutative ring, is not an associator ring; and that ZN is an associator ring,

though ZN is not an integral domain when N is not prime.

Irreducibles, primes, and uniqueness of factorisation

We say that x ∈ R is irreducible if x /∼ 1 and whenever a ∣ x we have a ∼ x or a ∼ 1; or,

equivalently, if ⟨x⟩ is maximal amongst proper principal ideals. In particular, if y ∼ x and x

is irreducible then y is also irreducible.

Remark 3.5. !△ 0 is sometimes explicitly excluded from being irreducible. If 0 is irreducible

in the sense above, then in fact R is a field: For x ∈ R∗ we have ⟨x⟩ ⊋ ⟨0⟩, and so by the

maximality of ⟨0⟩ amongst proper principal ideals, we conclude that ⟨x⟩ is not proper i.e.

⟨x⟩ = R. Hence there is y ∈ R with 1 = xy(= yx), meaning x ∈ U(R).

Example 3.6. !△ Irreducible elements can have unexpected behaviours: 2 ≡ 2×2×2 (mod 6)
but 2 is irreducible in Z6 (the ideal does not contain 3, and so is proper, and has index 2,

so by Lagrange’s theorem is maximal.

Example 3.7. The irreducible positive integers in Z are exactly the prime numbers, and

hence the irreducible integers are those of the form ±p for p a prime number.

Example 3.8. The algebraic integers are a non-trivial commutative ring containing no

irreducible elements. (Exercise II.4 asks for a proof.)

We say that an element x ∈ R is prime if x /∼ 1, and x ∣ ab implies x ∣ a or x ∣ b. In the

language of ideals ⟨x⟩ is a prime ideal.

Observation 3.9. By induction if x is prime and x ∣ ∏i∈I bi then there is i ∈ I such that x ∣ bi.

Example 3.10. !△ In the ring Z this replaces any previous definition of prime, though we

shall see later that a positive integer is prime in the old sense if and only if it is prime in

the new sense.

The integer 2 is prime because i) it is not either 1 or −1; and ii) if 2 ∣ ab – in words, if

ab is even – then 2 ∣ a or 2 ∣ b – in words, at least one of a or b is even.

The integer 0 is prime because i) it is not either 1 or −1; and ii) if 0 ∣ ab then in fact

0 = ab and so either 0 = a, which can be rewritten as 0 ∣ a, or 0 = b, which can be rewritten

as 0 ∣ b. This is the special case in the integers of the fact in Proposition 2.28 that a ring is

an integral domain if and only if 0R is prime.

Example 3.11. For R an integral domain and α ∈ R, ifX−α ∣ f(X)g(X) then f(α)g(α) = 0

and hence either f(α) = 0 and X−α ∣ f(X) by the Factor theorem, or g(α) = 0 and similarly

X − α ∣ g(X). Since X − α /∼ 1 we have that it is prime.
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Proposition 3.12. Suppose that R is an integral domain. Then r ∈ R is prime as an

element of R, if and only if r is prime as an element of R[X].

Proof. First U(R) = U(R[X]) and so r /∼ 1 in R if and only if r /∼ 1 in U(R[X]).
Suppose r is prime in R[X], and that r ∣ ab in R. If either a or b is 0 then without loss

of generality a = 0, and r ∣ a. Thus we may restrict attention to the case when a, b ∈ R∗. By

primality of r in R[X], without loss of generality r ∣ a in R[X]. Hence there is p(X) ∈ R[X]
such that rp(X) = a. Since a ∈ R∗ we have deg p = deg r + deg p = deg a = 0, and hence r ∣ a
in R as required.

Now suppose that r is prime in R, and r ∣ pq in R[X] with p(X) = a0 + a1X +⋯+ anXn

and q(X) = b0 + b1X + ⋯ + bmXm with r /∣ p in R[X] so that there is some minimal k ∈ N0

such that r /∣ ak in R. Suppose that l ⩾ 0 and that we have shown r ∣ bj in R for all j < l.
The coefficient of Xk+l in pq is

k+l
∑
j=0
ajbk+l−j =

k−1
∑
j=0
ajbk+l−j + akbl +

l−1
∑
j=0
ak+l−jbj.

r divides the left hand side (in R) by hypothesis; it divides the first summand on the right

(in R) since r ∣ ai in R for all 0 ⩽ i < k by minimality of k; and it divides the last summand

(in R) since r ∣ bj in R for all 0 ⩽ j < l by the inductive hypothesis. It follows that r ∣ akbl
in R. But r is prime in R and r /∣ ak in R by hypothesis, so we conclude r ∣ bl in R. Thus

by induction r ∣ bl in R for all l ∈ N0 so that r ∣ q in R[X] as required.

Remark 3.13. !△Neither direction follows simply because R is a subring of R[X]: For

example Z is a subring of Q and 2 is prime in Z; and Z[X] is a subring of Q[X], but 2X is

prime in Q[X], since 2X ∼ X and X is prime in Q[X], but 2X is not prime in Z[X] since

2X ∣ 2 ×X but 2X /∣ 2 and 2X /∣X.

Primes are particularly important because they ensure a uniqueness of factorisation.

To be precise a (possibly empty) vector (x1, . . . , xr) is a factorisation of an element x

if x ∼ x1⋯xr. The xis are called the factors of the factorisation, and if all the factors

are irreducible then we say that x has a factorisation into irreducibles. We say that

a factorisation (x1, . . . , xr) of x into irreducibles is unique if whenever (y1, . . . , ys) is a

factorisation of x into irreducibles there is a bijection π ∶ {1, . . . , r} → {1, . . . , s} such that

xi ∼ yπ(i) for all 1 ⩽ i ⩽ r. !△ In particular, every unit has a unique factorisation into

irreducibles with the convention that the empty product is 1R.

Proposition 3.14. Suppose that R is an integral domain and x ∈ R∗ has a (possibly empty)

factorisation in which every factor is prime. Then any factorisation of x into irreducibles

is unique.

Proof. Let (x1, . . . , xr) be a factorisation of x in which every factor is prime. We shall prove

that if (yi)i∈I are non-zero irreducible elements indexed by a finite set I such that x ∼ ∏i∈I yi
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then there is a bijection π ∶ {1, . . . , r} → I such that xi ∼ yπ(i) for all 1 ⩽ i ⩽ r, and by

transitivity of association the result follows.

We proceed by induction on r. For r = 0 we have ∏i∈I yi ∼ 1 (by definition of the

empty product) and so there is u ∈ U(R) such that ∏i∈I yi = u. Hence for all j ∈ I, we

have yj (u−1∏i∈I∖{j} yi) = 1 and so yj ∈ U(R). It follows that I is empty since no unit is

irreducible, and we have the base case.

Now, suppose that r > 0. Then xr is prime and xr ∣ ∏i∈I yi. By primality there is some

j ∈ I such that xr ∣ yj. But yj is irreducible and xr /∼ 1 and so xr ∼ yj. Cancelling yj we get

x1⋯xr−1 ∼ ∏i∈I∖{j} yi and by the inductive hypothesis there is a bijection π̃ ∶ {1, . . . , r − 1} →
I ∖ {j} such that xi ∼ yπ̃(i) for all 1 ⩽ i ⩽ r − 1. Extend this to a bijection π ∶ {1, . . . , r} → I

by setting π(r) = j and the result is proved.

Proposition 3.15. Suppose that R is an integral domain and x ∈ R∗ is prime. Then x is

irreducible.

Proof. First, x /∼ 1. Now suppose that a ∣ x. Then there is b ∈ R such that x = ab, and b ≠ 0

since x ≠ 0. By primality of x either x ∣ a and so x ∼ a; or ab = x ∣ b, but b ≠ 0 and so a ∣ 1,

and hence a ∼ 1 (since certainly 1 ∣ a).

Example 3.16 (Example 3.11, contd.). For R an integral domain we saw that the poly-

nomials X − α are prime in R[X], but then R[X] is an integral domain and so X − α is

irreducible by the above.

Example 3.17. 2 is an irreducible element of Z[
√
−5] that is not prime; Exercise II.2 asks

for a proof.
!△X (mod 2X) is a non-zero prime in the commutative ring R = Z[X]/⟨2X⟩, but it

is not irreducible. Of course R is not an integral domain! For primality, the evaluation

homomorphism Z[X] → Z;p(X) ↦ p(0) has kernel ⟨X⟩, which contains ⟨2X⟩ and hence by

Example 2.24 R → Z;p(X) (mod 2X) ↦ p(0) is a well-defined surjective ring homomor-

phism. Its kernel is ⟨X (mod 2X)⟩, and Z is an integral domain so X (mod 2X) is prime by

the first isomorphism theorem and Proposition 2.28. To see X (mod 2X) is not irreducible,

⟨3 (mod 2X)⟩ is a proper principal ideal in R which properly contains ⟨X (mod 2X)⟩.

In the integers (as we shall see shortly) the converse of Proposition 3.15 holds as a

consequence of Bezout’s Lemma, and we make a definition which captures rings in which

Bezout’s Lemma holds: we say that an integral domain R is a Bezout domain if every

finitely generated ideal is principal.

Example 3.18. The ring of integers, Z, is a Bezout domain since every ideal is principal,

so in particular every finitely generated ideal in principal. However, the connection with

Bezout’s Lemma is closer: in the language of ideals this states that any ideal in Z that is
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generated by two elements can also be generated by one element i.e. is principal, and by

induction that any finitely generated ideal in Z is principal.

Example 3.19. The algebraic integers Z is a Bezout domain. A proof may be found in

[Kap70, Theorem 102] though the prerequisites are considerable.

Example 3.20. Z[X] is an example of an integral domain that is not a Bezout domain

because (as we saw in Example 2.12) ⟨2,X⟩ is finitely generated but not principal.

Proposition 3.21. Suppose that R is a Bezout domain and x ∈ R is irreducible. Then x is

prime.

Proof. Suppose x ∣ ab and let d be a generator of the ideal ⟨x, b⟩. Then d ∣ x, and since x

is irreducible either d ∼ x or d ∼ 1. Since we also have d ∣ b, if d ∼ x then x ∣ d ∣ b. On the

other hand, if d ∼ 1 then there are elements u, v ∈ R such that 1 = ux+ bv. Multiplying by a

we have aux + abv = a, but x ∣ aux and x ∣ abv, and so x ∣ a as required.

Proposition 3.22. Suppose that R is a Bezout domain. Then for every pair a, b ∈ R there

is d and l with ab = ld, and ⟨a⟩ + ⟨b⟩ = ⟨d⟩, and ⟨a⟩ ∩ ⟨b⟩ = ⟨l⟩.

Proof. Since every finitely generated ideal in R is principal there is some d ∈ R such that

⟨a⟩ + ⟨b⟩ = ⟨a, b⟩ = ⟨d⟩. Let x, y ∈ R be such that d = xa+ by, and z,w ∈ R be such that b = zd
and a = dw; put l ∶= zdw and note ab = ld.

Now, l = bw ∈ ⟨b⟩ and l = za ∈ ⟨a⟩, so l ∈ ⟨a⟩ ∩ ⟨b⟩. On the other hand if m ∈ ⟨a⟩ ∩ ⟨b⟩
then a, b ∣ m so ab ∣ am, and ab ∣ mb. Hence ld = ab ∣ xam +mby = md. If d ≠ 0 then by

cancellation we have l ∣m which is to say m ∈ ⟨l⟩ as required. If d = 0 then a = b = 0, and so

l = 0 and we are done.

Remark 3.23. The set ⟨a⟩ is the set of multiples of a, and the set ⟨b⟩ is the set of multiples of

b, hence ⟨a⟩∩⟨b⟩ is the set of common multiples of a and b, and to say that it is generated by

l is exactly to say that there is a common multiple of a and b that divides all other common

multiples – such a common multiple is called a least common multiple (lcm).

On the other hand if ⟨a⟩ + ⟨b⟩ = ⟨d⟩, then a ∈ ⟨d⟩ and b ∈ ⟨d⟩ so that d ∣ a and d ∣ b i.e.

d is a common divisor of a and b. Moreover there are z,w ∈ R with d = xa + by, so if c is

another common divisor of a and b then c ∣ xa+ by = d – which is to say that every common

divisor of a and b divides d. A common divisor such that every other common divisor is a

factor is called a greatest common divisor (gcd).

Euclidean domains and division algorithms

The process of dividing integers (or polynomials) is captured by the division algorithm, and

rings where we have such an algorithm will be particularly good to work with. A Euclidean

function on an integral domain R is a function f ∶ R∗ → N0 such that
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• f(a) ⩽ f(b) whenever a ∣ b (both non-zero);

• and if a, b ∈ R∗ then either b ∣ a, or there are q ∈ R, r ∈ R∗ such that a = bq + r and

f(r) < f(b).

We say that an integral domain R is a Euclidean domain if R supports at least one

Euclidean function.

Remark 3.24. !△Keating [Kea98, p17] uses an even stronger definition of Euclidean function

f requiring that f(ab) = f(a)f(b) whenever a, b ∈ R∗. This is a genuinely stronger definition,

meaning there are Euclidean domains in our sense but not in the sense of Keating, though

this is a recent discovery: [CNT19, Theorem 1.3].

Example 3.25. Let f ∶ F∗ → N0 be the constant function 1. Since f(a) = f(b) for all a and

b, and every two non-zero units divide each other in a field, f is a Euclidean function for F
and so F is a Euclidean domain.

Example 3.26. If a, b ∈ Z∗ and b /∣ a then let bq be (one of) the multiple(s) of b nearest to

a. Then r ∶= a − bq has ∣r∣ < ∣b∣, and ∣ ⋅ ∣ is a Euclidean function on Z and Z is a Euclidean

domain. (It certainly has ∣a∣ ⩽ ∣b∣ whenever a ∣ b.)

Example 3.27. If a, b ∈ F[X]∗ and b /∣ a then a − bq is not the zero polynomial for any

q ∈ F[X], and we can pick bq such that a − bq has smallest possible degree. Then r ∶= a + bq
has deg r < deg b, since otherwise writing λ for the ratio between the lead coefficient of r and

that of b we have r(X) − λXdeg r−deg bb(X) of the form a − bq′ and of strictly smaller degree

than r. Finally, deg p ⩽ deg q whenever p ∣ q, and so deg is a Euclidean function and F[X]
is a Euclidean domain.

An integral domain in which every ideal is principal is called a principal ideal domain

(PID). In particular, every PID is a fortiori a Bezout domain so all the work of the previous

section applies to PIDs.

Proposition 3.28. Suppose that R is a Euclidean domain. Then R is a PID.

Proof. Let f be a Euclidean function on R and suppose I is a non-zero ideal. Let x ∈ I
have f(x) minimal, and suppose that y ∈ I. If y /∈ ⟨x⟩ then there is q ∈ R and r ∈ R∗ with

y = qx + r and f(r) < f(x) so that r ∈ I, contradicting minimality of f(x).

Remark 3.29. The ring Z[θ], where θ2 − θ + 5 = 0, is an example of a PID that is not a

Euclidean domain, though in view of Exercise II.9 we shall not treat them very differently;

a proof may be found in [Con, Theorem 5.13].
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The ACCP and unique factorisation domains

Other than Bezout’s lemma, the integers enjoy another important property: we cannot ‘keep

dividing indefinitely’, and this is what ensures the existence of factorisations into primes.

An integral domain R has the ascending chain condition on principal ideals or

ACCP if for every sequence (dn)∞n=0 of elements with dn+1 ∣ dn for all n ∈ N0, there is some

N ∈ N0 such that dn ∼ dN for all n ⩾ N .

Proposition 3.30. Suppose that R is a Bezout domain. Then R has the ACCP if and only

if R is a PID.

Proof. For ‘only if’, suppose that I is an ideal in R that is not principal and generate a chain

of elements of I iteratively: Let d0 ∈ I, and suppose we have d0, . . . , dn ∈ I. Since I is not

principal there is d′ ∈ I∖⟨dn⟩ and since R is Bezout there is dn+1 such that ⟨dn+1⟩ = ⟨d′, dn⟩ ⊂ I,

so in particular dn+1 ∈ I. Since d′ /∈ ⟨dn⟩ we have dn+1 ∣ dn and dn+1 /∼ dn. The chain (dn)∞n=0
violates the ACCP, and this contradiction proves the result.

For the ‘if’ direction, suppose that (dn)∞n=0 has dn+1 ∣ dn for all n ∈ N0, so that ⟨d0⟩ ⊂
⟨d1⟩ ⊂ ⋯ and let I = ⋃n∈N0

⟨dn⟩. I is an ideal: If s, t ∈ I then there are n,m ∈ N0 such that

s ∈ ⟨dn⟩ and t ∈ ⟨dm⟩ and so s, t ∈ ⟨dmax{n,m}⟩ by nesting, and hence s − t ∈ ⟨dmax{n,m}⟩ ⊂ I.

Since 0 ∈ I, it is a subgroup by the subgroup test, and finally if r ∈ R then rs, sr ∈ ⟨dn⟩ ⊂ I
as required.

Since R is a PID there is some d ∈ I such that I = ⟨d⟩. Since d ∈ I there is some N ∈ N0

such that dN ∣ d, but then dn ∈ I for all n ∈ N0 and so dN ∣ d ∣ dn for all n ∈ N0 and hence

dn ∼ dN for all n ⩾ N .

Example 3.31. The ring of algebraic integers Z does not satisfy the ACCP giving an

example of a Bezout domain that is not a PID. Exercise II.4 develops a proof of this.

Proposition 3.32. Suppose that R is an integral domain with the ACCP. Then every x ∈ R∗

has a factorisation into irreducibles.

Proof. Write F for the set of elements in R∗ that have a factorisation into irreducibles so

that all units and irreducible elements are in F . F is closed under multiplication, by design

and since R is an integral domain.

Were F not to be the whole of R∗ then there would be some x0 ∈ R∗ ∖ F . Now create a

chain iteratively: at step i suppose we have xi ∈ R∗ ∖ F . Since xi is not irreducible and not

a unit there is yi ∣ xi with yi /∼ 1 and yi /∼ xi; let zi ∈ R∗ be such that xi = yizi. If zi ∼ xi,
then zi ∼ yizi and by cancellation 1 ∼ yi, a contradiction. We conclude yi, zi /∼ xi.

Since F is closed under multiplication we cannot have both yi and zi in F . Let xi+1 ∈
{yi, zi} such that xi+1 /∈ F ; by design xi+1 ∣ xi and xi+1 /∼ xi. This process produces a sequence

⋅ ⋅ ⋅ ∣ x2 ∣ x1 ∣ x0 in which xi /∼ xi+1 for all i ∈ N0 contradicting the ACCP.
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Remark 3.33. Integral domains in which every non-zero element has a factorisation into

irreducibles are called factorisation domains or atomic domains. There are factorisation

domains not having the ACCP but these are not easy to construct; the first example was

given by Anne Grams in [Gra74].

Finally, a unique factorisation domain or UFD is an integral domain in which every

x ∈ R∗ has a unique factorisation into irreducibles.

Theorem 3.34. Suppose that R is a PID. Then R is a UFD.

Proof. Since every PID has the ACCP, Proposition 3.32 tells us that every x ∈ R∗ has a

factorisation into irreducibles. But every PID is a Bezout domain, and every irreducible in

a Bezout domain is prime, and the result follows from Proposition 3.14.

Example 3.35. Z[X] is an example of a UFD that is not a PID; see Exercise II.8 for

details.

Finding irreducibles

Irreducible elements of a ring are of interest in the same way that the elements (in the

sense of the periodic table) are of interest in chemistry: they are the building blocks of the

non-zero elements (in the sense of elements of a set) of the ring.

In PIDs irreducibles are of even more interest because they generate maximal ideals: not

just maximal amongst principal ideals, but maximal amongst all ideals, because all ideals

are principal in a PID. This means that the quotient of a PID by the ideal generated by

an irreducible element produces a field. We have already seen this with the primes in Z
producing the fields Fp, but there are many more fields arising from quotient rings.

We begin with a short technical lemma which can help in finding irreducible polynomials

of degree 2 and 3.

Lemma 3.36. Suppose that R is an integral domain and f ∈ R[X]. Then if f has a root

and degree at least 2, it is not irreducible; and if f is monic of degree at most 3 and is not

irreducible then it has a root.

Proof. If f has a root α then by the Factor theorem X −α divides f . Since deg(X −α) = 1

we have X − α /∼ 1, and since additionally deg f ⩾ 2 we have X − α /∼ f . We conclude that f

is not irreducible.

If f has degree at most 3, and g ∣ f has g /∼ 1 and g /∼ f then let h ∈ R[X]∗ be such

that f = gh. Since g, h ∣ f , and f is monic the lead coefficients of g and h are both

units. Since g /∼ 1 we have deg g > 0; since g /∼ f we have deg g < deg f . But then since

3 ⩾ deg f = deg g+degh we have either deg g = 1 or degh = 1. In the first case, since the lead

coefficient of g is a unit, g has a root in R; in the second case similarly h has a root in R.

It follows that f has a root in R.
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Example 3.37. X2 +X + 1 ∈ F2[X] has no root in F2 and is monic, so is irreducible in

F2[X]. Hence (X2 +X + 1)2 =X4 +X2 + 1 is not irreducible but it is also monic and has no

root.

Example 3.38. The polynomials X3+X2+1 and X3+X+1 are the only degree 3 irreducible

polynomials in F2[X]: There are only eight degree 3 polynomials in F2[X] and the constant

term may not be 0, or else 0 is a root. Hence there are only four polynomials to consider:

X3 +X2 +X + 1, X3 +X + 1, X3 +X2 + 1, and X3 + 1. The first and last of these have 1 as

a root, and the other two do not.

Every finite field has size a power of a prime (Exercise I.7 asks for a proof of this), and

we can produce a field of order pn for p a prime if we can find f ∈ Fp[X] irreducible of

degree n. A proof that we can find such irreducibles, modelled on the proof of Bertrand’s

postulate, may be found in [Sou20]; for now we content ourselves for finding a large class of

fields of order p2:

Example 3.39. We call a ∈ Fp a quadratic non-residue if there is no x ∈ Fp such that

x2 ≡ a (mod p). For example, −1 is a quadratic non-residue if p is a prime with p ≡ 3 (mod 4)
because if x ∈ Fp had x2 ≡ −1 (mod p) then x would generate a subgroup of order 4 in U(Fp).
However, U(Fp) has order p − 1, which is not divisible by 4 violating Lagrange’s theorem.

Thus when p ≡ 3 (mod 4), X2 + 1 is irreducible, and hence Fp[X]/⟨X2 + 1⟩ is a field and

it is 2-dimensional in the Fp-vector space structure induced by the quotient map (composed

with the inclusion of Fp). In particular, it has size p2 and so is not isomorphic to Fq for any

prime q – these are new fields – and it is not isomorphic to Zp2 since this is not even an

integral domain.

The rationals are an infinite field and so checking a polynomial for rational roots does

not yield to the same brute force approaches that can work in finite fields. However, there

is a result of Gauss which lets us connect irreducibility of polynomials in Z[X], where we

only have to check for integer roots, with irreducibility in Q[X].

Example 3.40. !△ 2X ∈ Z[X] is not irreducible in Z[X] because 2 ∣ 2X and 2 /∼ 1 and

2 /∼X. On the other hand 2X ∼X in Q[X], and so it is irreducible in Q[X].

We say that f ∈ Z[X] is primitive if 1 is a greatest common divisor of the coefficients

in f . In particular, if f is primitive and of degree 0 then f is a unit in Z[X].

Theorem 3.41 (Gauss’ Lemma). Suppose that f ∈ Z[X]. Then f is non-constant and

irreducible in Z[X] if and only if f is primitive and irreducible in Q[X].

Proof. Suppose that f is irreducible in Z[X]. This immediately tells us that f is primitive

since it were not there would be n /∼ 1 such that n ∣ f in Z[X]. Since n /∼ 1 we conclude

that n ∼ f (in Z[X]) by irreducibility of f , contradicting the fact that f is non-constant.
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Now, suppose that f = gh for g, h ∈ Q[X]. Then let λ ∈ N∗ be minimal such that there is

q ∈ Q∗ with λq−1g and qh both in Z[X]. Suppose that p ∈ Z is prime with p ∣ λ. Then p is

prime as a constant polynomial in Z[X] and since p ∣ λf = (λq−1g)(qh), we have p ∣ λq−1g
or p ∣ qh (both in Z[X]). The former contradicts minimality of λ directly, and the latter

once we note that (q/p)h ∈ Z[X] and (λ/p)(q/p)−1g = λq−1g ∈ Z[X]. We conclude that λ

has no prime factors and hence (since Z is a UFD) is a unit. Thus q−1g ∣ f in Z[X] and so

by irreducibility of f in Z[X] we conclude that either q−1g ∼ 1 or q−1g ∼ f in Z[X]. Hence

either g ∼ 1 in Q[X] or g ∼ f in Q[X] and finally, since f is non-constant we have f /∼ 1 in

Q[X] and so f is irreducible in Q[X].
Conversely, suppose f ∈ Z[X] is primitive and irreducible in Q[X]. First, f /∼ 1 in Q[X]

and so f is non-constant. Suppose g ∣ f in Z[X]. By irreducibility of f in Q[X], either

g ∼ 1 in Q[X] so deg g = 0, and since f is primitive g ∼ 1 in Z[X]; or g ∼ f in Q[X], then

deg g = deg f and writing f = gh for h ∈ Z[X] we have degh = 0, and since f is primitive

h ∼ 1 in Z[X], whence g ∼ f in Z[X]. The result is proved.

Example 3.42. The polynomial p(X) =X3+X +1 is non-constant and irreducible in Z[X]
because it has degree at most 3 and no root in Z. Hence it is irreducible in Q[X].

Proposition 3.43 (Eisenstein’s Criterion). Suppose that f(X) = anXn +⋯ + a1X + a0 is a

primitive polynomial in Z[X] and p is a prime in Z such that p ∣ ai in Z for all 0 ⩽ i < n;

p /∣ an; and p2 /∣ a0 in Z. Then f is irreducible in Z[X].

Proof. Suppose that f = gh for g, h ∈ Z[X]. Write φ ∶ Z[X] → Fp[X] for the evaluation

homomorphism at X (i.e. mapping X to X) extending the quotient map Z→ Fp. Then

φ(f) = φ(g)φ(h) and deg q ⩾ degφ(q) whenever φ(q) ∈ Fp[X]∗.

Since p ∣ ai for all i < n and p /∣ an we have φ(f) ∼Xn.

Since φ(g) and φ(h) can be factorised into irreducibles, and X ∈ Fp[X] is prime it follows

that φ(g) ∼ X i and φ(h) ∼ Xn−i by Proposition 3.14. If i > 0 then φ(g) has zero constant

coefficient and so p divides the constant coefficient of g. a0 is the product of the constant

coefficients of g and h and since p2 /∣ a0 we conclude that p does not divide the constant

coefficient of h, so i = n. But then deg g ⩾ degφ(g) = n, and n = deg f = deg g + degh, so

degh = 0. Since f is primitive, h is then a unit and so g ∼ f . The case i = 0 is handled

similarly and leads to g ∼ 1

Example 3.44. For n ∈ N∗, the polynomial Xn − 2 is irreducible in Z[X] by Eisenstein’s

Criterion with the prime 2 since it is visibly primitive (with the lead coefficient being 1).
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Part II

Modules
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4 Modules: an introduction

Suppose that R is a ring and M is a commutative group with operation +. A map . ∶ R×M →
M ; (r, x) ↦ r.x is called a scalar multiplication of R on M if

(M1) 1.x = x for all x ∈M ;

(M2) r.(s.x) = (rs).x for all r, s ∈ R and x ∈M ;

(M3) (r + s).x = (r.x) + (s.x) for all r, s ∈ R and x ∈M ;

(M4) r.(x + y) = (r.x) + (r.y) for all r ∈ R and x, y ∈M .

An R-module is a commutative group M , called the additive group of the module and

whose operation is called addition, equipped with a scalar multiplication of R on M . We

often speak of simply the module M if all other data is clear, and in this case R is the ring

of scalars of M .

The elements of M are called vectors and the elements of R are called scalars. The

identity of M is called the zero of the module and denoted 0, and for each x ∈M we write

−x for the unique inverse of x; the map M →M ;x↦ −x is the negation of the module.

Another way of capturing the axioms (M1)–(M4) is to say that the map

Ψ ∶ R → Hom(M,M)

r ↦
M → M

x ↦ r.x

is a well-defined ring homomorphism, where Hom(M,M) is the ring of group homomor-

phisms of the additive group of M . Indeed, to say that Ψ is well-defined, meaning it really

does map into Hom(M,M), is exactly to say (M4); and to say that Ψ is a ring homomor-

phism is exactly (M1)–(M3).

Remark 4.1. Since M is a commutative group, −0 = 0, −(−x) = x for all x ∈M , and negation

is a homomorphism.

(M4) says exactly that for r ∈ R the map M →M ;x ↦ r.x is a group homomorphism of

the additive group of M , so r.0M = 0M and r.(−x) = −(r.x) for all x ∈M .

(M3) says exactly that for x ∈ M the map R → M ; r ↦ r.x is a group homomorphism

from the additive group of R to the additive group of M , so 0R.x = 0M and (−r).x = −(r.x)
for all r ∈ R.

Example 4.2 (Vector spaces as modules). Given a field F, a vector space V is exactly an

F-module, with the two notions of scalar multiplication coinciding.
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Example 4.3 (The zero R-module). For a ring R, the trivial group – usually denoted {0}
in this context – and the scalar multiplication defined by r.0 ∶= 0 for all r ∈ R is a module

called the zero R-module.
!△ If R is trivial this is the only R-module, since x = 1.x = (1 + 1).x = 1.x + 1.x = x + x,

so x = 0 for all x ∈M .

Example 4.4 (The R-module R). For a ring R, the multiplication map on R is also a scalar

multiplication of the ring R on the additive group of R making R into an R-module which

we call the R-module R.

(M1) is exactly the statement that 1R is a left identity of ring multiplication; (M2)

is exactly associativity of ring multiplication; (M3) is exactly that all right multiplication

maps on a ring are homomorphisms of the additive group; and (M4) is exactly that all left

multiplication maps on a ring are homomorphisms.
!△There may be more than one scalar multiplication of the ring R on the additive

group of R: we saw in Example 1.26 that λ.z ∶= λz and λ.z ∶= λ.z are two different scalar

multiplications of C on C.

Example 4.5 (Direct sums). Given R-modules M1, . . . ,Mn, the product group M1×⋯×Mn

equipped with the map (r, x) ↦ (r1.x1, . . . , rn.xn) where the ith instance of . is the scalar

multiplication in Mi, is a scalar multiplication of R on M1×⋯×Mn. This module is denoted

M1 ⊕⋯⊕Mn and is called the direct sum of the R-modules M1, . . . , Mn.

In particular the direct sum of n copies of the R-module R is called the R-module Rn

and the scalar multiplication is given by r.x = (rx1, . . . , rxn).
The F-module Fn is the usual vector space Fn.

Example 4.6 (The Mn(R)-module Rn
col). For a ring R, we write Rn

col for Mn,1(R). By

Proposition 1.44, this is a commutative group and the map Mn(R) ×Rn
col → Rn

col; (A,v) ↦
Av is a scalar multiplication of the ring Mn(R) on Rn

col. We call this the Mn(R)-module

Rn
col.

Example 4.7 (The R-module Rn
col). For a ring R, the additive group Rn

col has the structure

of an R-module called the R-module Rn
col with scalar multiplication

r.

⎛
⎜⎜⎜
⎝

x1
...

xn

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

r 0
. . .

0 r

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

x1
...

xn

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

rx1
...

rxn

⎞
⎟⎟⎟
⎠

for r ∈ R,x ∈ Rn
col.

The F-module Fncol is the usual F-vector space Fncol.

Example 4.8 (The R-module Mn(R)). For a ring R, the additive group Mn(R) has the

structure of an R-module called the R-module Mn(R) with scalar multiplication (r.A)i,j ∶=
rAi,j for all 1 ⩽ i, j ⩽ n.

For fields this is the vector space structure described in Example 1.48.
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Example 4.9 (The Z-module of a commutative group). Given a commutative group M ,

the map Z ×M →M defined by

(n −m).x ∶=
n times

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(x +⋯ + x)−

m times
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(x +⋯ + x)

is a scalar multiplication of Z on M giving it the structure of a Z-module called the Z-

module M .

Example 4.10 (Polynomial rings as R-modules). The additive group of the ring R[X] can

be made into an R[X]-module – for example the R[X]-module R[X] – but it can also be

made into an R-module with scalar multiplication r.(a0+a1X+⋯+anXn) = (ra0)+(ra1)X+
⋯ + (ran)Xn.

Example 4.11 (Modules over matrix rings as vector spaces). An Mn(F)-module M is also

vector space over F with scalar multiplication

λ.v ∶=
⎛
⎜⎜⎜
⎝

λ 0
. . .

0 λ

⎞
⎟⎟⎟
⎠
.v for λ ∈ F, v ∈Mn(F).

Example 4.12 (Vector spaces with an endomorphism). For T ∶ V → V an F-linear map we

can define a scalar multiplication of F[X] on the additive group of V by

(a0 + a1X +⋯ + adXd).v ∶= a0.v + a1.T (v) +⋯ad.T d(v) for all p ∈ F[X] and v ∈ V

where the . on the right is the scalar multiplication of F on V resulting from the given vector

space structure.

Linear maps

As with rings we shall be interested in the structure-preserving maps for modules: An R-

linear map between two R-modules M and N is a group homomorphism φ ∶M → N with

φ(r.x) = r.φ(x) for all x ∈M and r ∈ R.

Remark 4.13. Since an R-linear map φ ∶ M → N is a group homomorphism, φ(0M) = 0N

and φ(−x) = −φ(x) for all x ∈M .

Example 4.14 (Example 4.2, contd.). For vector spaces V and W over a field F, the linear

maps V →W in the usual sense are exactly the F-linear maps in the sense defined here.

Example 4.15. For an R-module M and elements x1, . . . , xn ∈ M , the map Φx ∶ Rn →
M ; r ↦ r1.x1 +⋯ + rn.xn is R-linear by (M2) and (M3).
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Example 4.16. For A ∈ Mn,m(R) the map Rn → Rm; v ↦ vA between the R-modules Rn

and Rm is an R-linear map between the R-modules Rn and Rm since r.(vA) = r(vA) =
(rv)A = (r.v)A for all r ∈ R and v ∈ Rn, and (v + w)A = vA + wA for all v,w ∈ Rn by

Proposition 1.44.

Example 4.17. For A ∈ Mn,m(R) the map Rm
col → Rn

col; v ↦ Av between the R-modules

Rm
col and Rn

col is additive since A(v +w) = Av +Aw by Proposition 1.44.

If R is commutative then (writing ∆(r) for the matrix with rs on the diagonal and

0 elsewhere as in Example 1.48) we have ∆(r) is in the centre of the ring Mn(R) and

so A(r.v) = A(∆(r)v) = (A∆(r))v = (∆(r)A)v = ∆(r)(Av) = r.(Av). Hence the map

Rm
col → Rn

col; v ↦ Av is R-linear.

If R is a non-commutative ring then there are elements r, s ∈ R with rs ≠ sr and the map

R1
col → R1

col;x↦ rx is not linear since r(s.1) = rs ≠ sr = s.(r1).

Example 4.18. For M an R-module and x ∈ M , the map φ ∶ R → M ; r ↦ r.x from the

R-module R to M is R-linear since (r + s).x = (r.x) + (s.x) by (M3) for M , and (s.r).x =
(sr).x = s.(r.x) for all r, s ∈ R by definition of scalar multiplication in the R-module R and

(M2) for M .

Example 4.19. If R is commutative then the scalar multiplication map M → M ;x ↦ s.x

is R-linear since s.(r.x) = (sr).x = (rs).x = r.(s.x) for all r ∈ R and x ∈M .

On the other hand, for any ring R if M is the zero-module then the map M →M ;x↦ s.x

is R-linear.

Proposition 4.20 (Algebra of linear maps). Suppose that M and N are R-modules. Then

L(M,N), the set of R-linear maps M → N , is a subgroup of Hom(M,N) (under pointwise

addition). Furthermore, if φ ∈ L(M,N) and ψ ∈ L(N,P ) then ψ○φ ∈ L(M,P ), and L(M,M)
is a subring of Hom(M,M).

Proof. Certainly L(M,N) is a subset of Hom(M,N), and the zero map z ∶M → N ;x↦ 0N

is a homomorphism, and linear since z(r.x) = 0N = r.0N = r.z(x) and so L(M,N) is non-

empty. If φ,ψ ∈ L(M,N) then φ − ψ is a homomorphism since Hom(M,N) is a group,

and (φ − ψ)(r.x) = φ(r.x) − ψ(r.x) = r.φ(x) − r.φ(x) = r.(φ(x) − ψ(x)) = r.((φ − ψ)(x)) so

φ − ψ ∈ L(M,N) and hence L(M,N) is a subgroup by the subgroup test.

For the second part, ψ○φ is a group homomorphism, and it is R-linear since (ψ○φ)(r.x) =
ψ(φ(r.x)) = ψ(r.φ(x)) = r.ψ(φ(x)) = r.(ψ○φ)(x) for all r ∈ R and x ∈M i.e. ψ○φ ∈ L(M,P )
as claimed. Finally, the identity map ι ∶ M → M is R-linear since ι(r.x) = r.x = r.ι(x) for

all r ∈ R and x ∈M , so 1Hom(M,M) ∈ L(M,M). L(M,M) is closed under differences by the

first part of the proposition, and is closed under products by what we just showed. By the

subring test L(M,M) is a subring of Hom(M,M) as claimed.
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Remark 4.21. If R is a commutative ring then we can define a scalar multiplication on

L(M,N) by (r.φ)(x) ∶= φ(r.x) giving it the structure of an R-module.
!△ In Exercise III.10 there is an example of a ring R and R-module M such that the

commutative group L(M,M) cannot be given the structure of an R-module.

Isomorphisms and submodules

We say that φ ∶M → N is an R-linear isomorphism if it is R-linear and it has an R-linear

inverse.

Observation 4.22. If φ ∶ M → N is an R-linear bijection then its inverse map is a group

homomorphism, and φ−1(λ.x) = φ−1(λ.φ(φ−1(x))) = φ−1(φ(λ.φ−1(x))) = λ.φ−1(x) so that φ

is an R-linear isomorphism.

Example 4.23. The map

Rn → Rn
col; r ↦

⎛
⎜⎜⎜
⎝

r1
...

rn

⎞
⎟⎟⎟
⎠

is an R-linear bijection between the R-module Rn and the R-module Rn
col, and hence an

R-linear isomorphism.

Example 4.24. The map Q → Q;x ↦ 2x is a Z-linear bijection from the Z-module Q to

itself arising via scalar multiplication as in Example 4.19. !△The inverse map, while also

Z-linear does not arise via scalar multiplication when Q is considered as a Z-module since

there is no integer z ∈ Z such that 2zx = x for all x ∈ Q.

An R-module N is a submodule of an R-module M if the map j ∶ N →M ;x ↦ x is a

well-defined R-linear map. We write N ⩽M and also say that N is proper if M ≠ N .

Example 4.25 (Example 4.2, contd.). When V is a vector space, a submodule of V is

exactly a subspace of V .

Example 4.26 (Left ideals are submodules). I is a left ideal in a ring R if and only if I is

a submodule of the R-module R.

Example 4.27. The ideal ⟨2⟩ in the ring Z is a proper submodule of the Z-module Z and

it is Z-linearly isomorphic to the Z-module Z via Z→ ⟨2⟩; z ↦ 2z.
!△This is quite different from the situation with vector spaces: the only subspaces of

the F-vector space F are {0} and F.

Lemma 4.28 (Submodule test). Suppose that M is an R-module and ∅ ≠ N ⊂ M has

x + y ∈ N for all x, y ∈ N , and r.x ∈ N whenever x ∈ N and r ∈ R. Then addition on M

and scalar multiplication of R on M restrict to well-defined operations on N giving it the

structure of a submodule of M .
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Proof. First, −1 ∈ R and (−1).x = −x for all x ∈M so that by the hypotheses, N is non-empty

and x − y ∈ N whenever x, y ∈ N . It follows that N with addition on M restricted to N ,

is a subgroup of M by the subgroup test. Since r.x ∈ N whenever r ∈ R and x ∈ N , scalar

multiplication of R on M restricts to a well-defined function R ×N → N which a fortiori

satisfies (M1)–(M4). Finally, the inclusion map is R-linear and the result is proved.

As with rings, given a subset satisfying the hypotheses of the above lemma, we make the

common abuse of calling it a submodule on the understanding that we are referring to the

induced operations.

Quotients and the first isomorphism theorem

Theorem 4.29 (Quotient modules). Suppose that M is an R-module and N is a submodule

of M . Then the commutative group M/N may be endowed with the structure of an R-module

such that q ∶M →M/N ;x↦ x +N is an R-linear surjection with kernel N .

Proof. Since N is a commutative subgroup of M we have that M/N is a commutative group

and the map q is a surjective homomorphism with kernel N by definition of the quotient

group. Define a scalar multiplication of R on M/N by r.(x +N) ∶= r.x +N . This is well-

defined: if x +N = y +N then x + n = y + n′ for some n,n′ ∈ N , so r.x + r.n = r.y + r.n′, but

since N is a submodule r.n, r.n′ ∈ N and hence r.x +N = r.y +N as required.

(M1) follows since 1.(x +N) = (1.x) +N = x +N for all x ∈ M by (M1) for the scalar

multiplication on M . (M2) follows since r.(s.(x+N)) = r.(s.x+N) = (r.(s.x))+N = (rs).x+
N = (rs).(x+N) for all r, s ∈ R and x ∈M by (M2) for the scalar multiplication on M . (M3)

follows by (M3) for the scalar multiplication on M and the fact that q is a homomorphism so

(r+s).(x+N) = (r+s).x+N = ((r.x)+(s.x))+N = (r.x+N)+(s.x+N) = r.(x+N)+s.(x+N)
for all r, s ∈ R and x ∈ M . Finally, (M4) follows by (M4) for the scalar multiplication on

M and the fact that q is a homomorphism so r.((x + N) + (y + N)) = r.((x + y) + N) =
r.(x + y) +N = ((r.x) + (r.y)) +N = (r.x +N) + (r.y +N) for all r ∈ R and x, y ∈M .

Finally, it remains to note that q is R-linear by definition and the result is proved.

Remark 4.30. Since the map q above is a surjective R-linear map the scalar multiplication

on M/N is determined by q: r.(x+N) = r.x+N for all x ∈M and r ∈ R, where the first . is

scalar multiplication in M/N , and the second in M .

By the R-module M/N we mean the module structure of this theorem.

Theorem 4.31 (first isomorphism theorem for modules). Suppose that φ ∶ M → N is R-

linear. Then kerφ is a submodule of M ; Imφ is a submodule of N ; and the map

φ̃ ∶M/kerφ→ N ;x + kerφ↦ φ(x)
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is an injective R-linear map with image Imφ. In particular, Imφ is R-linearly isomorphic

to M/kerφ.

Proof. Both kerφ and Imφ are subgroups of the additive groups of M and N respectively by

the first isomorphism theorem for groups since φ is, in particular, a group homomorphism.

Therefore by the submodule test kerφ and Imφ are submodules since if x ∈ kerφ then

0N = r.0N = r.φ(x) = φ(r.x) and so r.x ∈ kerφ; and if x ∈ Imφ then there is y ∈M such that

x = φ(y) and so r.x = r.φ(y) = φ(r.y) ∈ Imφ.

By Theorem 4.29 M/kerφ is an R-module. φ̃ is an injective well-defined group homo-

morphism by the first isomorphism theorem for groups. It remains to check that it is linear

which follows since φ̃(r.(x + kerφ)) = φ̃((r.x) + kerφ) = φ(r.x) = r.φ(x) = r.φ̃(x + kerφ) for

all r ∈ R and x ∈M .

5 Free modules

Generation

For an R-module M and Λ ⊂M we write

⟨Λ⟩ ∶= {r1.x1 +⋯ + rn.xn ∶ n ∈ N0, x1, . . . , xn ∈ Λ, r1, . . . , rn ∈ R}.

This is a submodule of M by the submodule test, and we call this submodule the module

generated by Λ. For x1, . . . , xn ∈M we write

⟨x1, . . . , xn⟩ ∶= {r1.x1 +⋯ + rn.xn ∶ r1, . . . , rn ∈ R},

and since 0R.xi = 0M we have that ⟨x1, . . . , xn⟩ = ⟨{x1, . . . , xn}⟩.

Example 5.1. An R-module M is generated by the set M itself, and M is generated by

the empty set if and only if it is the zero R-module.

Example 5.2 (Vector spaces, contd.). For F a field, V an F-module, and Λ ⊂ V the

submodule generated by Λ is the same as subspace spanned by Λ.

Example 5.3. Write ei ∶= (0, . . . ,0,1,0, . . . ,0) for the elements of Rn with 1R in the ith

position and 0R elsewhere. Similarly writer eti for the column vector in Rn
col with 1R in the

ith row and 0Rs elsewhere.

{e1, . . . , en} generates the R-module Rn since if r ∈ Rn then r = r1.e1 + ⋯ + rn.en, and

similarly {et1, . . . , etn} generates Rn
col.

If there is a finite set Λ such that M is generated by Λ then we say that M is finitely

generated. If M is generated by a set of size 1 we say that M is cyclic.
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Example 5.4 (Commutative groups, contd.). A commutative group M is cyclic if and only

if the Z-module M is cyclic.

For M a finite commutative group, the Z-module M is finitely generated since it is

generated by the finite set M .

Example 5.5. The Z-module Q is not cyclic. Indeed, for any q ∈ Q∗ there is no z ∈ Z such

that zq = q/2, and since Q ≠ ⟨0⟩ the claim follows. !△The Q-module Q is cyclic and it is

generated by any set {q} with q ∈ Q∗.

Example 5.6. For R a ring, the R-module R is cyclic – it is generated by 1 – and if K a

submodule of the R-module R (equivalently K is a left ideal in the ring R), the quotient

module R/K is cyclic – it is generated by 1 +K.

In fact every cyclic R-module is isomorphic to a module of this form: if M is a cyclic

R-module then the map φ ∶ R → M ; r ↦ r.x is surjective and R-linear, and so by the first

isomorphism theorem there is a submodule K of the R-module R – in this case kerφ – such

that R/K is R-linearly isomorphic to M .

Observation 5.7. The R-linear image of an R-module generated by a set of size n is generated

by a set of size n.

Proposition 5.8. Suppose that φ ∶ M → N is an R-linear map and Imφ and kerφ are

generated by sets of sizes n and m respectively. Then M is generated by a set of size n+m.

Proof. Let x1, . . . , xn ∈M be such that φ(x1), . . . , φ(xn) generate Imφ, and let xn+1, . . . , xn+m

generate kerφ. Then if x ∈M , there are elements r1, . . . , rn ∈ R such that φ(x) = r1.φ(x1) +
⋯+rn.φ(xn), and hence φ(x−r1.x1−⋯−rn.xn) = 0 and so there are elements rn+1, . . . , rn+m ∈ R
with x − r1.x1 −⋯− rn.xn = rn+1.xn+1 +⋯+ rn+m.xn+m. Rearranging the result is proved.

Example 5.9 (Vector spaces, contd.). The proof above is modelled on a proof of the Rank-

Nullity theorem, and in fact since a basis for a vector space is certainly a spanning and so

generating set, it tells us that if V is a vector space and T ∶ V →W is linear with finite rank

and nullity then dimV ⩽ rk(T )+n(T ). The Rank-Nullity theorem is the stronger claim that

we have equality here.

In an R-module M , we say E ⊂M is a minimal generating set if E generates M and

no proper subset of E generates M .

Observation 5.10. A finite generating set for an R-module M contains a minimal generating

set by induction.

Example 5.11. !△Minimal generating sets need not exist: Exercise III.1 asks for a proof

that the Z-module Q does not have a minimal generating set. In particular, in view of the

preceding observation, the Z-module Q is not finitely generated.
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Example 5.12. The set {2,3} is a generating set for the Z-module Z, and no proper subset

is generating so it is a minimal generating set. !△There are smaller generating sets of Z –

{1} and {−1}.

Proposition 5.13. Suppose that M is a finitely generated R-module. Then every generating

set for M contains a finite subset that is also a generating set. In particular, every minimal

generating set is finite.

Proof. Let {x1, . . . , xn} generate M and suppose that E is a generating set for M . For each

1 ⩽ i ⩽ n there is a finite subset Si ⊂ E such that xi ∈ ⟨Si⟩, and hence x1, . . . , xn ∈ ⟨⋃ni=1 Si⟩.
Since {x1, . . . , xn} generates M we have M = ⟨x1, . . . , xn⟩ ⊂ ⟨⟨⋃ni=1 Si⟩⟩ = ⟨⋃ni=1 Si⟩. However,

⋃ni=1 Si ⊂ E , and a finite union of finite sets is finite as required.

Linear independence

For an R-module M we say that a finite sequence x1, . . . , xn ∈M is (R-)linearly indepen-

dent if whenever r1, . . . , rn ∈ R have r1.x1 +⋯+ rn.xn = 0M we have r1, . . . , rn = 0R. A set Λ

is (R-)linearly independent if for every n ∈ N0, x1, . . . , xn is R-linearly independent for

every sequence of distinct x1, . . . , xn ∈ Λ.

Sets and sequences are (R-)linearly dependent if they are not R-linearly independent.

Example 5.14. In an R-module M the empty set or empty sequence is R-linearly indepen-

dent.

Example 5.15 (Vector spaces, contd.). A subset of a vector space is linearly independent

in the usual sense if and only if it is linearly independent in the sense here.

Example 5.16 (Example 5.3, cont.). e1, . . . , en are R-linearly independent in Rn: if r1.e1 +
⋯ + rn.en = 0 for r1, . . . , rn ∈ R then r1, . . . , rn = 0, and similarly for et1, . . . , e

t
n in Rn

col.

Example 5.17 (Commutative groups, contd.). If M is a finite commutative group then

by Lagrange’s theorem ∣M ∣.x = 0 for all x in the Z-module M , and hence there are no

non-empty Z-linearly independent subsets of M .

Example 5.18. The Z-module Q has no Z-linearly independent subset of size 2. Indeed,

suppose that e1, e2 ∈ Q were a Z-linearly independent sequence with e2 ≠ 0. There is z ∈ Z∗

such that ze1, ze2 ∈ Z, and hence (ze2).e1 + (−ze1).e2 = 0 but ze2 ≠ 0 so e1, e2 is Z-linearly

dependent – a contradiction.

Bases

For an R-module M we say that E is a basis for M if it is a linearly independent generating

set for M . A module with a basis is called free.
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Example 5.19. The zero R-module has the empty set as a basis and so is free.
!△ If R is trivial then {0} is also a basis since it is R-linearly independent.

Example 5.20 (Commutative groups, contd.). If M is a non-trivial finite commutative

group then the Z-module M is not free since the only independent sets are empty and the

module generated by the empty set has only one element: zero.

Example 5.21. The Z-module Q is not free: If it were it would have a basis E . If E had more

than one element then it would contain two linearly independent elements contradicting the

conclusion of Example 5.18; if it had strictly fewer than two elements then Q would be cyclic

contradicting the conclusion of Example 5.5.

Example 5.22 (Example 5.3, contd.). In view of Examples 5.3 & 5.16, {e1, . . . , en} is a

basis for the R-module Rn and {et1, . . . , etn} is a basis for the R-module Rn
col – these are

both free modules.

Example 5.23 (Example 4.15, contd.). If {x1, . . . , xn} is a basis for the R-module M then

the linear map Φx ∶ Rn → M ; r ↦ r1.x1 + ⋯ + rn.xn is injective since {x1, . . . , xn} is linearly

independent, and surjective since {x1, . . . , xn} is a generating set, hence Φx is an R-linear

isomorphism.

Proposition 5.24. Suppose that M is an R-module with a basis E . Then E is a minimal

generating set. In particular, if M is finitely generated then E is finite.

Proof. Suppose that E ′ ⊂ E generates M and e ∈ E ∖ E ′. Since E ′ generates M , 1.e = e ∈ ⟨E ′⟩
and so {e}∪E ′ is linearly dependent. But this is contained in E which is linearly independent

and linear independence is preserved under passing to subsets. This contradiction establishes

the first claim. The last part follows by Proposition 5.13.

Example 5.25. The set {2,3} is a minimal generating set for the Z-module Z, but it is not

linearly independent and so not a basis.

Example 5.26 (Vector spaces, contd.). A minimal generating set in a vector space is

linearly independent and so a basis. In particular, any finitely generated vector space has

a minimal generating set and so has a finite basis. In other words, every finitely generated

vector space has a basis, by contrast with the case of more general modules (Example 5.20).

Remark 5.27. !△ In a vector space any two finite bases have the same size – this is sometimes

called the Dimension theorem. For more general rings, finite bases of modules over those

rings need not have the same size: the zero module over the trivial ring has ∅ and {0} as

bases of sizes 0 and 1 respectively; Exercise III.9 gives an example of a non-trivial ring and

a module over that ring with bases of sizes 1 and 2.
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Presentations

A quotient of a finitely generated module is finitely generated, but the same is not true of

submodules:

Example 5.28. In Exercise II.4 we saw that Z contains an ideal that is not finitely gener-

ated, and this ideal is therefore a submodule of the cyclic Z-module Z that is not finitely

generated.

A matrix A ∈Mn(R) is said to be upper triangular if Ai,j = 0 whenever j < i.

Proposition 5.29. Suppose that R is a PID and M ⩽ Rn. Then there is an upper triangular

A ∈Mn(R) such that M = RnA.

Proof. For each 1 ⩽ i ⩽ n the set Mi ∶= {xi ∈ R ∶ x ∈M and x1, . . . , xi−1 = 0} is a submodule of

the R-module R and since R is a PID every such submodule is an ideal and generated by an

element of R. Let A ∈Mn(R) be such that the ith row of A is (0, . . . ,0,Ai,i, . . . ,Ai,n) ∈M
where Ai,i generates Mi.

By design A is upper triangular and every row of A is in M , so any linear combination

of rows of A is in M – in other words RnA ⊂ M . In the other direction, suppose that

M ∖RnA is non-empty. The zero vector is not in this set, and so if it is non-empty then it

contains an element x with i ⩽ n maximal such that x1, . . . , xi−1 = 0. By design Ai,i ∣ xi, say

xi = zAi,i. Then x′ ∶= x − (0, . . . ,0, z,0, . . . ,0)A ∈M ∖RnA, but x′1, . . . , x
′
i = 0 contradicting

the maximality of i.

Remark 5.30. Being free and finitely generated are properties that are preserved by isomor-

phisms so in particular, if M is a submodule of a free and finitely generated module over a

PID then it is finitely generated.

Example 5.31 (Vector spaces, contd.). For V a subspace of Fn the above tells us that V

is generated by at most n vectors since any field is a PID and so dimW ⩽ n.

An R-module M has a finite presentation with presentation matrix A ∈Mm,n(R)
if there is an R-linear isomorphism Φ ∶ Rn/RmA→M .

Example 5.32. For M an R-module with basis x1, . . . , xn, the linear map Rn → M ; r ↦
r1.x1 + ⋯ + rn.xn is an R-linear isomorphism. For any m ∈ N0, we have Rm0m×n = {0Rn}
and hence by the first isomorphism theorem M has a finite presentation with presentation

matrix 0m×n.

Observation 5.33. A module with a finite presentation is finitely generated. On the other

hand, Exercise III.6 gives an example of a finitely generated module that does not have a

finite presentation.
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Example 5.34. For R a PID and M an R-module generated by x1, . . . , xn there is an R-

linear surjection Rn →M ; r ↦ r1.x1 +⋯+ rn.xn. By Proposition 5.29 the kernel of this map

is RnA for some upper triangular A ∈Mn(R), and hence by the first isomorphism theorem

M has a finite presentation with presentation matrix A.

6 Elementary operations and the Smith normal form

There are three types of elementary column (resp. row) operation that can be applied

to matrices in Mn,m(R) – transvections, dilations, and interchanges – and these correspond

to right (resp. left) multiplication by matrices from Mm(R) and Mn(R) respectively.

Write En(i, j) for the matrix in Mn(R) with 0Rs everywhere except for row i and column

j where the entry is 1R. Then En(i, j)En(k, l) = En(i, l) if j = k and En(i, j)En(k, l) = 0n×n

if j ≠ k.

Transvections

For 1 ⩽ i, j ⩽ m with i ≠ j and λ ∈ R put Tm(i, j;λ) = Im + λ.Em(i, j) (where . is the scalar

multiplication of the R-module Mm(R)) so that

Tm(i, j;λ)Tm(i, j;−λ) = Im = Tm(i, j;−λ)Tm(i, j;λ).

Given A ∈ Mn,m(R), the matrix ATm(i, j;λ) is the matrix A with the ith column times λ

added to the jth column; we write this

A
cj↦cj+ciλÐÐÐÐÐ→ ATm(i, j;λ).

Similarly the matrix Tn(i, j;λ)A is the matrix A with λ times the jth row added to the ith

row; we write this

A
ri↦ri+λrjÐÐÐÐÐ→ Tn(i, j;λ)A.

Dilations

For 1 ⩽ i ⩽m and u ∈ U(R) let Dm(i;u) = Im + (u − 1).Em(i, i) so that

Dm(i;u)Dm(i;u−1) = Im =Dm(i;u−1)Dm(i;u).

The matrix ADm(i;u) is the matrix with the ith column replaced by the ith column times

u and as above we write this and the corresponding row operation as

A
ci↦ciuÐÐÐ→ ADm(i;u) and A

ri↦uriÐÐÐ→Dn(i;u)A.
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Interchanges

For 1 ⩽ i, j ⩽m let Sm(i, j) = Im+Em(i, j)+Em(j, i)−Em(i, i)−Em(j, j) so that Sm(i, j)2 = Im.

The matrix ASm(i, j) is the matrix A with columns i and j swapped and as above we write

A
ci↔cjÐÐÐ→ ASm(i, j) and A

ri↔rjÐÐÐ→ Sn(i, j)A

for this and the corresponding row operation.

Remark 6.1. We write GLn(R) for the group U(Mn(R)), and GEn(R) for the subgroup of

GLn(R) generated by the transvections, dilations, and interchanges.

In general GL2(R) ≠ GE2(R), though this can be hard to show. An example, taken from

[Coh66, p23], is the ring Z[θ] where θ2 − θ + 5 = 0. Here the matrix

A ∶=
⎛
⎝

3 − θ 2 + θ
−3 − 2θ 5 − 2θ

⎞
⎠

is in GL2(Z[θ]) but not in GE2(Z[θ]).

We say that A,B ∈ Mn,m(R) are equivalent by elementary operations and write

A ∼E B if there is a sequence A =∶ A0 → A1 → ⋯ → Ak−1 → Ak ∶= B such that Ai+1 is the

result of an elementary row or column operation applied to Ai for all 0 ⩽ i < k.

We say that A,B ∈ Mn,m(R) are equivalent and write A ∼ B if there are matrices

S ∈ GLn(R) and T ∈ GLm(R) such that A = SBT .

Observation 6.2. Both ∼E and ∼ are equivalence relations, and in view of the definition of

GEn(R) we have A ∼E B if and only if there is P,Q ∈ GEn(R) such that A = PBQ, so that

A ∼E B implies A ∼ B.

Example 6.3. For A ∈Mn,m(R) write r1, . . . , rn for its rows, and c1, . . . , cm for its columns.

For any σ ∈ Sn and τ ∈ Sm we have

⎛
⎜⎜⎜
⎝

r1
...

rn

⎞
⎟⎟⎟
⎠
∼E

⎛
⎜⎜⎜
⎝

rσ(1)
...

rσ(n)

⎞
⎟⎟⎟
⎠

and ( c1 ⋯ cm ) ∼E ( cτ(1) ⋯ cτ(m) ) ,

since σ (resp. τ) is generated by transpositions, and interchanging rows (resp. columns) i

and j corresponds to apply the transposition (ij) to the row (resp. column) indices.

We say that A ∈ Mn,m(R) is diagonal if Ai,j = 0 whenever i ≠ j. !△ In particular, we

do not insist that that A be square.

Example 6.4. If A ∈Mn,m(R) is diagonal, interchanging rows i and j and columns i and j

gives the matrix A with Ai,i and Aj,j interchanged. Hence for any σ ∈ Smin{n,m} we have

A ∼E

⎛
⎜⎜⎜⎜
⎝

Aσ(1),σ(1) 0 ⋯

0 Aσ(2),σ(2)
. . .

...
. . .

. . .

⎞
⎟⎟⎟⎟
⎠

.
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Example 6.5. Two matrices A,B ∈ Mn(F) are said to be similar if there is P ∈ GLn(F)
such that A = P −1BP , and so if A and B are similar then A ∼ B. However,

A ∶=
⎛
⎝

0 1

0 0

⎞
⎠

c1↔c2ÐÐÐ→
⎛
⎝

1 0

0 0

⎞
⎠
=∶ B,

so that here A ∼E B, but B is diagonal and A is not similar to a diagonal matrix i.e. it is

not diagonalisable.

Theorem 6.6. Suppose that R is a Euclidean domain. Then every A ∈Mn,m(R) is equiva-

lent by elementary operations to a diagonal matrix.

Proof. Let Ak be those matrices B ∼E A with the additional property that whenever i < k
and j ≠ i, or j < k and i ≠ j, we have Bi,j = 0. We shall show by induction that Ak is

non-empty for k ⩽ min{m,n} + 1; A1 contains A and so is certainly non-empty.

Let f be a Euclidean function for R, and suppose that Ak ≠ ∅ and k ⩽ min{m,n}. Let

B ∈ Ak be a matrix with f(Bk,k) minimal (with the convention that f(0) = ∞). First we

show that Bk,k ∣ Bk,i for all i > k (including in the case Bk,k = 0): if not, there is some i > k
with Bk,i = qBk,k + r and f(r) < f(Bk,k), so we apply the elementary operations

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B1,1 0 ⋯ 0 ⋯ 0 ⋯ 0

0
. . .

. . .
...

...
...

...
. . .

. . . 0 ⋯ 0 ⋯ 0

0 ⋯ 0 Bk,k ⋯ Bk,i ⋯ Bk,m

...
...

...
...

...

0 ⋯ 0 Bn,k ⋯ Bn,i ⋯ Bn,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ci↦ci−ckqÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B1,1 0 ⋯ 0 ⋯ 0 ⋯ 0

0
. . .

. . .
...

...
...

...
. . .

. . . 0 ⋯ 0 ⋯ 0

0 ⋯ 0 Bk,k ⋯ Bk,i −Bk,kq ⋯ Bk,m

...
...

...
...

...

0 ⋯ 0 Bn,k ⋯ Bn,i −Bn,kq ⋯ Bn,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ck↔ciÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B1,1 0 ⋯ 0 ⋯ 0 ⋯ 0

0
. . .

. . .
...

...
...

...
. . .

. . . 0 ⋯ 0 ⋯ 0

0 ⋯ 0 Bk,i −Bk,kq ⋯ Bk,k ⋯ Bk,m

...
...

...
...

...

0 ⋯ 0 Bn,i −Bn,kq ⋯ Bn,k ⋯ Bn,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=∶ B′.
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Then B′ ∈ Ak has B′
k,k = Bk,i − qBk,k = r, but f(B′

k,k) = f(r) < f(Bk,k) which contradicts

the minimality in our choice of B. Similarly, but with row operations in place of column

operations, Bk,k ∣ Bi,k for all i > k.

For k < i ⩽m let qi be such that Bk,i = Bk,kqi. Apply elementary column operations

B
ck+1↦ck+1−ckqk+1ÐÐÐÐÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B1,1 0 ⋯ 0 0 0 ⋯ 0

0
. . .

. . .
...

...
...

...
...

. . .
. . . 0 0 0 ⋯ 0

0 ⋯ 0 Bk,k 0 Bk,k+2 ⋯ Bk,m

0 ⋯ 0 Bk+1,k Bk+1,k+1 −Bk+1,kqk+1 Bk+1,k+2 ⋯ Bk+1,m
...

...
...

...
...

...

0 ⋯ 0 Bn,k Bn,k+1 −Bn,kqk+1 Bn,k+2 ⋯ Bn,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

...

cm↦cm−ckqmÐÐÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B1,1 0 ⋯ 0 0 ⋯ 0

0
. . .

. . .
...

...
...

...
. . .

. . . 0 0 ⋯ 0

0 ⋯ 0 Bk,k 0 ⋯ 0

0 ⋯ 0 Bk+1,k Bk+1,k+1 −Bk+1,kqk+1 ⋯ Bk+1,m −Bk+1,kqm
...

...
...

...
...

0 ⋯ 0 Bn,k Bn,k+1 −Bn,kqk+1 ⋯ Bn,m −Bn,kqm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=∶ B′.

For k < i ⩽ n let pi be such that Bi,k = piBk,k. Apply elementary row operations

B′ rk+1↦rk+1−pk+1rkÐÐÐÐÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B1,1 0 ⋯ 0 0 ⋯ 0

0
. . .

. . .
...

...
...

...
. . .

. . . 0 0 ⋯ 0

0 ⋯ 0 Bk,k 0 ⋯ 0

0 ⋯ 0 0 B′
k+1,k+1 ⋯ B′

k+1,m

0 ⋯ 0 Bk+1,k B′
k+2,k+1 ⋯ B′

k+2,m
...

...
...

...
...

0 ⋯ 0 Bn,k B′
n,k+1 ⋯ B′

n,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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⋯ rn↦rn−pnrkÐÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B1,1 0 ⋯ 0 0 ⋯ 0

0
. . .

. . .
...

...
...

...
. . .

. . . 0 0 ⋯ 0

0 ⋯ 0 Bk,k 0 ⋯ 0

0 ⋯ 0 0 B′
k+1,k+1 ⋯ B′

k+1,m
...

...
...

...
...

0 ⋯ 0 0 B′
n,k+1 ⋯ B′

n,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=∶ B′′.

Then B′′ ∼E B′ ∼E B ∼E A and B′′ ∈ Ak+1. The inductive step is complete. It follows that

Amin{m,n}+1 ≠ ∅; any B in this set is diagonal and equivalent to A.

For d1, . . . , dn ∈ N0 and B1 ∈Md1(R), . . . ,Bn ∈Mdn(R) we write

B1 ⊕⋯⊕Bn ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

B1 0d1×d2 ⋯ 0d1×dn

0d2×d1

. . .
. . .

...
...

. . .
. . . 0dn−1×dn

0dn×d1 ⋯ 0dn×dn−1 Bn

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

We call the Bis the blocks of the matrix B1 ⊕ ⋯ ⊕ Bn, and it will be useful to allow

‘degenerate’ 0 × 0 blocks.

Example 6.7. A matrix A ∈Mn(R) is diagonal with entries d1, . . . , dn if A = (d1)⊕⋯⊕(dn).

Example 6.8. If d1 + ⋯ + dn = n then In = Id1 ⊕⋯ ⊕ Idn . !△This is not a special case of

the previous example because we are allowing 0 × 0 blocks.

Observation 6.9. If Bi ∼ B′
i (resp. Bi ∼E B′

i) for 1 ⩽ i ⩽ n then B1 ⊕⋯⊕Bn ∼ B′
1 ⊕⋯⊕B′

n

(resp. B1 ⊕⋯⊕Bn ∼E B′
1 ⊕⋯⊕B′

n).

Lemma 6.10. Suppose that R is an integral domain, k < l and A ∈Mn,m(R) is diagonal with

⟨d⟩ = ⟨Ak,k⟩ + ⟨Al,l⟩ for some d ≠ 0, and md = Al,lAk,k. Then A is equivalent by elementary

operations to the matrix A with Ak,k replaced by m and Al,l replaced by d.

Proof. Let α,β, p, q ∈ R be such that Ak,kα + βAl,l = d and Ak,k = dp, Al,l = qd, and so

m = qdp. Then

A
cl↦cl+ckαÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

. . .

Ak,k Ak,kα
.. .

Al,l
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

rk↦rk+βrlÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

. . .

Ak,k d
.. .

Al,l
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ck↦ck−clpÐÐÐÐÐ→
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

. . .

0 d
.. .

−m Al,l
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

rl↦rl−qrkÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

. . .

0 d
.. .

−m 0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

rl↔rkÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

. . .

−m
...

d
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

rk↔(−1)rkÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

. . .

m
.. .

d
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The result is proved.

We say that A ∈ Mn,m(R) is in Smith normal form over R if it is diagonal and

Ai,i ∣ Ai+1,i+1 for all 1 ⩽ i < min{n,m}.

Proposition 6.11. Suppose that R is a Bezout domain. Then every diagonal matrix A ∈
Mn,m(R) is equivalent by elementary operations to a matrix in Smith normal form.

Proof. Let Ak be the set of diagonal matrices that are elementarily equivalent to A, and such

that if the diagonal entries are denoted a1, a2, . . . , amin{m,n}, then ai ∣ aj whenever 1 ⩽ i ⩽ j
and i ⩽ k. Certainly A ∈ A0 since the hypotheses on the entries is vacuous then, so there is

a maximal k ∈ N∗ with k − 1 ⩽ min{m,n} such that Ak−1 is non-empty.

By maximality of k for each matrix in Ak−1 with diagonal entries a1, a2, . . . , amin{m,n}

there is a minimal l > k with ak /∣ al; let B ∈ Ak−1 have l maximal with this property. By

Lemma 6.10 and Proposition 3.22 we can replace ak and al by the greatest common divisor

and least common multiple respectively of ak and al, to get a matrix C that is equivalent

to B by elementary operations.

Write a′1, . . . , a
′
min{m,n} for the diagonal entries of C, so that for i /∈ {k, l} we have a′i = ai.

a′k and a′l are linear combinations of ak and al and so for i ⩽ k−1, a′i divides them both, and

hence for 1 ⩽ i ⩽ j we have we have a′i ∣ a′j. It follows that C ∈ Ak−1. Finally a′k ∣ ak and so

a′k ∣ a′j for k ⩽ j < l, but also a′k ∣ a′l contradicting maximality of l. The result is proved.

Theorem 6.12. Suppose that R is a Euclidean domain. Then every A ∈Mn,m(R) is equiv-

alent by elementary operations to a matrix in Smith normal form.

Proof. This follows from Theorem 6.6 and Proposition 6.11.

Remark 6.13. Following the work of Kaplanksy [Kap49] an integral domain R for which

every A ∈Mn,m(R) is equivalent to a matrix in Smith normal form, is called an elementary
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divisor domain, so in this language Theorem 6.12 shows that every Euclidean domain is

an elementary divisor domain.

In the other direction Kaplansky showed [LLS74, Theorem 3.1] that every elementary

divisor domain is a Bezout domain, and it is an open problem [Lor12] (going back at least

to [Hel43]) to give an example of a Bezout domain that that is not an elementary divisor

domain.

7 Applications of Smith normal form

With these tools we are in a position to describe the structure of finitely generated modules

over a Euclidean domain:

Theorem 7.1. Suppose that R is a Euclidean domain and M is generated by x1, . . . , xn.

Then there are elements a1 ∣ a2 ∣ ⋯ ∣ an in R and a matrix Q ∈ GLn(R) such that

(R/⟨a1⟩) ⊕⋯⊕ (R/⟨an⟩) → M

(r1 + ⟨a1⟩, . . . , rn + ⟨an⟩) ↦ (rQ).x1 +⋯ + (rQ).xn

is a well-defined R-linear isomorphism.

Proof. The map

Φx ∶ Rn →M ; r ↦ r1.x1 +⋯ + rn.xn

is an R-linear surjection. Since R is a Euclidean domain it is a PID and hence by Proposition

5.29 there is A ∈ Mn(R) such that the kernel of this map is RnA. By Theorem 6.12 there

is a diagonal matrix B ∈ Mn(R) with entries a1 ∣ ⋅ ⋅ ⋅ ∣ an and P,Q ∈ GLn(R) such that

A = PBQ. The map

Rn →M ; r ↦ (rQ).x1 +⋯ + (rQ).xn

is an R-linear map which is surjective because Q is invertible and Φx is surjective. The

kernel is the set of r ∈ Rn for which rQ ∈ ker Φx i.e. for which there is r′ ∈ Rn such that

rQ = r′A. This is true if and only if r = (r′P )(P −1AQ−1) = (r′P )B. Since P is invertible r

is in the kernel if and only if r ∈ RnB = ⟨a1⟩ ⊕⋯⊕ ⟨an⟩. Finally, the composition of maps

(R/⟨a1⟩) ⊕⋯⊕ (R/⟨an⟩) → Rn/RnB → M

(r1 + ⟨a1⟩, . . . , rn + ⟨an⟩) ↦ r + ⟨a1⟩ ⊕⋯⊕ ⟨an⟩ ↦ (rQ).x1 +⋯ + (rQ).xn

is a composition of well-defined R-linear isomorphisms by the first isomorphism theorem.

This in turn lets us describe the structure of finitely generated commutative groups:

Corollary 7.2. Suppose that G is a commutative group generated by x1, . . . , xn. Then

there are natural numbers d1 ∣ d2 ∣ ⋯ ∣ dn (which may be 0) such that G is isomorphic to

Z/⟨d1⟩ ⊕⋯⊕Z/⟨dn⟩.
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Proof. This is a corollary of Theorem 7.1 since a commutative group is a Z-module, and

Z is a Euclidean domain. We may ensure the dis are natural numbers by multiplying by a

unit in Z as necessary.

Matrix forms

In this section we work with matrices multiplying columns on the left rather than rows

on the right. Equivalent matrices induce isomorphisms in the same way as in the proof of

Theorem 7.1:

Proposition 7.3. Suppose that A,B ∈ Mn(F[X]), and P,Q ∈ GLn(F[X]) are such that

A = PBQ. Then the map

F[X]ncol/AF[X]ncol → F[X]ncol/BF[X]mcol;x +AF[X]ncol ↦ P −1x +BF[X]ncol

is a well-defined F[X]-linear isomorphism.

Proof. Since F[X] is commutative BF[X]ncol is an F[X]-module, and hence F[X]ncol →
F[X]ncol/BF[X]ncol;x ↦ P −1x + BF[X]ncol is a well-defined F[X]-linear surjection. It has

kernel AF[X]ncol, since P −1x ∈ BF[X]ncol if and only if P −1x = Bx′ for some x′ ∈ F[X]ncol,
but P −1x = Bx′ if and only if x = (PBQ)(Q−1x′) = A(Q−1x′), and hence P −1x ∈ BF[X]ncol
if and only if x = Ax′′ for some x′′ ∈ F[X]ncol since Q is invertible. The result then follows

by the first isomorphism theorem.

For p = a0 +⋯+adXd ∈ F[X] and C ∈Mn(F[X]) write p.C for the matrix with (p.C)i,j =
p(X)Ci,j(X) – the . is the scalar multiplication in the F[X]-module Mn(F[X]) – and

write p(C) the evaluation homomorphism at C extending the ring homomorphism F →
Mn(F[X]), which is a composition of the inclusion homomorphism F → F[X] and the

diagonal homomorphism F[X] →Mn(F[X]) i.e.

p(C) = a0.In +⋯ + ad.Cd.

Lemma 7.4. Suppose that A ∈ Mn(F). Then et1 + (X.In − A)F[X]ncol, . . . , etn + (X.In −
A)F[X]ncol is a basis of the F-vector space F[X]ncol/(X.In −A)F[X]ncol.

Proof. Since the matrix X.In is in the centre of Mn(F[X]),

(X.In)i −Ai = (X.In −A)((X.In)i−1 +⋯ +Ai−1);

and since F[X] is commutative, left multiplication in Mn(F[X]) is F[X]-linear, so

p(X.In) − p(A) = (X.In −A)
d

∑
i=1
ai.(Ai−1 +⋯ + (X.In)i−1) = (X.In −A)Q
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for some Q ∈Mn(F[X]). Now, the map

Φ ∶ F[X]ncol → Fncol;p↦ p1(A)et1 +⋯ + pn(A)etn

is F-linear, and to identify its kernel we use the same method of proof as for the Factor

theorem: Specifically, for p ∈ ker Φ we have

p = p −Φ(p) = (p1(X.In) − p1(A))et1 +⋯ + (pn(X.In) − pn(A))etn
= (X.In −A)(Q1e

t
1 +⋯ +Qne

t
n),

for some Q1, . . . ,Qn ∈Mn(F[X]). In particular, p ∈ (X.In −A)F[X]ncol.
In the other direction, et1 + (X.In −A)F[X]ncol, . . . , etn + (X.In −A)F[X]ncol is F-linearly

independent as a subsequence of the subspace F[X]ncol/(X.In − A)F[X]ncol. To see this,

suppose λ1, . . . , λn ∈ F have λ1.et1 + ⋯ + λn.etn ∈ (X.In − A)F[X]ncol, say λ1.et1 + ⋯ + λn.etn =
(X.In −A)q for some q ∈ F[X]ncol. If q is not the zero vector then there is i with deg qi ⩾ 0

maximal, and so the degree of the ith entry of (X.In −A)q is deg qi + 1 > 0, a contradiction.

Hence λ1.et1 +⋯ + λn.etn = 0 and so λ1, . . . , λn = 0.

Finally, the vectors et1+(X.In−A)F[X]ncol, . . . , etn+(X.In−A)F[X]ncol are also spanning

since Φ(eti) = eti for all 1 ⩽ i ⩽ n, and et1, . . . , e
t
n is a spanning subset of Fncol. The result is

proved.

Proposition 7.5. Suppose that A,B ∈Mn(F). Then X.In −A and X.In −B are equivalent

as matrices in Mn(F[X]) if and only if A and B are similar as matrices in Mn(F).

Proof. If A and B are similar then there is P ∈ GLn(F) such that A = PBP −1, but then

X.In−A = P (X.In−B)P −1 and X.In−A is similar, and so equivalent, to X.In−B as matrices

in Mn(F[X]).
In the other direction, since X.In −A ∼ X.In −B, Proposition 7.3 gives an F[X]-linear

isomorphism

Φ ∶ F[X]ncol/(X.In −A)F[X]ncol → F[X]ncol/(X.In −B)F[X]ncol.

By Lemma 7.4 we know et1+(X.In−A)F[X]ncol, . . . , etn+(X.In−A)F[X]ncol is an F-basis for

F[X]ncol/(X.In −A)F[X]ncol, and similarly with A replaced by B. Since Φ is, in particular,

an F-linear bijection we conclude that there is P ∈ GLn(F) such that

Φ(v + (X.In −A)F[X]ncol) = Pv + (X.In −B)F[X]ncol for all v ∈ Fncol.

Now, Φ is F[X]-linear, so for v ∈ Fncol we have

0 = Φ((X.In −A)v + (X.In −A)F[X]ncol)

=XΦ(v + (X.In −A)F[X]ncol) −Φ(Av + (X.In −A)F[X]ncol)

=XPv − PAv + (X.In −B)F[X]ncol.
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In other words, XPv − PAv = Xw −Bw for some w ∈ F[X]ncol. Since v ∈ Fncol, no entry on

the left can have a non-zero coefficient of X i for any i ⩾ 2, and hence w ∈ Fncol. Equating

coefficients we have w = Pv and PAv = Bw, and hence Av = P −1BPv. Since v was arbitrary

we have that A = P −1BP as claimed.

Given a monic polynomial f(X) = Xd + ad−1Xd−1 + ⋯ + a0 ∈ F[X]∗ we define the d × d
matrices

C(f) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ ⋯ 0 −a0

1
. . .

...
...

0
. . .

. . .
...

...
...
. . .

. . . 0
...

0 ⋯ 0 1 −ad−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and D(f) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

f(X) 0 ⋯ 0

0 1
. . .

...
...

. . .
. . . 0

0 ⋯ 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

The matrix C(f) is called the companion matrix to f . !△We allow d = 0 when these are

‘empty’ 0 × 0 matrices.

Example 7.6. For f(X) ∈ F[X]∗ we have X.Id −C(f) ∼E D(f). To see this write f(X) =
Xd + ad−1Xd−1 + ⋯ + a0, and put f0(X) = 1 and fi = Xfi−1(X) + ad−i for 1 ⩽ i ⩽ d so that

f1(X) =X + ad−1 and fd(X) = f(X); and apply row and column operations in four groups:

X.Id −C(f) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X 0 ⋯ 0 a0

−1
. . .

. . .
...

...

0
. . .

. . . 0
...

...
. . .

. . . X ad−2

0 ⋯ 0 −1 X + ad−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

rd−1↦rd−1+Xrd
. . .

r1↦r1+Xr2ÐÐÐÐÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 ⋯ 0 fd(X)

−1
. . .

. . .
...

...

0
. . .

. . . 0
...

...
. . .

. . . 0 f2(X)
0 ⋯ 0 −1 f1(X)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

cd↦cd+f1(X)cd−1

. . .
cd↦cd+fd−1(X)c1ÐÐÐÐÐÐÐÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 ⋯ 0 fd(X)

−1
. . .

. . .
... 0

0
. . .

. . . 0
...

...
. . .

. . . 0 0

0 ⋯ 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

c1↔cd
. . .
cd−1↔cdÐÐÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

fd(X) 0 ⋯ 0

0 −1
. . .

...
...

. . .
. . . 0

0 ⋯ 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

c2↔(−1)c2
. . .
cd↔(−1)cdÐÐÐÐÐÐÐÐ→D(fd) =D(f).

!△The order of the row operations in the first group and the column operations in the third

group matter, so we do rd−1 ↦ rd−1 +Xrd first and r1 ↦ r1 +Xr2 last in the first group, and
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cd ↦ cd + f1(X)cd−1 first and cd ↦ cd + fd−1(X)c1 last in the third group; in the other two

groups the operations commute.

For λ ∈ F and d ∈ N0 define the d-dimensional Jordan matrix with eigenvalue λ to

be the (possibly empty) d × d-matrix

J(λ, d) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ 1 0 ⋯ 0

0 λ
.. .

. . .
...

...
. . .

. . .
. . . 0

...
. . . λ 1

0 ⋯ ⋯ 0 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

; and recall D((X − λ)d) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

(X − λ)d 0 ⋯ 0

0 1
. . .

...
...

. . .
. . . 0

0 ⋯ 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

Example 7.7. For λ ∈ F we have X.Id − J(λ, d) ∼E D((X − λ)d).
To see this note that X.Id − J(λ, d) equals

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X − λ −1 0 ⋯ 0

0 X − λ
.. .

. . .
...

...
. . .

. . .
. . . 0

...
. . . X − λ −1

0 ⋯ ⋯ 0 X − λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

cd−1↦cd−1+(X−λ)cd
. . .

c1↦c1+(X−λ)c2ÐÐÐÐÐÐÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −1 0 ⋯ 0

0 0
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . . 0 −1

(X − λ)d ⋯ ⋯ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

r1↔rd
. . .
rd−1↔rdÐÐÐÐÐÐÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

(X − λ)d 0 ⋯ 0

0 −1
. . .

...
...

. . .
. . . 0

0 ⋯ 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

c2↔(−1)c2
. . .
cd↔(−1)cdÐÐÐÐÐÐÐÐ→D((X − λ)d)

Theorem 7.8. Suppose that A ∈ Mn(F). Then there are monic polynomials f1 ∣ ⋯ ∣ fn
such that A ∼E C(f1) ⊕⋯⊕C(fn).

Proof. By Theorem 6.12 there are polynomials f1 ∣ ⋯ ∣ fn such that X.In − A ∼E ∆(X)
where ∆(X) is the diagonal matrix with entries f1, . . . , fn. In particular, there are P,Q ∈
GLn(F[X]) such that P (X)(X.In−A)Q(X) = ∆(X). Since P (X) and Q(X) are invertible

we have detP (X)detP (X)−1 = 1 and hence detP (X),detQ(X) ∈ U(R) (see Exercise IV.7

for the proof that determinant is multiplicative), hence det(X.In−A) are associates det ∆(X)
in F[X]. In particular, since det(X.In −A) is monic and of degree n, none of f1, . . . , fn is

identically 0 and so they all have degrees which we denote d1, . . . , dn respectively and satisfy

n = d1+⋯+dn. Moreover, by multiplying by units we may assume that f1, . . . , fn are monic.

By permuting columns and rows as necessary we have ∆(X) ∼E D(f1)⊕⋯⊕D(fn). The

calculation in Example 7.6 shows us that D(fi) ∼E X.Idi − C(fi) and hence X.In − A ∼E
X.In −C(f1) ⊕⋯⊕C(fn). The result now follows from Proposition 7.5.
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A matrix is said to be in rational canonical form if it is a block diagonal matrix with

blocks C(f1), . . . , C(fn) for monic polynomials f1 ∣ ⋯ ∣ fn. In particular, the above says

that every matrix is similar to a matrix in rational canonical form.

Remark 7.9. Although we shall not prove it, if two matrices in rational canonical form are

similar then they are equal.

Example 7.10. For f(X) = (X − λ1)d1⋯(X − λn)dn with λ1, . . . , λn pairwise distinct and

d1 +⋯ + dn = n, we have

D(f) ∼E D((X − λ1)d1) ⊕⋯⊕D((X − λn)dn).

To see this, we use induction on r to show that

D((X − λ1)d1) ⊕⋯⊕D((X − λn)dn) ∼E D(fr) ⊕D((X − λr+1)dr+1) ⊕⋯⊕D((X − λn)dn)

where fr(X) = (X − λr)drfr−1(X) and f0(X) = 1. This is certainly true when r = 0, and

for the inductive step when r < n note that the ideal generated by fr and (X − λr+1)dr+1

is principal, say generated by gr. If gr has a root then it is a root of (X − λr+1)dr+1 and

also of fr, hence gr has no root and ⟨fr⟩ + ⟨(X − λr+1)dr+1⟩ = ⟨1⟩. By Lemma 6.10 we can

replace the first element on the diagonal – that is fr – by fr(X − λr+1)dr+1 = fr+1, and the

(deg fr + 1)st element on the diagonal – that is (X − λr+1)dr+1 by 1. The resulting matrix

has (deg fr) − 1 + dr+1 = (deg fr+1) − 1 copies of 1 on the diagonal after the initial fr+1, and

hence equals D(fr+1) ⊕D((X − λr+1)dr+1) ⊕⋯⊕D((X − λn)dn). The example is complete.

Theorem 7.11. Suppose that A ∈Mn(C). Then there are λ1, . . . , λn ∈ C and t1, . . . , tn ∈ N0

with t1 +⋯ + tn = n such that A ∼E J(λ1, t1) ⊕⋯⊕ J(λn, tn).

Proof. By Theorem 6.6 there are polynomials f1, . . . , fn such that X.In −A ∼E ∆(X) where

∆(X) is the diagonal matrix with entries f1, . . . , fn. As in the proof of Theorem 7.8 we

conclude that we may suppose each fi is monic and write di for its degree, and n = d1+⋯+dn.

By permuting columns and rows as necessary we have ∆(X) ∼E D(f1) ⊕⋯⊕D(fn).
If f ∈ C[X] is irreducible then f(X) ∼ X − λ for some λ ∈ C – this is where we use

the fact that the field is the complex numbers rather than a more general field – so since

C[X] is a Factorisation domain, we conclude that fi(X) = (X −λi,1)di,1⋯(X −λi,ri)di,ri with

λi,1, . . . , λi,ri pairwise distinct and di,1 +⋯+di,ri = di. In view of the calculation in Examples

7.7 & 7.10 we have

D(fi) ∼E D((X − λi,1)di,1) ⊕⋯⊕D((X − λi,ri)di,ri)

∼E (X.Idi,1 − J(λi,1, di,1)) ⊕⋯⊕ (X.Idi,ri − J(λi,ri , di,ri)).

Finally, let λ1, . . . , λn be λ1,1, . . . , λ1,r1 , λ2,1, . . . , λ2,r2 , . . . , λn,1, . . . , λn,rn in order and similarly

for t1, . . . , tn. The result is proved by Proposition 7.5.
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A matrix is said to be in Jordan normal form if it is a block diagonal matrix with

blocks J(λ1, d1), . . . , J(λn, dn) for λ1, . . . , λn ∈ F and d1, . . . , dn ∈ N0. In particular, the

above theorem says that every matrix over C is similar to a matrix in Jordan normal form.
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