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Recommended books and resources

There are a large variety of good textbooks and lecture notes on general relativity. This

course borrows from a number of them, in various different places, chiefly among them is the

book by Sean Carroll, [1] and the book by Wald [2].

For the background material one can read the GR1 lecture notes. This should cover all

the necessary prerequisites that one would need to know about general relativity.

Some useful lecture notes are by Harvey Reall and by Fay Dowker.
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Conventions

• We will use the god-given signature convention of mostly plus (−,+,+,+). This may

differ with the convention you have used in other courses, especially field theory courses.

This convention is preferable when thinking about geometry as it gives positive spatial

distances. For quantum field theory the other convention is preferable since it ensures

that energies and frequencies are positive. You may map between the two conventions

through Wick rotation, essentially allowing the coordinates to become complex.

• Spacetime indices will be taken to be greek letters from the middle of the alphabet:

µ, ν, ρ, ... and run over 0, 1, 2, 3. Latin indices i, j, k, .. run over the spatial directions

and take values 1, 2, 3.

• We employ Einstein summation convention, repeated indices are summed over, unless

otherwise stated.

• We work in units where the speed of light c is set to 1. Occasionally it is instructive to

reintroduce c which can be done by dimensional analysis.

• The Minkowski metric will be denoted by ηµν = diagonal(−1, 1, 1, 1)µν .

• After introducing curvature we will take the metric to be gµν and the determinant will

be det(gµν) ≡ g.

• The set of all vector fields on a manifold M is X (M).

Useful formulae

• The Lagrangian for the geodesic equation of a massive test particle is

L
(dxµ
dλ

, xµ
)
=

√
−gµν(x)

dxµ

dλ

dxν

dλ
,

with λ an arbitrary parameter along the worldline.

• The geodesic equation for a massive particle is

d2xµ

dτ2
+ Γµνρ

dxν

dτ

dxρ

dτ
= 0 , gµν(x)

dxν

dτ

dxρ

dτ
= −1 ,

where τ is the proper time. For light, the first equation takes the same form just

replacing τ with an affine parameter. The second is modified by −1→ 0.
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• The Christoffel symbols (Levi–Civita connection) are

Γµνρ =
1

2
gµσ

(
∂νgσρ + ∂ρgσν − ∂σgνρ

)
.

• The Riemann tensor is

Rµνρσ = ∂ρΓ
µ
νσ − ∂σΓµνρ + ΓµρλΓ

λ
νσ − ΓµσλΓ

λ
νρ .

– Symmetries

Rµνρσ = −Rµνσρ ,

Rµνρσ = Rσρµν .

– Bianchi identity 1

Rµνρσ +Rµρσν +Rµσνρ = 0 .

– Bianchi Identity 2

∇µRσλνρ +∇νRσλρµ +∇ρRσλµν = 0 .

• Ricci tensor

Rµν = Rρµρν

• Ricci scalar

R = Rµνg
µν .

• Einstein tensor

Gµν = Rµν − 1

2
Rgµν .

• Einstein–Hilbert action plus cosmological constant,

S =
1

16πG

∫
d4x
√
−g

(
R+ Λ

)
.

• Under a variation gµν → gµνδgµν we have

δgµν = −gµρgνσδgρσ ,

δg = ggµνδgµν ,

δRµν = ∇ρδΓρµν −∇µδΓρρν .

6



1 Introduction

These are lecture notes for the Part C course General Relativity 2 at Oxford university. They

are an extension of the course General Relativity 1 and we assume that the reader is familiar

with the material covered there.

To keep our conventions in order we will briefly review the essential material from GR1.

For those who have done a GR course but not studied manifolds I recommend consulting the

GR1 notes as manifolds will appear at times in the lectures.

1.1 Manifolds

The underlying structure of General relativity is differential geometry. This is the study of

manifolds.

Definition Let X be any set and T = {Ui|i ∈ I} denote a certain collection of subsets

of X. The pair (X, T ) is called a topological space if T satisfies

1. Both the set X and the empty set ∅ are open subsets: M ∈ T and ∅ ∈ T .

2. If T is any, possibly infinite, subcollection of I, then the family {Uj |j ∈ J} satisfies

∪j∈JUj ∈ T .

3. If K is any finite subcollection of I then the set {Uk|k ∈ K} satisfies ∩k∈KUk ∈ T .

Definition M is an n-dimensional differentiable manifold if satisfies:

1. M is a Hausdorff topological space,

2. M is provided with a family of pairs {(Ui, φi)};

3. {Ui} is a family of open sets which covers M : ∪iUi =M .

4. φi is a homeomorphism from Ui onto an open subset U ′
i of Rn,

5. Given Ui and Uj such that Ui ∩ Uj ̸= ∅, then the map ψij = φi ◦ φ−1
j from φj(Ui ∩ Uj)

to φi(Ui ∪ Uj) is infinitely differentiable. ψij is known as a transition function.

Differentiable maps Let f :M → N be a map from an m-dimensional manifold M to an

n-dimensional manifold N . A point p ∈ M is mapped to a point f(p) ∈ N . We may take a

chart (U,φ) on M and a chart (V, ψ) in N where for all p ∈ U , f(p) ∈ V . Then f has the

following coordinate presentation:

ψ ◦ f ◦ φ−1 : Rm → Rn . (1.1)
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If we write φ(p) = {xµ} and ψ
(
f(p)

)
= {yα} then, ψ ◦ f ◦φ−1 is just the usual vector-valued

function y = ψ ◦f ◦φ−1(x) of m variables. Sometimes it is useful to abuse notation and write

y = f(x) or yα = fα(xµ) when we know the coordinate systems on M and N that are in use.

Definition We say that a function f : M → R is smooth if the map f ◦ φ−1 : U → R is

smooth for all charts. We let the set of all small functions on M be denoted by F(M).

Definition We say that a map f :M → N between two manifolds is smooth if the map

ψ◦f ◦φ−1 : U → V is smooth for all charts φ :M → Rm and ψ : N → Rn. If y = ψ◦f ◦φ−1(x)

is C∞ then we say that f is differentiable at p. This is actually independent of the coordinate

system.

Definition Let f : M → N be a homeomorphism and ψ and φ coordinate functions. If

ψ ◦ f ◦φ−1 is invertible, f is called a diffeomorphism and M is said to be diffeomorphic to N

and vice-versa. This is denoted by M ≡ N .

Since the map is invertible it follows that if M ≡ N then dimM = dimN . Homeomor-

phisms classify spaces according to whether it is possible to deform one space into another

continuously. Diffeomorphisms classify spaces into equivalence classes according to whether

it is possible to deform one space into the other smoothly. As such a diffeomorphism is

stronger than a homeomorphism, it requires that both the map and its inverse are smooth.

Two diffeomorphic manifolds are viewed as the same manifold.

Tangent vectors We can define curves on our manifold, γ : (a, b)→M and the tangent to

such a curve. If we collect all curves passing through the point p and find all tangent vectors

to the point p, this defines the tangent space at p: Tp(M) which is a vector space. A basis of

the tangent space is given by

{eµ} =
{

∂

∂xµ

}
, (1.2)

and any vector field X may be expanded in terms of this basis as

X = Xµ ∂

∂xµ
. (1.3)

When we are looking at vector fields in Tp(M) the Xµ are just numbers, however we can

equally consider the tangent bundle which is the union of all tangent spaces in M . Then a

vector field in the tangent bundle has Xµ which are functions on M .

Let Ui, j be two coordinate patches with coordinates x = φi(p) and y = φj(p) respectively

and let p ∈ Ui ∪ Uj . Then we can give the vector field X in both sets of coordinates and we

have that
∂

∂xµ
=
∂yν

∂xµ
∂

∂yν
, (1.4)
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and therefore the components of the vector field X transform as

X = Xµ ∂

∂xµ
= X̃µ ∂

∂yµ
⇒ X̃µ = Xν y

µ

xν
. (1.5)

One-forms Since Tp(M) is a vector space there exists a dual vector space whose element is

a linear function Tp(M)→ R. The dual space is called the cotangent space at p, and denoted

T ∗
p (M). An element ω ∈ T ∗

p (M) is a linear map Tp(M)→ R and is called a cotangent vector,

dual vector or one-form.

The natural basis of the cotangent space is given by the differential of the coordinates:

{dxµ}. Using the bilinear map arising from the tangent and cotangent spaces being dual

vector spaces, one takes 〈
dxµ,

∂

∂xν

〉
= δµν . (1.6)

An arbitrary one-form can then be expanded out in this basis as ω = ωµdx
µ. Let us take

p ∈ Ui ∪ Uj as before, then for ω ∈ T ∗
p (M) we have

ω = ωµdx
µ = ω̃µdy

µ ⇒ ω̃ν = ωµ
∂xµ

∂yν
. (1.7)

Tensors We can now define tensors of type (q, r) to be a multilinear object which maps q

elements of T ∗
p (M) and r elements of Tp(M) to R. We denote the set of (q, r) tensors at p to

be T (q,r)
p (M). An element of T (q,r)(M) can be written in terms of the bases described above

as

T = T
µ1...µq

ν1...νr
∂

∂xµ1
...

∂

∂xµq
dxν1 ...dxνr . (1.8)

T is a linear function

T : ⊗qT ∗
p (M)⊗r Tp(M)→ R . (1.9)

Let Vi = V µ
i

∂
∂xµ with 1 ≤ i ≤ r and ωj = ωjµdx

µ with 1 ≤ j ≤ q then the action of T is

T (ω1, ..., ωq;V1, ....Vr) = T
µ1...µq

ν1...νr ω1µ1 ....ωqµqV
µ1
1 ....V µr

r . (1.10)

Tensor fields So far we have defined vectors, one-forms and tensors at a particular point

p ∈ M . We want to be able to smoothly assign such an object to every point of M . For a

vector we call such an object a vector field. In other words if V is a vector field then for every

f ∈ F(M) then V [f ] ∈ F(M). We will denote the set of all vector fields on M as X (M). A

vector field X at p ∈ M is denoted by X|p which is an element of Tp(M). Similarly we may

define a tensor field of type (q, r) by a smooth assignment of an element of T qr,p(M) at each

point p ∈M . The set of tensor fields of type (q, r) on M is denoted by T qr (M).
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Differential forms A differential form of order r, or more succinctly an r-form, is a totally

anti-symmetric tensor of type (0, r).

The Wedge product ∧ of r one-forms is defined to be the totally anti-symmetric tensor

product of the one-forms

dxµ1 ∧ dxµ2 ∧ ...dxµr ≡
∑
P∈Sr

sgn(P )dxµP (1) ⊗ dxµP (2) ⊗ ....⊗ dxµP (r) . (1.11)

Thus

dxµ ∧ dxν = dxµ ⊗ dxν − dxν ⊗ dxµ . (1.12)

The wedge product satisfies the following conditions

• dxµ1 ∧ ... ∧ dxµr = 0 if some index is repeated.

• dxµ1 ∧ ... ∧ dxµr = sgn(P )dxµP (1) ∧ ... ∧ dxµP (r) .

• dxµ1 ∧ ... ∧ dxµr is linear in each dxµ.

We will denote the vector space of r-forms at the point p ∈M by Ωrp(M), a basis is provided

by the set of all wedge products in (1.11). We can then expand an element of Ωrp(M) as

ω =
1

r!
ωµ1...µrdx

µ1 ∧ ... ∧ dxµr , (1.13)

where ωµ1...µr are taken to be totally anti-symmetric.

We may define the exterior product to be the map ∧ : Ωqp(M)× Ωrp(M)→ Ωq+rp (M). Its

action follows by trivial extension of the wedge product defined above. Let ω ∈ Ωqp(M) and

ξ ∈ Ωrp(M) be an q-form and and r-form respectively. The action of the (q + r)-form ω ∧ ξ
on q + r vectors Vi is

(ω ∧ ξ)(V1, ..., Vq+r) =
1

q!r!

∑
P∈Sq+r

sgn(P )ω
(
VP (1), ..., VP (q)

)
ξ
(
VP (q+1), ..., VP (q+r)

)
. (1.14)

The exterior deriavtive dr is a map Ωr(M)→ Ωr+1(M), whose action on an r-form

ω =
1

r!
ωµ1...µrdx

µ1 ∧ ... ∧ dxµr , (1.15)

is

drω =
1

r!

(
∂

∂xν
ωµ1...µr

)
dxν ∧ dxµ1 ∧ ... ∧ dxµr . (1.16)
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It is common to drop the r subscript and simply write d. The wedge product automatically

anti-symmetrises the coefficient so it is indeed a (r + 1)-form that we obtain. It follows that

for ξ ∈ Ωqp(M), η ∈ Ωrp(M) we have

d(ξ ∧ η) = dξ ∧ η + (−1)qξ ∧ dη . (1.17)

The exterior derivative satisfies d2 = 0.

Let X be a vector field and ω ∈ Ωr(M) then the interior product of the r-form ω with

respect to the vector X is

iXω(X1, ..., Xr−1) ≡ ω(X,X1, ..., Xr−1) . (1.18)

If we introduce coordinates: X = Xµ ∂
∂xµ then

iXω =
1

(r − 1)!
Xνωνµ1...µr−1dx

µ1 ∧ ... ∧ dxµr−1 . (1.19)

1.2 Riemannian geometry

Definition: Let M be a differentiable manifold. A Riemannian metric g on M is a type

(0, 2) tensor field on M which at each point p ∈M satisfies

• Symmetric: gp(X,Y ) = gp(Y,X),

• gp(X,X) ≥ 0 with equality iff X = 0

with X,Y ∈ Tp(M). A tensor field g of type (0, 2) is a pseudo-Riemannian metric if it satisfies

the first condition and

• Non-degenerate. If for any p ∈M gp(X,Y ) = 0 for all Y ∈ Tp(M) then Xp = 0,

We may extend the tensor gp over the full manifold. With a choice of coordinates we can

write the metric as

g = gµν(x)dx
µ ⊗ dxν . (1.20)

We will often write this as the line elements ds2,

ds2 = gµν(x)dx
µdxν . (1.21)

We may view gµν as a matrix, which by the symmetry property above is symmetric.

This implies that the matrix is diagonalisable, with real eigenvalues. If there are i positive

eigenvalues and j negative eigenvalues the pair (i, j) is called the index of the metric. If j = 1

the metric is called a Lorentz metric, for j = 0 we have a Euclidean metric. The number of

negative entries is called the signature and by Sylvester’s law of inertia1, this is independent

of the choice of basis.
1This has nothing to do with inertia, Sylvester just wanted a law of inertia like Newton.
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Lorentzian manifolds For our purposes Riemannian manifolds are not what we want

to consider, instead we want to consider Lorentzian manifolds. The simplest example is

Minkowski space. This is R1,m−1 equipped with the metric

η = −dx0 ⊗ dx0 + dx1 ⊗ dx1 + ...+ dxm−1 ⊗ dxm−1 , (1.22)

which has components ηµν = diag(−1, 1, ..., 1). Note that on a Lorentzian manifold we take

the index to run over 0, 1, ..,m− 1.

At any point p on a general Lorentzian manifold it is always possible to find an orthonor-

mal basis {eµ} of Tp(M) such that locally the metric looks like the Minkowski metric

gµν |p = ηµν . (1.23)

This is closely related to the equivalence principle (see later).

The fact that locally the metric looks locally like Minkowski space allows us to import

some of the ideas of special relativity, namely we can classify the elements of Tp(M) into three

classes

• g(X,X) > 0 −→ X is spacelike ,

• g(X,X) = 0 −→ X is lightlike or null ,

• g(X,X) < 0 −→ X is timelike .

At each point on M we can then draw light cones which are the null tangent vectors at that

point. The novelty is that the directions of these light cones can vary smoothly as we move

around the manifold. This specifies the causal structure of spacetime which determines which

regions of spacetime can interact together.

We can use the metric to determine the length of curves. The nature of a curve is

inherited from the nature of its tangent vector. A curve is called timelike if its tangent vector

is everywhere timelike. We then measure the proper time

τ =

∫ b

a
dt

√
−gµν

dxµ

dt

dxν

dt
. (1.24)

The existence of a metric comes with a large number of benefits.

The metric as an isomorphism The metric gives a natural isomorphism between vectors

and covectors, g : Tp(M)→ T ∗
p (M) for each p. In a coordinate basis we can write X = Xµ∂µ,

and map it to a one-form X = Xµdx
µ, as

Xµ = gµνX
ν . (1.25)
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We will usually say that we use the metric to lower (or raise) an index. What we really mean

is that the metric provides and isomorphism between a vector space and its dual. Since g

is non-degenerate and is thus invertible we also have the inverse map. We take the inverse

of gµν to be gµν so that gµνgνρ = δµρ . This can then be thought of as the components of a

symmetric (2, 0) tensor

ĝ = gµν∂µ ⊗ ∂ν . (1.26)

Then

Xµ = gµνXν . (1.27)

The Volume form The metric also gives a natural volume form on the manifold M . On

a Riemannian manifold we take the volume form to be

vol(M) =
√
det(gµν)dx

1 ∧ ...dxm , (1.28)

and we use the shorthand
√

det(gµν) =
√
g. On a Lorentzian manifold the determinant is

negative and therefore we take the volume form to be

vol(M) =
√
−gdx0 ∧ dx1 ∧ ... ∧ dxn−1 . (1.29)

As it is written it looks coordinate dependent however it is not.

Hodge dual On an oriented manifold M we can use the totally anti-symmetric tensor

density to define a map which takes a p-form ω ∈ Ωp(M) to a (m− p)-form ⋆ω ∈ Ωm−p(M).

We define this map to be

(⋆ω)µ1...µm−p =
1

p!

√
|g|ϵµ1...µm−pν1...νpω

ν1..νp , (1.30)

where ϵµ1...µm is the totally anti-symmetric tensor, with ϵ123...m = 1 and for even permutations,

−1 for odd permutations and 0 otherwise.

This is called the Hodge dual and is independent of coordinates. One can see that it

satisfies

⋆(⋆ω) = ±(−1)p(m−p)ω , (1.31)

with + for a Riemannian metric and − for a Lorentzian.

Connections An affine connections ∇ is a map ∇ : X (M) × X (M) → X (M), (X,Y ) 7→
∇XY which satisfies

∇X(Y + Z) = ∇XY +∇XZ , (1.32)
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∇(fX+gY )Z = f∇XZ + g∇Y Z , (1.33)

∇X(fY ) = X[f ]Y + f∇XY , (1.34)

for vector fields X,Y, Z ∈ X (M) and functions f, g ∈ F(M).

We may introduce connection coefficients so that the connection acts on an arbitrary

tensor of rank (q, r) as

∇µT
ν1...νq

ρ1...ρr =
∂

∂xµ
T
ν1...νq

ρ1...ρr + Γν1µσT
σ...νq

ρ1...ρr + ....+ Γ
νq
µσT

ν1...νq−1σ
ρ1...ρr

− Γσµρ1T
ν1...νq

σ...ρr − ...− ΓσµρrT
ν1...νq

ρ1...ρr−1σ .
(1.35)

In words, you first differentiate the tensor and then for each upper index you add in a +ΓT

and for every down index a −ΓT . The connection takes tensors to tensors, the (q, r) tensor

gets mapped to a (q, r + 1) tensor.

The connection coefficients are not tensors themselves, but transform as

Γ̃µνρ = (Λ−1)µκΛ
σ
ρΛ

τ
νΓ

κ
στ + (Λ−1)µκΛ

σ
ρ∂σΛ

κ
ν , with Λµν =

∂yµ

∂xν
. (1.36)

The difference

T κστ = Γκστ − Γκτσ , (1.37)

is called the torsion tensor, and is indeed a tensor. If the torsion tensor vanishes we say that

the connection is torsion free.

Levi–Civita connection Given a metric there we have:

Theorem There exists a unique, torsion free, connection that is compatible with the

metric g:

∇Xg = 0 , (1.38)

for all vector fields X.

The connection compatible with the metric is called the Levi–Civita connection while the

components of the Levi–Civita connection are called the Christoffel symbols and are given

by:

Γλµν =
1

2
gλρ

(
∂µgνρ + ∂νgµρ − ∂ρgµν − ∂ρgµν

)
. (1.39)

Given a vector field X which is tangent to the curve γ with coordinates xµ, we say that

a tensor field T is parallel transported along γ if

∇XT = 0 . (1.40)
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Let γ connect two points p, q ∈ M . The condition (1.40) provides a map from the vector

space defined at p to the vector space defined at q. Consider a second vector field Y . In

components (1.40) reads

Xν
(
∂νY

µ + ΓµνρY
ρ
)
= 0 . (1.41)

If we evaluate it on the curve γ, we can write Y µ = Y µ(x(λ)) and therefore the condition is

dY µ

dλ
+XνΓµνρY

ρ . (1.42)

A geodesic is a curve tangent to a vector field X that obeys

∇XX = 0 . (1.43)

Along the curve γ with coordinates xµ and tangent vector X this implies

d2xµ

dλ2
+ Γµνρ

dxν

dλ

dxρ

dλ
= 0 . (1.44)

This is the same geodesic equation one obtains by varying the action

S =

∫
dλ

√
−gµν(x)

dxµ

dλ

dxν

dλ
, (1.45)

and picking an affine parameter.

Using the Levi–Civita connection we can define the curvature and torsion tensors. In

components the Riemann tensor is

Rσρµν = ∂µΓ
σ
νρ − ∂νΓσµρ + ΓλνρΓ

σ
µλ − ΓλµρΓ

σ
νλ . (1.46)

It has the following symmetries and properties

Rσρµν = −Rσρνµ , (1.47)

Rµνρσ = Rσρµν , (1.48)

Rµ[νρσ] = 0 , (1.49)

∇[µRσρ]τν = 0 . (1.50)

Given a rank (1, 3) tensor we can construct a rank (0, 2) tensor by contraction, for the

Riemann tensor the resultant (0, 2)-rank tensor is called the Ricci tensor and is defined by

Rµν = Rρµρν . (1.51)

It inherits symmetry in its indices from the properties of the Riemann tensor

Rµν = Rνµ . (1.52)

We can create a scalar by contracting the indices again

R = gµνRµν . (1.53)
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1.3 Einsteins equations

The Einstein–Hilbert action is

SEH =

∫
d4x
√
−gR . (1.54)

Variation with respect to the metric gives Einstein’s field equations

Gµν := Rµν −
1

2
Rgµν = 0 . (1.55)

A cosmological constant term may be added to the action

S =
1

16πGN

∫
d4x
√
−g(R− 2Λ) . (1.56)

Varying the action as before yields the Einstein equations

Rµν −
1

2
Rgµν = −Λgµν . (1.57)

Coupling to matter We can couple gravity to matter. We do this via minimal coupling.

We replace covariant derivatives with the connection, add in the correct volume measure and

insert a metric for summed space-time indices.

We need to consider the combined action

S =
1

16πGN

∫
d4x
√
−g(R− 2Λ) + SMatter , (1.58)

where SMatter is the action for any matter fields in the theory minimally coupled to gravity.

The Energy-Momentum tensor is defined to be

Tµν = − 2√
−g

δSMatter

δgµν
. (1.59)

1.4 Schwarzschild solution

The Scwarzschild solution is

ds2 = −
(
1− 2GNM

r

)
dt2 +

(
1− 2GNM

r

)−1

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (1.60)

This solves Einstein’s equations in a vacuum, Rµν = 0.

Birkhoff’s theorem The Schwarzschild solution is the unique spherically symmetric asymp-

totically flat solution to the vacuum Einstein equations.
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New coordinates The Schwarzschild solution in Schwarzschild coordinates has a coordi-

nate singularity at r = Rs = 2GNM . This surface is called the event horizon. In GR no

signals can come out from within the event-horizon, once you fall past the event horizon you

are lost to the outside world.

The apparent singularity at r = Rs is only a coordinate singularity and can be removed

by a coordinate transformation. First introduce the tortoise coordinate r∗

r∗ = r + 2GNM log

(
r − 2GNM

2GNM

)
, (1.61)

then in these coordinates the null radial in-going/out-going geodesics are particularly simple:

t = ±r∗ + constant . (1.62)

Next introduce a pair of null coordinates further adapted to the null geodesics:

v = t+ r∗ , u = t− r∗ . (1.63)

Ingoing Eddington–Finkelstein coordinates Eliminating t via t = v− r∗(r), known as

ingoing Eddington–Finkelstein coordinates, we find

ds2 = −
(
1− 2GNM

r

)
dv2 + 2dvdr + r2ds2(S2) . (1.64)

Even though the metric coefficient gvv vanishes at r = 2GNM there is no real degeneracy

there and the metric is well-defined as one can see by computing the determinant.

There is also the complementary outgoing Eddington–Finkelstein coordinates where we

eliminate t using u above. With Eddington–Finkelstein coordinates we are able to continue

the Schwarzschild solution beyond the horizon to r > 0. In fact there are two ways to do

this with either the ingoing or outgoing Eddington–Finkelstein coordinates. In fact we can

do better and write a metric which captures both of these regions simultaneously.

To begin write the Schwarzschild metric using both null (u, v)-coordinates, the metric is

ds2 = −
(
1− 2GNM

r

)
dudv + r2ds2(S2) , (1.65)

where r is a function of u− v. In these coordinates the metric is again degenerate at r = Rs

so we need to perform another change of coordinates. We introduce the Kruskal-Szekeres

coordinates,

U = − exp
(
− u

4GNM

)
, V = exp

( v

4GNM

)
, (1.66)
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both are null coordinates. The original Schwarzschild black hole is parametrised by U < 0

and V > 0. Outside the horizon they satisfy

UV = − exp
( r∗
2GNM

)
=

2GNM − r
2GNM

exp
( r

2GNM

)
, (1.67)

and similarly
U

V
= − exp

(
− t

2GNM

)
. (1.68)

The metric is then

ds2 = −32(GNM)3

r
e
− r
2GNM dUdV + r2ds2(S2) , (1.69)

with r(U, V ) defined by inverting (1.67). The original Schwarzschild metric covers just U < 0

and V > 0 however there is no obstruction to extending U, V ∈ R. Nothing bad happens at

r = 2GNM , the metric is smooth and non-degenerate and now we have a metric which covers

all regions. The Kruskal spacetime is the maximal extension of the Schwarzschild solution.
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2 Killing vectors

Killing vectors play an important role in general relativity and in understanding black holes.

In this section we will introduce the notion of a Killing vector and show how they give rise

to conserved quantities along geodesics.

2.1 Lie derivative

Let (M, g) be a Lorentzian manifold with metric g. Given a smooth vector-field X on M we

define an integral curve γ(λ) : R → M to be a curve whose tangent vector is equal to X at

every point p ∈ γ. That is we demand

Xµ
∣∣∣
p
=

d

dλ
xµ(λ)

∣∣∣
p
. (2.1)

This is equivalent to solving a set of first order ODEs with fixed initial conditions, and

therefore there is a unique solution at least locally.

Let γ(λ, p) be the integral curve of X which passes through the point p when λ = 0. The

map γ : R ×M → M defines the flow generated by X. The flow defines an abelian group

since one can show that σ(λ1, σ(λ2, p)) = σ(λ1 + λ2, p). Let σλ(p) = σ(λ, p) then

σλ
(
στ (p)

)
= σλ+τ (p) ,

σ0 = Unit element ,

σ−λ = (σλ)
−1 .

(2.2)

This allows us to move points along the curve, in particular by using the flow we can

move tensors from one point on the flow to another, recall that this goes by the name of

push-forward or pull back depending on what object we are acting on.2 This allows us to

define the Lie derivative along the vector field X. For a vector Y we have

LXY |p = lim
ϵ→0

1

ϵ

[(
σ−ϵ(p)

)
∗Y

∣∣
σϵ(p)

− Y
∣∣
p

]
. (2.3)

One can show that

LXY = [X,Y ] , (2.4)

with [ , ] : X (M)×X (M)→ X (M) the Lie bracket

[X,Y ] =
(
Xν∂νY

µ − Y ν∂νX
µ
)
∂µ . (2.5)

2Given a smooth function f : M → N the push forward f∗ : Tp(M) → Tf(p)(N) acts on a vector field V as

(f∗V )[g] = V [g ◦ f ]. The pullback f∗ : T ∗
f(p)(N) → T ∗

p (M), acts as ⟨f∗ω, V ⟩ = ⟨ω, f∗V ⟩.
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The Lie derivative can be extended to any tensor with appropriate generalisation. For

tensors one must use a combination of the push-forward and pull-back. Of primary interest

to us here is the Lie derivative of the metric. We have

LXg = lim
ϵ→0

1

ϵ

[
(σϵ(p))

∗g|σϵ(p) − g|σϵ(p)
]
. (2.6)

Note that the pull back uses σϵ rather than σ−ϵ, this is not a typo. In coordinates we have

(LXg)µν = Xσ∂σgµν + gσν∂µX
σ + gµσ∂νX

σ , (2.7)

which by using the Levi–Civita connection can be rewritten as

(LXg)µν = ∇µXν +∇νXµ . (2.8)

More generally, let T be a tensor of rank (q, r), then the Lie derivative along the vector field

X in local coordinates is

LXT
µ1...µq

ν1...νr = Xσ∂σT
µ1...µq

ν1...νr −
(
∂σX

µ1
)
T
λ...µq

ν1...νr − ...−
(
∂σX

µq
)
Tµ1...σν1...νr

+
(
∂ν1X

σ
)
T
µ1...µq

σ...νr + ...+
(
∂νrX

σ
)
T
µ1...µq

ν1...σ .

(2.9)

To make this more manifestly tensorial one can replace the partial derivatives with any

torsion free connection3, not necessarily the Levi–Civita connection. One can show that the

Lie derivative satisfies

LX(T + S) = LXT + LXS ,

LX(T ⊗ S) =
(
LXT

)
⊗ S + T ⊗

(
LXS

)
,

L[X,Y ] = LXLY − LY LX ,

LXf = X[f ] ,

(2.10)

where X,Y are vector fields, T and S are arbitrary tensors, and f is a function.

2.2 Killing vectors

The Lie derivative of the metric along a vector field X captures the variation of the metric

under the infinitesimal coordinate transformation:

xµ → x̃µ = xµ +Xµ . (2.11)

Let us transform the metric under the above coordinate transformation

gµν(x)→ g̃µν(x̃) ≡
∂xρ

∂x̃µ
∂xσ

∂x̃ν
gρσ(x) . (2.12)

3Recall that a connection is torsion free if the connection coefficients satisfy Γµ
νρ = Γµ

ρν .
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Then

δgµν(x) = g̃µν(x)− gµν(x) =
(
LXg

)
µν

= ∇µXν +∇νXµ , (2.13)

with ∇ the Levi–Civita connection.

There can be special vectors X where the right-hand-side of (2.8) vanishes, i.e. vector

fields X which satisfy

∇µXν +∇νXµ = 0 . (2.14)

Such vectors are known as Killing vectors. They are vectors which define flows along which

the metric does not change. We say that it generates an isometry of the spacetime and that

the metric has a symmetry. We will see later in the course that there are corresponding

conserved quantities for these symmetries as one may suspect from Noether’s theorem, we

will study this in section ?? after introducing some additional technology.

2.3 Maximally symmetric spaces: how many Killing vectors can we have?

It is natural to ask if there an upper limit on the number of Killing vectors a space can have?

The answer is yes. Consider Euclidean space in n-dimensions Rn with the flat metric. What

are the symmetries of this space? We know that we have both translations and rotations.

Fix a point p in Rn. Translations are the transformations that move the pint: there are n

independent axes along which we can move and therefore there are a total of n translations.

The rotations, centred at p are those transformations which leave p fixed. We can think of

rotations as mapping one of the axes through the point p into one of the others. Since there

are n axes and thus n− 1 axes it can be rotated into. However rotating x into y and y into x

are not independent and therefore the total number of rotations is n(n+1)
2 . This gives a total

of
n(n+ 1)

2
, (2.15)

independent symmetries.

This is the maximum number of linearly independent (by constant coefficients) Killing

vectors that an n-dimensional space may have.

Definition: Maximally symmetric space

An n-dimensional space with the maximum number of Killing vectors, n(n+1)
2 , is called a

maximally symmetric space.

Aside: To prove this one needs to use that for a Killing vector K we have

∇µ∇νKσ = RσνµρK
ρ . (2.16)
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Then we view the Killing equation (2.14) as a set of first order PDEs for the n functions

Kµ. We can now find a solution as a series expansion around some arbitrary point p in

the manifold. We would have

Kµ(x) = Kµ(p) + (xν − pν)∂νKµ
∣∣∣
x=p

+
1

2
(xν − pν)(xσ − pσ)∇ν∇σKµ

∣∣∣
x=p

+ .... (2.17)

However since (2.16) allows us to express the second derivative of K at p in terms of K(p)

and ∂µK(p) it follows that we may eliminate second derivative terms from the expansion.

In fact we may go further, whacking (2.16) with another derivative allows us to express

the third derivative of K in terms of Kν(p) and ∇µKν(p) too. We can do this infinitely

many times to obtain expressions for all higher derivative terms. Therefore the solution is

determined uniquely by the initial conditions Kµ(p) and ∇µKν |x=p. The general solution
is then of the form

Kµ(x) = A ν
µ (x, p)Kν(p) +B νρ

µ (x, p)∇νKρ

∣∣∣
x=p

, (2.18)

where A and B are complicated functions depending on the initial point p and the metric

and its derivatives but independent of the initial data of the Killing vector. Therefore we

have shown that every Killing vector can be determined in terms of the initial conditions

Kµ(p) and ∇µKν

∣∣
x=p

. There are n-independent components of Kµ(p) and n(n−1)
2 inde-

pendent components of ∇µKν

∣∣
x=p

. The latter comes about because the initial conditions

must satisfy the Killing equation, which fixes ∇µKν

∣∣
x=p

to be a n × n anti-symmetric

matrix which has n(n−1)
2 independent components. This gives the claimed total of n(n−1)

2

Killing vectors.

Examples of maximally symmetric spaces are flat space, spheres, hyperbolic space, Minkowski

space and (anti-) de-Sitter space.

If a manifold is maximally symmetric it means that the curvature is the same in all

directions. The Riemann tensor can in fact be fixed in terms of the constant Ricci scalar and

takes the form

Rµνρσ =
R

n(n− 1)

(
gµρgνσ − gµσgνρ

)
. (2.19)

This means that locally the space is determined by the Ricci scalar.4

2.4 Conserved quantities along geodesics and Killing vectors

We have already seen conserved quantities when we studied geodesics. When we had an

ignorable coordinate we found a conserved quantity along the geodesic. This is in fact related

4For example both a torus and the Euclidean plane are flat, and hence the Riemann tensor vanishes, however

they are very different spaces, one is compact while the other is non-compact. The Ricci scalar therefore does

not capture the global difference of the two spaces.
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to the presence of Killing vectors.

Consider the action

S =

∫
dλ

√∣∣∣gµν(x(λ))dxµ(λ)
dλ

dxν(λ)

dλ

∣∣∣ . (2.20)

For simplicity let us assume that λ is an affine parameter which allows us to consider the

action with the square root removed. From GR1 we know that geodesics are the curves which

extremise the action, that is geodesics are curves, xµ(λ), which when deformed by a small

amount δxµ(λ), the change in the action vanishes.

Consider deforming the curve as

xµ → xµ + ϵXµ . (2.21)

The change in the action is

δS = S(xµ + ϵXµ)− S(xµ)

= ϵ

∫
dλ

[
xρ∂ρgµν ẋ

µẋν + gµν
(
Ẋµẋν + ẋµẊν

)]
+O(ϵ2)

= ϵ

∫
dλ ẋρẋσ

[
Xµ∂µgρσ + gνσ∂ρX

ν + gνρ∂σX
ν
]
+O(ϵ2)

= ϵ

∫
dλ ẋρẋσ

[
∇ρXσ +∇σXρ

]
+O(ϵ2) .

(2.22)

We have used that Ẋµ = ẋρ∂ρX
µ. We see that if X is a Killing vector field we have a

symmetry of the action. We know from Noether’s theorem that there must be a conserved

charge.

Conserved charge along a geodesic Given an action S with Lagrangian density L,

S =

∫
dλ L

(
x(λ)

)
, (2.23)

define the conjugate momentum pµ to be

pµ =
∂L
∂ẋµ

. (2.24)

Then for any Killing vector X,

Q = Xµpµ , (2.25)

is a conserved quantity along the geodesic.
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Proof: Consider a small variation δxµ = ϵXµ generated by the Killing vector field X as

above. As shown above such variations leave the action invariant: δS = 0, which is equivalent

to
∂L
∂xµ

Xµ +
∂L
∂ẋµ

Ẋµ = 0 . (2.26)

Along a geodesic the Euler–Lagrange equations are satisfied:

∂L
∂xµ

− d

dλ

∂L
∂ẋµ

= 0 . (2.27)

Therefore along the geodesic (2.26) implies

0 =
( d

dλ
pµ

)
Xµ + pµ

d

dλ
Xµ =

d

dλ

(
pµX

µ
)
=

d

dλ
Q . (2.28)

Note that Q is conserved only along the geodesic, for a path which is not a geodesic this is

not conserved. We can see immediately why this must be the case in the derivation above

since we used the Euler–Lagrange equations.

Example: Schwarzschild solution Let us apply this to the Schwarzschild solution. We

have used that there are two quantities that are conserved for any geodesic. These were the

energy E and the angular momentum j. The Schwarzschild solution has Killing vectors ∂t

and ∂ϕ. Actually it has a R×SO(3) isometry group, where time translations give the R factor

and ∂ϕ generates a U(1) ⊂ SO(3).

Then for Xt = ∂t we have Xµ
t = (1, 0, 0, 0) and therefore

Qt = Xµ
t pµ = pt =

∂L
∂ṫ

= −
(
1− 2M

r

)
ṫ ≡ −E . (2.29)

Similarly for the Killing vector K3 = ∂ϕ we have Kµ
3 = (0, 0, 0, 1) and therefore

Q3 = Kµ
3 pµ = pϕ =

∂L
∂ϕ̇

= r2 sin2 θϕ̇ = J . (2.30)

These are both conserved charges that you are familiar and the intuition about ignorable

coordinates giving rise to conserved quantities holds for these. However Killing vectors need

not be so simple. The Schwarzschild solution has two more Killing vectors

K1 = sinϕ∂θ + cot θ cosϕ∂ϕ , K2 = cosϕ∂θ − cot θ sinϕ∂ϕ . (2.31)

These two combine with K3 to generate the SO(3) isometry of the spacetime: one can check

that

[Ki,Kj ] = ϵijkKk , (2.32)
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which is indeed the Lie algebra so(3).

The conserved charges for these are not nearly as simple as the previous two:

Q1 = r2
(
sinϕθ̇ + cos θ cosϕ sin θϕ̇

)
, Q2 = r2

(
cosϕθ̇ − cos θ sin θ sinϕϕ̇

)
. (2.33)

One can check upon application of the geodesic equation that these are indeed conserved.

Recall that when we consider geodesics we use the rotational symmetry to set θ(0) = π
2 and

θ̇(0) = 0 which leads to motion in a plane. With these values the two charges Q1, Q2 vanish.

Aside: To find these Killing vectors one needs to solve the Killing equation (2.14) which

gives a set of PDEs to solve. In this case, rather than trying to solve these PDEs, one

can be slightly smarter and use the embedding of the S2 into R3. The isometries are

then the rotations about the three axes. We know that these are then:

X = z∂y − y∂z , Y = z∂x − x∂z , Z = x∂y − y∂x , (2.34)

with the names of the vector fields given by the axis of rotation. Introducing the embed-

ding coordinates

x = sin θ cosϕ , y = sin θ sinϕ , z = cos θ , (2.35)

we find that

K1 = X , K2 = Y , K3 = Z . (2.36)

This drastically simplifies the problem in this case where we know the embedding into a

simple space. This is not always possible and one must just bite the bullet and solve the

PDEs.

The familiar conserved quantities along geodesics of the Schwarzschild solution are the

ones where the Killing vector is of the form K = ∂ψ for some coordinate ψ. For any Killing

vector we can find coordinates such that the Killing vector is of this form. However if there

are other Killing vectors this transformation may ruin the nice form of these. For example

the three Killing vectors of S2 studied above, only one of the Killing vectors is in this nice

adapted form. One could change coordinates to make either of the other two of this nice

form however the sacrifice is that K3 is no longer of this nice form. This is most easily seen

from the embedding of the S2 into R3. If we permuted the embedding coordinates in (2.35),

whichever coordinate was just cos θ would have the simple form. To see that in the case of

SO(3) that only one of the Killing vectors can be of this nice form notice that [∂µ, ∂ν ] = 0

and therefore if two vectors were of this simple form the so(3) algebra would not be satisfied.
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2.5 Spherically symmetric, static and stationary spacetimes

In general when trying to solve Einstein’s equations we need to make some simplifying as-

sumptions. A set of simplifying assumptions you should already have seen when studying the

Schwarzschild solution are spherically symmetric, static and stationary spacetimes. We will

quickly review what this means in order to use these assumptions in the following section to

describe cold stars.

2.5.1 Spherically symmetric spacetimes

You should be familiar with the isometries of a round two-sphere. One can rotate the two-

sphere through any axis and it looks the same. This is of course the group SO(3). It can

be further enhanced to O(3) if we also include reflections however we will not do this in the

following. Any one-dimensional subgroup of SO(3) gives a one-parameter group of isometries

and thus a Killing vector field. The rank of SO(3) is 3 and thus there are three independent

Killing vectors which can be used to generate the full symmetry group.

If one puts the following metric on the round two-sphere

ds2(S2) = dθ2 + sin2 θdϕ2 , (2.37)

the three Killing vectors are

K1 = sinϕ∂θ + cot θ cosϕ∂ϕ , K2 = cosϕ∂θ − cot θ sinϕ∂ϕ , K3 = ∂ϕ . (2.38)

One can check that these satisfy

[Ki,Kj ] = ϵijkKk , (2.39)

which is the Lie algebra of so(3).

Definition: Spherically symmetric

We say a spacetime is spherically symmetric if its isometry group contains an SO(3) subgroup

whose orbits are 2-spheres. The orbit of a point p under a group of diffeomorphisms is the

set of points that one obtains by acting on p with all the diffeomorphisms.

The statement about the orbits being two-dimensional is important. One can find SO(3)

orbits which are three-dimensional. To see this consider deforming an S3 breaking the SO(4)

isometry to an SO(3) subgroup. The orbits will be three-dimensional if chosen correctly.

Definition: Area radius function

In a spherically symmetric spacetime one can define the area-radius function r : M → R
defined to be

r(p) =

√
A(p)

4π
, (2.40)
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where A(p) is the area of the S2 orbit through the point p. In other words the induced metric

on the S2 passing through the point p has induced metric r(p)2ds2(S2).

2.5.2 Static and stationary spacetimes

Definition: Stationary

A spacetime is stationary if it admits an everywhere timelike Killing vector K.

When the space-time is stationary it allows us to introduce a distinguished coordinate

adapted to the Killing vector and write the metric in a simpler form. Given the Killing vector

we may define the flow by finding the integral curve of the vector, let us parametrise the

flow by t. We can pick a hypersurface Σ nowhere tangent to Kµ and introduce coordinates

xi on Σ. We may then assign coordinates (t, xi) to the point a parameter distance t along

the integral curve through the point on Σ with coordinates xi. This gives a coordinate chart

in which Kµ =
(
∂t
)µ
. Since kµ is a Killing vector field the metric is independent of t and

therefore the metric takes the form

ds2 = g00(x
k)dt2 + 2g0i(x

k)dtdxi + gij(x
k)dxidxj , (2.41)

with g00(x
i) < 0. Conversely given a metric of this form ∂t is a timelike Killing vector field

and thus the metric is stationary.

Definition: Hypersurface-orthogonal

Let Σ be a hypersurface in M specified by the equation f(x) = 0, with f :M → R a smooth

function. We require df ̸= 0 on Σ, then df is normal to Σ.5 The dual vector to df , let us

call it ξ, is said to be hypersurface orthogonal. If ξ is timelike the hypersurface is said to be

spacelike; if ξ is spacelike the hypersurface is timelike and it ξ is null then the hypersurface

is said to be null.

It follows that any other normal to the hypersurface can be written as n = gdf + fn′

with g a smooth function which does not vanish anywhere on Σ, and n′ a smooth one-form.

Then we have

dn = dg ∧ df + df ∧ n′ + fdn′ ⇒ dn
∣∣
Σ
= (dg − n′) ∧ df ⇒ n ∧ dn

∣∣
Σ
= 0 . (2.42)

Conversely Frobenius’ theorem implies.

Theorem Frobenius:

If n is a non-zero one-form such that n ∧ dn = 0 everywhere, then there exist functions f, g

5To see this consider a curve γ(λ) ⊂ Σ. By definition f(γ(λ)) = 0 for all λ, thus, 0 = ∂λf(γ(λ)) =

γ̇µ(λ)∂µf(γ(λ)) = df(γ̇(λ)). The latter is equivalent to df being normal to the hypersurface.
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such that n = gdf and therefore n is normal to the surfaces defined by f(x) =constant, and

therefore hypersurface-orthogonal.

Definition: Static

A spacetime is static if it admits a hypersurface-orthogonal timelike Killing vector field.

Note: Static implies stationary, but the converse is not true.

For a static spacetime we know that Kµ is hypersurface orthogonal so when we define

coordinates (t, xi) as in the stationary case, we may further choose Σ to be orthogonal to Kµ.

Σ is the hypersurface t = 0 and therefore it has normal dt. Therefore at t = 0 we must have

Kµ ∝ (1, 0, ..., 0) since K = df . However we saw that in the stationary case that the Killing

vector takes the form K = ∂t. Since ki = giµk
µ = gi0 it follows that we must have g0i = 0.

In these adapted coordinates a static metric takes the form

ds2 = g00(x
k)dt2 + gij(x

k)dxidxj , (2.43)

again with g00(x
k) < 0.

Note that the metric now has a discrete time-reversal symmetry: (t, xi) → (−t, xi).
Static then means time-independent and invariant under time reversal. Note that though

static implies stationary, the converse is not necessarily true. A rotating body cannot be

static because time-reversal changes the rotation (it rotates in the opposite direction if time

is reversed).

We will impose that our spacetime is both stationary and spherically symmetric. The

isometry group is then R×SO(3) with R the time-translations. It turns out that these con-

ditions also imply static in this case, since a rotating star would have a preferred axis which

would break the spherical symmetry.

3 Spherical cold stars and stellar collapse

Birkhoff’s theorem proves that the Schwarzschild solution is the unique asymptotically flat,

spherically symmetric solution of Einstein’s equations in the absence of matter and cosmo-

logical constant. As such, away from any spherically symmetric static object such as a star,

planet or black hole the metric is the Schwarzschild metric. There are a few questions we may

want to ask at this point. What is the metric inside a star where the Schwarzschild solution

is no longer valid (since there is now a non-trivial contribution from the energy momentum

tensor)? Does GR tell us anything about the different types of stars: hot stars, white dwarfs,
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neutron stars? In this section we answer these questions by studying the extension of the

Schwarzschild solution to describe a cold star.

As opposed to a hot star, where there is a thermal source of pressure generated by nuclear

reactions in its core, a cold star must be supported from collapse by a non-thermal pressure

source. When a star forms by condensation of a dust cloud due to gravitational attraction

the pressure increases which leads to an increase in temperature. When the dust cloud has

collapsed far enough and has reached a critical temperature, nuclear fusion in the core begins.

The dominant process is the conversion of four protons to form a helium-4 nucleus. The

emission of photons and neutrinos at this stage provides a thermal radiation which balances

against the collapse of the star due to gravity. As the Hydrogen fuel is depleted a helium core

builds up and the pressure from thermal radiation decreases and the star begins to collapse

again.

If the star is massive enough as the core contracts it once again heats up and if a crit-

ical temperature is reached, helium can be fused, giving a thermal pressure which halts the

collapse. If the star is not big enough the temperature which allows Helium to fuse is not

reached and the star uses up its remaining fuel becoming a red dwarf. This process of a

period of equilibrium followed by collapse can keep repeating with the formation of heavier

nuclei in the core such as nickel and iron.

The crucial issue governing how far along this evolutionary sequence a star goes is whether

electron degeneracy pressure becomes sufficient to support the star from further collapse.

There is a critical mass MC , (3.17), below which the collapse is halted by the electron de-

generacy pressure. The Pauli exclusion principle states that two or more identical fermions6

cannot occupy the same quantum state within a quantum system simultaneously.7 Due to

this a gas of cold fermions resists compression, producing a pressure known as degeneracy

pressure. If the mass of the star is below the critical mass no further nuclear fusion will occur

and the star will simply cool down forever in a stable white dwarf configuration. This is the

fate of our sun. A white dwarf is much denser than a regular star: to get an idea about

how much denser it is a matchbox sized piece of white dwarf material would weigh roughly

6A fermion is particle with half integer spin. Fermions obey Fermi–Dirac statistics. Quarks and leptons

(electrons, muons and tau-ons and their neutrino versions) are examples of fermions.
7To get a feel of why this is true one needs to recall some facts about the wave-function in quantum

mechanics. We construct a state by acting on the ground state with operators. Operators which give bosons

(integer spin field) satisfy commutation relations, while operators which give rise to fermions satisfy anti-

commutation relations. If we want to insert the same (all quantum numbers the same) fermion at the same

point we must act with the same operator but due to the anti-commutator relations this vanishes and therefore

the wave-function vanishes.

29



the same as t an elephant. Newtonian gravity is still applicable here and shows that a white

dwarf cannot have a mass greater than the Chandrasekhar limit, 1.4 M⊙ with M⊙ the mass

of the Sun. A star more massive than this cannot end its life as a white dwarf unless it sheds

some of its mass.

If M is greater than MC then after a core of nickel and iron of mass MC has formed

it will be unable to support itself, electron degeneracy pressure is insufficient and no further

nuclear fusion occurs. The core will undergo gravitational collapse . When the density of

the core reaches nuclear density, the density of the nucleus of an atom, neutron degeneracy

pressure and nuclear forces provide a significant cold matter pressure. At such high pressure

one finds that beta decay is reversed, protons combine with electrons to produce neutrons. If

the mass of the star is below the critical limit for cold matter Mcritical 2M⊙ then the collapse

will be halted leading to a neutron star. At this stage the Newtonian approximation is no

longer applicable and one must use general relativity.

When the collapse of the core is halted or slowed at nuclear densities a shock wave is

produced and this is expected to lead to the outer envelope of the star producing a supernova.

The presence of pulsars (neutron stars with a hot spot rotating at high speed) at the sites

of the Crab and Vela supernova remnants provides strong evidence that this supernovae are

produced in conjunction with the collapse of the core of a star at the end-point of stellar

evolution.

The final option is to have a star which has a mass larger than the critical mass Mcritical.

Equilibrium can never be achieved and complete gravitational collapse will occur. The end-

point of such a collapse will be a Schwarzschild black hole. We find that for a massive enough

star gravitational collapse into a black hole is inevitable.8

In this section we will show that general relativity predicts a maximum mass for a cold

star. To reach this conclusion we will assume that the star is spherically symmetric and static,

recall that this is one of the assumptions that goes into Birkhoff’s theorem. The interior of

the star can be modelled by a perfect fluid and we then need to solve Einstein’s solutions

with a perfect fluid source and match onto the Schwarzschild solution outside the star.

8One can formulate this more concretely following Penrose and Hawing that collapse becomes inevitable

once a trapped surface forms. A trapped surface is a two-dimensional for which both the out-going and in-going

future directed geodesics orthogonal to the surface converge. For example consider spheres with r, t constant

in the Schwarzschild metric, these are trapped surfaces for r < RSchwarzschild.
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3.1 Tolman–Oppenheimer–Volkoff equations

Since we have a static spacetime we have a timelike Killing vector field K with which we can

foliate our spacetime with the surfaces Σt which are orthogonal to K. The orbits of SO(3)

through a point p ∈ Σt lie within Σt. This allows us to define coordinates (r, θ, ϕ) such that

the most general metric with our given assumptions takes the form

ds2 = −e2Φ(r)dt2 + e2Ψ(r)dr2 + r2ds2(S2) . (3.1)

We now need to specify the energy-momentum tensor. Outside the star this vanishes

and it remains to come up with a suitable ansatz within the star. We can describe this as a

perfect fluid. The energy momentum tensor for a perfect fluid takes the form

Tµν = (p+ ρ)uµuν + pgµν , (3.2)

with uµ the four-velocity of the fluid, normalised to uµu
µ = −1, ρ the energy density and p the

pressure measured in the fluid’s local rest frame. Since we are interested in time-independent

and spherically symmetric stars the fluid should be at rest thus u points in the time-direction

only and therefore

u = e−Φ(r)∂t . (3.3)

Moreover the time-independence and spherical symmetry imply that ρ and p only depend on

r while the vanishing of the energy-momentum tensor outside of the star implies that ρ, p

vanish when r > Rc with Rc the radius of the star.

A fluid’s equations of motion are determined by the conservation of the energy momen-

tum tensor. This follows from the Einstein equations, ergo we need only consider the Einstein

conditions in the following. Since the Einstein equations inherit the symmetries of the space-

time it follows that there are only three non-trivial independent conditions arising from the

Einstein equations. We may take these to be the tt, rr, θθ components, see the mathematica

file in moodle which does this computation.

The independent Einstein equations are

Ett =
e2Ψ

r2

[ d

dr

(
r(1− e−2Ψ)

)
− 8πr2ρ

]
= 0 ,

Err =
1

r

[
e−2Φ∂re

2Φ − e2Ψ − 1

r
− 8πre2Ψp

]
= 0 ,

Eθθ = e−2Ψr

[
eΨ−Φ∂r

(
re−Ψ∂re

Φ
)
− ∂rΨ− 8πee2Ψp

]
= 0 .

(3.4)
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To proceed it is useful to introduce m(r) via

e2Ψ(r) =

(
1− 2m(r)

r

)−1

, (3.5)

with 2m(r) < r. The tt component of the Einstein equation becomes

dm(r)

dr
= 4πr2ρ(r) . (3.6)

Moreover the rr component reduces to

dΦ(r)

dr
=
m(r) + 4πr3p(r)

r(r − 2m(r))
. (3.7)

In the Newtonian limit we have r3p(r)≪ m(r) and m(r)≪ r so (3.7) reduces to

dΦ(r)

dr
≈ m(r)

r2
, (3.8)

this is just the spherically symmetric version of Poisson’s equation for the Newtonian gravi-

tational potential. We can see the other terms in (3.7) as relativistic corrections.

The final non-trivial component of the Einstein equations is the θθ component given

above, however rather than using that equation, it is simpler to derive the final equation from

the r-component of energy momentum conservation. This gives

dp(r)

dr
= −

(
p(r) + ρ(r)

)m(r) + 4πr3p(r)

r(r − 2m(r))
. (3.9)

One can check that this is implied by Eθθ = 0 above, see the mathematica file. In the

Newtonian limit (P ≪ ρ,m(r) ≪ r) it reduces to the Newtonian hydrostatic equilibrium

equation
dp(r)

dr
≈ −ρ(r)m(r)

r2
. (3.10)

Note that general relativity has little effect on the equilibrium configurations of stars with

p≪ ρ and m(r)≪ r.

We have four unknowns
(
m(r),Φ(r), ρ(r), p(r)

)
and only three equations so the system

is currently underdetermined. The one remaining condition comes from the fact that we are

interested in a cold star, one which has a vanishing temperature. Thermodynamics implies

that T, ρ, p are not independent, and therefore we may write p = p(ρ). Moreover we should

take ρ > 0 and p > 0 and that p(ρ) is an increasing function of ρ.9 The three equations (3.6),

(3.7) and (3.9) are known as the Tolman–Oppenheimer–Volkoff equations.

9If this were not the case then the star would be unstable since a fluctuation in some region that led to an

increased energy density would lead to a decrease in pressure. This would cause the fluid to more into this

region which would lead to a further increase in ρ and the fluctuation would continue to grow.
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Outside the star We know that in the absence of matter and with the imposed constraints,

that the unique solution is the Schwarzschild solution:

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−2

dr2 + r2ds2(S2) . (3.11)

The constant M is the total mass of the star. Recall that Rs = 2M is the Schwarzschild

radius where an event horizon is located. We must therefore take the star to have a radius

larger than the Schwarzschild radius: Rc > Rs. Regular stars have Rc ≫ Rs, for the sun

Rs ≈ 3km while Rc ≈ 7× 105km.

Inside the star We now want to consider the interior of the star, and patch it with the

exterior solution above such that the full metric is smooth at the patching surface at r = Rc.

We can integrate (3.6) to give

m(r) = 4π

∫ r

0
ρ(r′)r′2dr′ +m∗ , (3.12)

with m∗ and integration constant.

At r = 0 the solution should be smooth and look like flat Minkowski space, the net

gravitational attraction at the centre is zero and is therefore equivalent to Minkowski space.

This implies that at r → 0 we have e2Ψ(0) = 1. Comparing with (3.5) we see that this is

equivalent to m(0) = 0. From our integrated solution, (3.12) we see that this implies that

the integration constant vanishes, m∗ = 0.

At r = Rc, for our interior solution to match with the Schwarzschild solution, we need

to impose the boundary condition

M = 4π

∫ Rc

0
ρ(r)r2dr . (3.13)

There is a slight subtlety here in that the total energy of the matter should include the correct

volume measure when integrating over a spacelike hypersurface, the energy for the spacelike

hypersurface Σt defined to be

E =

∫
Σt

ρ(r)dvol(Σt) =

∫
Σt

ρ(r)eΨ(r)r2 sin θdr ∧ dθ ∧ dϕ = 4π

∫ Rc

0
ρ(r)eΨ(r)r2dr . (3.14)

Note that this differs with the total mass of the star due to the eΨ(r) factor. Since eΨ(r) > 1 it

follows that E > M and one can associate the positive difference E−M to be the gravitational

binding energy of the star. This would be the amount of energy needed to disperse the matter

to infinity, for spherical stars this is a well-defined concept but does not always make sense

in GR.
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Note that due to the constraint that 2m(r) > r for all r, so that eΨ(r) > 0 it follows that

there is a upper bound on the possible mass of the star: 2M < Rc. There is no Newtonian

analogue of this condition. Reinstating the factors of c and GN we have 2GNM < c2Rc and

in the c → ∞ limit this is trivial, hence why this constraint is not seen in the Newtonian

theory.

This upper bound can be improved. From equation (3.9) after some algebra and assuming

ρ ≥ 0 and ρ′(r) ≤ 0, which you will do in sheet 1, one finds that

m(r)

r
≤ 2

9

[
1− 6πr2p(r) +

√
1 + 6πr2p(r)

]
. (3.15)

Evaluating on the radius of the star where p = 0, one finds

Rc ≥
9M

4
. (3.16)

Note that this is actually independent of the equation of state and so it applies equally to hot

stars and cold stars which satisfy these assumptions. Stars of uniform constant density can

get arbitrarily close to saturating the bound but as they get closer to the bound the pressure

at the centre diverges.

In order to solve the TOV equations we should use numerical integration. We view (3.6)

and (3.9) as a coupled set of ODEs for m(r) and ρ(r) for some given equation of state.

These can be solved, at least numerically on a computer once initial conditions for the mass

and density are given. We have that m(0) = 0 and therefore we ned only specify a density

ρc = ρ(0) at the centre of the star.

Given these initial conditions we can numerically solve (3.6) and (3.9). Since the latter

equation shows that p decreases with r there must be some point where the pressure vanishes,

this is the surface of the star and the radius is determined by p(Rc) = 0. We can invert this

to determine Rc as a function of ρc. From (3.13) we can determine M as a function of ρc.

Finally we may determine Φ(r) inside the star by integrating (3.7) from the surface of the star

with initial condition that 2Φ(Rc) = log(1− 2M/Rc), i.e. it gives the Schwarzschild solution

potential. Hence for a given equation of state, static, spherically symmetric cold stars are

form a 1-parameter family of solutions labelled by the central density ρc.

3.2 Bounds on the mass

If one follows the above procedure one finds that as ρc increases then M increases to a

maximum before decreasing again for larger ρc. One can see this from (3.15). Due to the

minus sign in the first term as we crank up p(r) the contribution from the positive square root
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term will no longer be dominant and the upper bound on the mass will start to get smaller.

It follows that there is a maximum mass that a cold star can attain.

The maximum mass depends heavily on the details of the equation of state of cold matter.

For the equation of state of a white dwarf where electron degeneracy pressure is the dominant

outward force, one reproduces the Chandrasekhar bound :

MC ≈ 1.4
( 2

µN

)2
M⊙ , (3.17)

where µN is the number of nucleons per electron. The calculation for this bound does not

require general relativity, Newtonian gravity is good enough, and the two bounds agree to a

good precision. Experimentally we know the equation of state up to some density ρ0 which

is nuclear density, past this we no longer know the density.10 One may guess that with some

crazy configuration one could arrange for a star which is arbitrarily heavy, subject to the

above bound. General relativity says that there is in fact a maximal bound independent of

the equation of state. This is around 5M⊙.

To see why this is true observe that ρ is a decreasing function of r. We may define the

core of the star as the region in which ρ > ρ0 where we do not know the equation of state,

and the envelope (since it envelopes the core) as the region ρ < ρ0 where we do know the

equation of state. Let r0 be the radius of the core, so that the core is the region r < r0 and

the envelope is the region r0 < r < Rc. The mass of the core is m0 = m(r0). Since the density

in the core is bigger than the density on the boundary with the envelope we must have that

m0 ≥
4πr30ρ0

3
. (3.18)

Note that Newtonian gravity would also predict this inequality, however in GR we also have

the additional constraint (3.15) which we should evaluate at r = r0 where we know the

equation of state and may therefore determine p0 = p
(
ρ(r0)

)
:

m0

r0
<

2

9

[
1− 7πr20p0 +

√
1 + 6πr20p0

]
. (3.19)

Since the RHS is a decreasing function of p0 evaluating at p0 = 0 we get the weaker bound

m0 <
4r0
9
. (3.20)

10Past this density this becomes a strongly coupled phenomenon described by a strongly coupled QFT.

Since we typically make progress with understanding QFTs using perturbation theory, when they are strongly

coupled this technique fails and we need new ones. Recently there has been some work using AdS/CFT to

work out a realistic equation of state. (This is by no means the only technique, but it has a nice connection

to string theory.)
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These two inequalities define a finite region in the m0 − r0 plane. Hence, even though we

are ignorant of the equation of state within the core, GR predicts that its mass cannot be

arbitrarily large.

Using (3.18) to eliminate r0 and plugging this into (3.20) we have

m0 <
4

9
√
3πρ0

. (3.21)

Hence, even though we do not know the equation of state inside the core GR predicts that its

mass cannot be indefinitely large. Experimentally we know the equation of state of cold matter

at densities much higher than the density of atomic nucei so we take ρ0 = 5 × 1014g/cm3.

Plugging this into the above gives the bound m0 < 5M⊙.

If we are given a core with mass m0 and radius r0 we can solve (numerically) for the

envelope region using the known equation of state and the equations for m(r) and p(r) with

the initial conditions given by the core. If one plugs this into a computer programme one

finds that the maximal mass M as a function of ρ0,m0. One can then vary this over the

allowed region for (m0, r0) one finds that the largest mass is attained for the maximum of m0.

At this maximum the envelope contributes less than 1% of the total mass so the maximum

mass of M is at almost the same as the maximum of m0 and we have M ≤ 5M⊙.

This is an upper bound for any physically reasonable equation of state for ρ > ρ0. Any

equation of state will have a smaller upper bound than the one given here. One may put

further constraints on what we call a physically reasonable equation of state. A natural

demand is that the speed of sound through the mass should not exceed the speed of light, so

that dp
dρ ≤ 1, then the upper bound is further reduced to about 3M⊙.

3.3 Summary

What have we learnt from this exercise? Firstly we see once again that GR predicts something

that Newtonian gravity cannot, we find an upper bound on the maximal size of any cold star,

independent of its composition. Secondly this has an extremely important consequence for

the ultimate fate of a star. Ordinary hot starts are supported against collapse under their

own weight by ideal gas pressure resulting from the high temperature. This pressure is much

higher than the pressure that can be produced by cold matter at comparable densities and so

the above upper limits do not apply. However since a hot star radiates energy, just look out

the nearest window during the day, if this energy is not replenished hydrostatic equilibrium

cannot be maintained. As the fuel source is used up the hydrostatic equilibrium is lost and it

begins to contract until the cold matter pressure dominates the remaining thermal pressure. If
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the star was small enough a stable equilibrium may be reached using cold matter pressure and

will remain like this forever. However if the mass is greater than the cold matter upper limit

equilibrium can never be achieved and the star would have to undergo complete gravitational

collapse unless they shed some of their mass to bring their total mass below the upper bound.

Figure 1: The equilibrium configurations of cold matter. Given an equation of state the

equilibrium configuration is uniquely determined by the central density ρc. The radii and

masses of these configurations are shown for values of ρc ranging from ≈ 105g cm−3 at point

A to ≈ 1017g cm−3 beyond point D. In the white dwarf regime the values of M and Rc
depend somewhat on the assumed composition of the star. The neutron star regime is far

more dependant on the assumptions that go into the equation of state, and interactions

between the fundamental constituents of the matter. In the latter regime this is just a rough

sketch of the qualitative features. The point B is the Chandrasekhar limit and beyond this

the white dwarf must undergo further gravitational collapse to become a neutron star. It

is at this point that the electron degeneracy pressure is insufficient to prevent gravitational

collapse and therefore the equation of state changes past this point.

Figure taken from Wald based on a figure by Harrison, Thorne, Wakano and Wheeler.
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4 Causality and Penrose Diagrams

Let us consider a spacetime M . One of the postulates that we demand General Relativity

satisfies is that it is causal. A signal can be sent between two distinct points if and only if

the points can be joined by a non-spacelike curve. Our goal in this section is to investigate

the properties of causality on spacetime. Given that our spacetimes are generically infinite

in extent this can be difficult to understand on a piece of paper. There is a useful way of

resolving this issue called conformal compactification.

Definition: Conformal transformation

A conformal transformation is a map from a spacetime (M, g) to a spacetime (M, g̃) such

that

g̃µν(x) = Ω(x)2gµν(x) , (4.1)

where Ω(x) is a smooth function of the spacetime coordinates and Ω(x) ̸= 0 for all x ∈M .

Two spacetimes whose metrics are related by a conformal transformation have the same

null geodesics. However, timelike and spacelike geodesics in one metric will not necessarily

be geodesics in the other. You will prove this in problem sheet 1. One reason why conformal

transformations are useful is because they preserve the causal structure of spacetime. Consider

a vector V µ on M , not necessarily a geodesic. Then since Ω(x)2 > 0 it follows that

gµνV
µV ν > 0 ⇔ g̃µνV

µV ν > 0 ,

gµνV
µV ν = 0 ⇔ g̃µνV

µV ν = 0 ,

gµνV
µV ν < 0 ⇔ g̃µνV

µV ν < 0 .

(4.2)

Hence curves which are timelike, null or spacelike with respect to one metric remain timelike,

null or spacelike respectively in the conformally rescaled metric.

We may use this to our advantage when studying the causal structure of spacetime.

By using a suitably chosen conformal factor we may bring “infinity” to a finite coordinate

distance which allows us to draw the causal structure on a finite piece of paper. This is known

as a Penrose diagram and encodes the causal structure of the spacetime.

The general procedure for drawing a Penrose diagram is to perform the following steps.

First change coordinates on (M, g) such that “infinity” is brought to finite coordinate distance.

This then allows us to draw the spacetime on a finite piece of paper. The points at “infinity”

will become the edges of the finite diagram. Typically the metric will diverge at these points.

To remedy this we perform a conformal transformation on g to obtain g̃ which is regular

on the edges. The new pair (M, g̃) is a good representation of the original spacetime (M, g)
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for understanding the causal structure: they have the exact same causal structure. It is

customary to add the points at infinity to the spacetime to form a new manifold M̃ (with

boundary now). The resulting spacetime (M̃, g̃) is oft called the conformal compactification

of (M, g).

Note that this has some limitations. Conformal transformations generically change the

curvature tensors so that R̃µνρσ ̸= Rµνρσ, R̃µν ̸= Rµν , R̃ ̸= R ... and so forth, therefore

the conformally compactified spacetime is unphysical, it does not satisfy the Einstein field

equations anymore. Moreover, timelike and spacelike geodesics of (M, g) are not geodesics

in (M, g̃). The utility of the conformal compactification is for understanding the causal

structure.

To understand this better let us consider some examples.

4.1 Minkowski Space in two-dimensions

First consider Minkowski space in two-dimensions. The metric in rectangular coordinates is

given by

ds2 = −dt2 + dx2 , (4.3)

where −∞ < t, x <∞. The null geodesics are given by t± x =constant. We may introduce

light-cone coordinates u = t− x and v = t+ x which makes the null geodesics pretty simple.

In these coordinates the metric becomes

ds2 = −dudv . (4.4)

The coordinates are still infinite and so we have not really done much yet. To proceed we

want to shrink infinity down to a finite distance away. Define

u = tan ũ , v = tan ṽ , (4.5)

where −π
2 < ũ, ṽ < π

2 . Note that the range is open because strictly u, v → ±∞ are not in the

spacetime. The line-element with these coordinates is now

ds2 = − 1

cos2 ũ cos2 ṽ
dũdṽ . (4.6)

It diverges as ũ, ṽ → ±π
2 . We can now define a new metric conformally related to the one

above. The obvious conformal factor to use is chosen to remove the prefactor. We take

g̃ = cos2 ũ cos2 ṽg = −dũdṽ . (4.7)

39



Figure 2: Left: On the left we have Minkowski space, (M, g) in (ũ, ṽ) coordinates. The

boundaries ũ, ṽ = ±π
2 are not part of M and g diverges there. Lines with r = const are given

by dashed lines, while the solid lines are those with t = const. Right: On the right is the

Penrose diagram of the conformally compactified spacetime. Future past timelike infinity i±,

future/past null infinity is denoted J ± while spacelike infinity is denoted i0.

This metric is now regular at the points at infinity where either ũ ṽ are equal to ±π
2 . Since

it is regular there we may now add these points to the spacetime. The resulting spacetime

(M̃, g̃) is the conformal compactification of (M, g). We may now draw this, see figure 2

The two points (ũ, ṽ) = (−π
2 ,−

π
2 ) and (ũ, ṽ) = (π2 ,

π
2 ) are denoted by i∓ respectively.

All past and future directed timelike curves end up at i∓ so we refer to i−/i+ as past/future

timelike infinity. Future directed null geodesics either end up at ṽ = π
2 with constant |ũ| < π

2

or at ũ = π
2 with constant |ṽ| < π

2 . This set of points is denoted by I + (called scri-plus)

and referred to as future null infinity. An analogous definition holds for past null infinity I −

(scri-minus). Spacelike infinity, i0 denotes the set of end-points of spacelike geodesics, which

correspond to (ũ, ṽ) = (π2 ,−
π
2 ) and (ũ, ṽ) = (−π

2 ,
π
2 ).

4.2 Minkowski Space in d > 2

We have just seen the Penrose diagram for d = 2, it turns out that this is some-what special

in dimension, Minkowski space in d > 2 is somewhat different. Consider Minkowski space in

d > 2 dimensions. We may use the “rectangular” metric

ds2 = −dt2 +
d−1∑
i=1

(dxi)2 , (4.8)
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where the coordinates have ranges t ∈ (−∞,∞), xi ∈ (−∞,∞). To proceed we may a change

of coordinates going to spherical polar coordinates so that the spacelike part of the metric is

equivalent to
d−1∑
i=1

(dxi)2 = dr2 + r2ds2(Sd−2) , (4.9)

with Sd−2 the unit (d − 2)-dimensional sphere and ds2(Sd−2) the round metric on it. This

exhibits the spacetime as a cone centred at xi = 0. We take r ≥ 0. In these coordinates the

Minkowski metric is

ds2 = −dt2 + dr2 + r2ds2(Sd−2) . (4.10)

We can define light-cone coordinates

u = t− r , v = t+ r , (4.11)

which puts the metric into the form

ds2 = −dudv + (v − u)2

4
ds2(Sd−2) . (4.12)

Note that since r ≥ 0 we have u ≤ v. We now want to bring infinity to finite coordinate

length, to do this we change coordinates to

u = tan ũ , v = tan ṽ , (4.13)

where

ũ ∈
(
− π

2
,
π

2

)
, ṽ ∈

(
− π

2
,
π

2

)
. (4.14)

Note that the range is open since the points at ±∞ in the original coordinates are not part

of the spacetime. We still need to impose that ũ ≤ ṽ. In these coordinates the metric reads

ds2 = − 1

4 cos2 ũ cos2 ṽ

[
− 4dũdṽ + sin2(ṽ − ũ)ds2

(
Sd−2

)]
. (4.15)

We may now use a conformal transformation to remove the overall pre-factor and we are left

with

g̃ = 4 cos2 ũ cos2 ṽg = −4dũdṽ + sin2(ṽ − ũ)ds2
(
Sd−2

)
. (4.16)

As before, after the conformal transformation ũ, ṽ = ±π
2 is no longer a problem and we may

compactify the space by including these points. We therefore have the coordinate ranges

−π
2 ≤ ũ ≤ ṽ ≤ π

2 . At fixed point on the sphere the metric is the same as that of 2d

Minkowski space, the difference is in the ranges of ũ, ṽ. We only include the half which is
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Figure 3: Left: On the left we have Minkowski space in general dimension > 2. Each

point represents a d − 2-dimensional sphere. As the null geodesic passes through r = 0

it emerges on another copy of the Penrose diagram whose points represent the anti-podes

(diametrically opposite point) on the spheres. Right: The right digram shows the conformal

compactification for d = 4 as a portion of the Einstein static universe. The curved line

represents that same null geodesic as on the left-hand-side.

right of the vertical line. Every point on the sphere represents a d− 2 dimensional sphere of

radius sin(ṽ − ũ). The Penrose diagram is drawn in figure 3

In 4d, we can picture this differently. Define the coordinates T = ṽ + ũ and χ = ṽ − ũ.
The coordinate ranges are then −π < T < π and 0 < χ < π, with the added constraint

|T |+ χ ≤ π. The metric reads

ĝ = −dT 2 + dχ2 + sin2 χds2(S2) . (4.17)

The spatial part is just the round metric of a three-sphere. This therefore represents a static

universe with spherical spatial slices corresponding to a finite portion of the Einstein static

universe. See the right-hand side of figure 3 there this is plotted. Note that the vertical

direction of the cylinder is T while the angular direction is χ. At each point there is a
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two-sphere with radius sin2 χ. We have

i+ = future timelike infinity (T = π, χ = 0) ,

i0 = spatial infinity (T = 0, χ = π) ,

i− = past timelike infinity (T = −π, χ = 0) ,

I + = future null infinity(T = π − χ, 0 < χ < π) ,

I − = past null infinity(T = −π + χ, 0 < χ < π) .

(4.18)

Note that i±, i0 are actually points since χ = 0 and χ = π are the north and south poles of

S3. Meanwhile I ± are null surfaces with the topology of R× S2.

There are a number of features to observe. Radial null geodesics are at ±45◦ in the

diagram. All timelike geodesics begin at i− and end at i+. All null geodesics begin at I −

and end at I +.

4.3 Rindler spacetime in 1+1 dimensions

Rindler space is a subregion of Minkowski space associated with observers who are eternally

accelerated at a constant rate. It appears often when looking at the near-horizon region of

black holes. Consider the two-dimensional Minkowski metric and an observer moving at a

uniform acceleration of magnitude ξ−1 in the x-direction. Their trajectory is

t(τ) = ξ sinh(τ) , x(τ) = ξ cosh(τ) , (4.19)

which has constant acceleration α. Note that the trajectory of the observer satisfies

x2(τ)− t2(τ) = ξ2 , (4.20)

which describes a hyperboloid asymptoting to null paths x = −t in the past and x = t in the

future. The accelerated observer travels from past null infinity to future null infinity, rather

than timelike infinity as would be reached by geodesic observers. The region x ≤ t is forever
hidden to them which makes the line x = t a horizon to these observers. This horizon is of

a different flavour to the Schwarzschild horizon since that is an observer independent object

while this horizon is associated with a special family of observers, see figure 4.

Rindler space corresponds to the right wedge x > |t| foliated by the worldlines of the

accelerated observers.

We can choose new coordinates (η, ξ) on 2d Minkowski space that is adapted to uniformly

accelerated motion. Let

t = ξ sinh(η) , x = ξ cosh aη) , (4.21)
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Figure 4: Eternally accelerating observers in Minkowski space. Their worldlines are in blue

and labelled by ξ. Events in the shaded region such as the black dot are hidden to them. The

Rindler horizon is the boundary between the shaded and unshaded regions. Rindler space is

the right wedge bounded by the dashed black lines which are null. The straight lines are lines

of constant Rindler time.

with coordinate range 0 < ξ < ∞ and −∞ < η < ∞. In these coordinates the Minkowski

metric in (η, ξ) coordinates is

ds2 = −ξ2dη2 + dξ2 . (4.22)

The proper time measured by an accelerated observer, i.e. a stationary (ξ =constant) observer

in Rindler coordinates is τ = ξη. Since Rindler space is just a subregion of Minkowski space

the Penrose diagram is just a piece of figure 2.

4.4 Kruskal Space

Recall that we could extend the Schwarzschild solution beyond the horizon by using Kruskal

coordinates. The metric in these coordinates reads

ds2 = −32M3

r
exp

(
− r

2M

)
dUdV + r2ds2(S2) . (4.23)

Recall that the range of the coordinates is −∞ < U, V <∞. We need to define a new set of

null coordinates to bring infinity to a finite coordinate distance. We transform as

U = tan Ũ , V = tan Ṽ , (4.24)
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such that −π
2 < Ũ, Ṽ < π

2 . The line element becomes

ds2 =
1

4 cos2 Ũ cos2 Ṽ

[
− 128M3

r
exp

(
− r

2M

)
dŨdṼ + r2 cos2 Ũ cos2 Ṽ ds2(S2)

]
. (4.25)

We perform the usual conformal transformation

g̃ = 4 cos2 Ũ cos2 Ṽ g = −128M3

r
exp

(
− r

2M

)
dŨdṼ + r2 cos2 Ũ cos2 Ṽ ds2(S2) . (4.26)

The curvature singularity at r = 0 is at UV = 1 in U, V coordinates and now corresponds to

1 = UV = tan Ũ tan Ṽ ⇔ sin Ũ sin Ṽ − cos Ũ cos Ṽ = 0 ⇔ cos(Ũ + Ṽ ) = 0 . (4.27)

This implies that it is located at Ũ + Ṽ = ±π
2 . To make this simpler it is useful to define

Ũ = T − X and Ṽ = T + X. The Penrose diagram includes the points at infinity and the

singularity, we draw it in figure 5.

Figure 5: Left: The Penrose diagram for Kruskal spacetime. The possible trajectory of

the surface of a collapsing star is plotted, the parts to the left correspond to the interior of

the star and is described by a metric (at fixed time slice) to the metric we constructed in

section 3. Right: The Penrose diagram for a collapsing star. The curved surface represents

the surface of the star with the shaded area corresponding to the interior of the star. The

horizon corresponds to the dashed line and appears in spacetime once the star has collapsed

sufficiently.

In contrast to the conformal compactification of Minkowski space the conformally related

metric is singular at i±. Lines of constant r meet at i± and this includes the curvature

singularity at r = 0. Less obviously, it turns out that one cannot choose Ω to make the

conformally rescaled metric smooth at i0.
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We can also plot the Penrose diagram of a spherically symmetric collapsing star. The

interior of the star is excluded since the stress energy tensor does not vanish there. We end

up with only the two regions 1 and 3 of Kruskal spacetime, there is no white hole region.

5 Charged Black holes

At this point we have almost beaten to death the Schwarzschild solution, we need some new

solutions to play with. There is a generalisation to the Schwarzschild solution that we can

study: we can give it some charge. This will retain the static and spherically symmetric

properties of the Schwarzschild solution but couple Einstein gravity to electromagnetism.

The charged black hole is known as the Reissner–Nordström (RN) black hole.

In nature large imbalances of charge do not occur, it is favourable for the charged object to

attract particles of opposite charge and gradually lose its charge. We would therefore expect

matter undergoing gravitational collapse to be neutral and so the presence of charged black

holes in nature does not seem particularly relevant. Nevertheless the solution exhibits some

interesting features. Moreover, for those doing string theory, RN black holes occasionally

appear, though probably not in your course.

5.1 Einstein gravity coupled to electromagnetism

We want to couple Einstein gravity to Electromagnetism. Recall that the general prescrip-

tion for coupling matter to gravity is through minimal coupling.11 Minimal coupling says

we replace the Minkowski metric with the curved metric of spacetime, we replace regular

derivatives with covariant derivatives and add in the correct volume measure.

Electromagnetism in terms of forms

Recall that Electromagnetism is governed by Maxwell’s equations:

∇× B⃗ − ∂tE⃗ = J⃗ ,

∇ · E⃗ = ρ ,

∇× E⃗ + ∂tB⃗ = 0 ,

∇ · B⃗ = 0 .

(5.1)

Here B⃗ and E⃗ are the electric and magnetic field 3-vectors, J⃗ is a current, ρ is the charge

density. These equations are invariant under Lorentz transformations, even though they

do not look invariant. We can write these in a manifestly invariant way by introducing

the two-form field strength F and its one-form potential A.

11One can also add non-minimal terms but we will not consider these here.
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Writing the Maxwell’s equations in component notation we have

ϵijk∂jBk − ∂0Ei = J i ,

∂iE
i = J0 ,

ϵijk∂jEk + ∂0B
i = 0 ,

∂iB
i = 0 .

(5.2)

We have introduced the current 4-vector J = (ρ, J⃗) to rewrite the first two conditions.

Let us define the field strength tensor Fµν to be

Fµν =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0


µν

(5.3)

We have

F 0i = Ei , F ij = ϵijkBk . (5.4)

Therefore the first two equations in (5.3) can be rewritten as

∂jF
ij − ∂0F 0i = J i ,

∂iF
0i = J0 ,

(5.5)

which may be rewritten as

∂µF
µν = −Jν . (5.6)

Similarly the bottom two equations in (5.3) may be rewritten as

∂[µFνλ] = 0 . (5.7)

Writing F as a two-form we have the two equations

d ⋆ F = −J , dF = 0 . (5.8)

The first equation is known as the Maxwell equation, while the second is the Bianchi

identity. Since dF = 0 this means that locally F can be written as a closed form,

F = dA , Fµν = ∂µAν − ∂νAµ . (5.9)

The one-form A is known as the gauge field. Note that it is not unique, A+dΛ gives the

same field strength F when Λ is a smooth function. Adding the term dΛ to the potential

is known as a gauge transformation, it is a redundancy/symmetry in our description

of the the theory. Physical quantities will generally be expressed in terms of the field
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strength F . On the other hand we view the gauge field as the dynamical field of the

theory, i.e. the field we vary an action with respect to.

We can write an action for electromagnetism by using the gauge field A and defining

the field strength F to be F = dA. Then the action giving rise to Maxwell’s equations

with sources is

SMaxwell =

∫
d4x LEM =

∫
d4x

[
− 1

4
FµνF

µν +AµJ
µ
]
. (5.10)

We have
∂LEM
∂Aν

= Jν , (5.11)

and
∂LEM
∂(∂µAν)

= −Fµν . (5.12)

Putting everything together, the Euler Lagrange equations give

∂µF
µν = −Jν , (5.13)

as we found above from Maxwell’s equations. The Bianchi identity arises because we

define F = dA and by using that d=0.

The Lagrangian for electromagnetism in the absence of sources in flat space is

LEM = −FµνFρσηµρηνσ . (5.14)

To couple this to gravity we will replace the Minkowski metric with the curved metric, add

the volume measure and replace derivatives with covariant derivatives. Derivatives appear in

the field strength as

Fµν = ∂µAν − ∂νAµ −→ ∇µAν −∇νAµ = ∂µAν − ∂νAµ , (5.15)

where the latter follows when using the Levi–Civita connection. The action for Einstein–

Maxwell theory is then

S =
1

16π

∫
d4x
√
−g

(
R− FµνFρσgµρgνσ

)
≡ 1

16π

∫
d4x
√
−g

(
R− FµνFµν

)
. (5.16)

The equations of motion derived from the variation of the Einstein–Maxwell action are

Rµν −
1

2
Rgµν = 2

(
FµρF

ρ
ν −

1

4
gµνFρσF

ρσ

)
,

∇µFµν = 0 ,

(5.17)

and should be accompanied by the Bianchi identity dF = 0. Exercise: Check the equations

of motion are indeed those derived from the action.
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5.2 Reissner–Nordström black hole

There is a generalisation of Birkhoff’s theorem for four-dimensional Einstein–Maxwell theory.

Theorem:

The Unique spherically symmetric solution of the Einstein–Maxwell equations with non-

constant area radius function r is the Reissner–Nordström solution:

ds2 = −f(r)dt2 + f(r)−1dr2 + r2ds2(S2) ,

A = −Q
r
dt− P cos θdϕ ,

f(r) = 1− 2M

r
+
e2

r2
, e2 = Q2 + P 2 .

(5.18)

The solution has three parameters: M,P,Q. We will show later that these are the mass,

magnetic charge and electric charge of the solution. Note that there is no evidence for the

existence of magnetic monopoles (which the P describes) in nature, however it is a valid

solution of the equations of motion. The non-constant area radius function is important, if

this is not enforced then one can find an additional solution, see problem sheet 2.

There are several properties which are similar to the Schwarzschild solution. The solution

is static with the timelike Killing vector ∂t. It is also asymptotically flat, like the Schwarzschild

solution and has a curvature singularity at r = 0. Note that we may smoothly recover the

Schwarzschild solution by sending Q,P → 0.

To discuss the properties of the solution it is convenient to define

∆(r) = r2f(r) = r2 − 2Mr + e2 = (r − r+)(r − r−) , r± =M ±
√
M2 − e2 . (5.19)

The metric then takes the form

ds2 = −∆(r)

r2
dt2 +

r2

∆(r)
dr2 + r2ds2(S2) . (5.20)

Since r = 0 is a genuine curvature singularity we would like to hide it behind a horizon,

much in the same way that the curvature singularity is hidden in the Schwarzschild solution

behind a horizon. This is determined by having a root of ∆(r), where the metric has a

coordinate singularity.12 There are then three distinct behaviours for the metric depending

on the possible roots r±, which in turn are determined by the sign of M2 − e2.
12We will make the existence of a horizon more concrete later but let us use the rule of thumb that there is

some degeneration of the metric at the horizon.
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5.2.1 Super extremal RN: e2 > M2

IfM2−e2 < 0 the roots r± are complex and therefore ∆(r) does not have any real zeros. Thus

the curvature singularity is not hidden behind a horizon and we have a naked singularity.13

There is no obstruction to an observer travelling to the singularity, studying it and then

returning to us to tell us all about it. If one studies the geodesics one finds that the naked

singularity is repulsive, timelike geodesics never intersect r = 0, rather they approach r = 0

but reverse course and move away. Null geodesics can reach the singularity as can non-geodesic

timelike curves.

As r →∞ the solution approaches flat spacetime and the causal structure looks normal

everywhere. The conformal diagram will therefore be just like that of Minkowski space, except

now r = 0 is a singularity. The nakedness of the singularity should be offensive to you. We

should never expect to find a black hole with M2 < e2 as a result of gravitational collapse.

Roughly, the condition states that the total energy of the hole is less than the contribution

to the energy of the electromagnetic fields alone, and therefore we must have something with

negative mass. Therefore we consider this unphysical. The Penrose diagram is given in figure

6.

5.2.2 Sub-extremal RN: M2 > e2

In this case ∆ has two real simple roots and there are consequently two coordinate singulari-

ties. The surfaces defined by r = r± are both null hypersurfaces and are both event horizons

(for the moment we define an event horizon as a hypersurface separating spacetime points

to those which are connected to infinity by a timelike path from those that are not). The

singularity at r = 0 is a timelike line (contrast this with Schwarzschild where it was spacelike).

To see that they are coordinate singularities we can proceed in a similar manner as we did

for the Schwarzschild solution and define tortoise like coordinates. Let us begin with r > r+

and define

dr∗ =
r2

∆(r)
dr . (5.21)

Integrating gives

r∗ = r +
1

2κ+
log

r − r+
r+

+
1

2κ−
log

r − r−
r−

+ const , (5.22)

where

κ± =
r± − r∓
2r2±

. (5.23)

13We will discuss this in more detail later.
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Figure 6: The Penrose diagram for the super-extremal Reissner–Nordström solution.

Now let

u = t− r∗ , v = t+ r∗ . (5.24)

In ingoing Eddington–Finkelstein coordinates the RN metric is

ds2 = −∆(r)

r2
dv2 + 2dvdr + r2ds2(S2) . (5.25)

This is now smooth for any r > 0 hence we can analytically continue the metric into the new
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region 0 < r < r+. There is a curvature singularity at r = 0 and there is a null hypersurface

at r = r±.

It follows that no point in the region r < r+ can send a signal to I +, hence it describes

a black hole. The black hole region is r ≤ r+ and the future event horizon is the null

hypersurface r = r+.

To understand the global structure we need to define Kruskal-like coordinates:

U± = −e−κ±u , V ± = ±eκ±v . (5.26)

Starting in the region r > r+ we use coordinates (U+, V +, θ, ϕ) to obtain the metric

ds2 = −r+r−
κ2+r

2
e−2κ+r

(
r − r−
r−

)1+κ+/|κ−|
dU+dV + + r2ds2(S2) . (5.27)

where r(U+, V +) is defined implicitly by

−U+V + = e2κ+r
(
r − r+
r+

)(
r−

r − r−

)κ+/|κ−|
. (5.28)

The RHS is a monotonically increasing function of r from r > r−. initially we have U+ < 0

and V + > 0 which gives r > r+, but now we can analytically continue to U+ ≥ 0 or V + ≤ 0.

In particular the metric is smooth and non-degenerate when U+ = 0 or V + = 0. We obtain

a diagram very similar to the Kruskal diagram we had for Schwarzschild, see figure 7.

Just as for Kruskal we have a pair of null hypersurfaces which intersect in the bifurcation

2-sphere located at U+ = V + = 0. Surfaces of constant t are Einstein–Rosen bridges which

connect regions I and IV. The major difference to the Schwarzschild solution is that we no

longer have a curvature singularity in regions II and III because r(U+, V +) > r−. However

we know that it is possible to extend our metric into the r < r− region, hence the above

spacetime must be extendable. In other words we know from the EF coordinates that radial

null geodesics reach r = r− in finite affine parameter so we have to investigate what happens

there.

To do this we should start in region II and use ingoing EF coordinates (v, r, θ, ϕ), since

we know that these cover regions I and II. We can now define a retarded time coordinate u

in region II. First define a time coordinate t = v− r∗ in region II with r∗ as defined in (5.22).

The metric in coordinates (t, r, θ, ϕ) takes the static RN form given above with r− < r < r+.

Now define u = t − r∗ = v − 2r∗. Having define u in region II we can now define Kruskal

coordinates U− < 0 and V − < − in region II using the formula above. In these coordinates
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Figure 7: The Reissner–Nordström solution in (U+, V +) coordinates.

the metric is

ds2 = −r+r−
κ2−r

2
e2|κ−|r

(
r+ − r
r+

)1+|κ−|/κ+
dU−dV − + r2ds2(S2) , (5.29)

where r(U−, V −) < r+ is given implicitly by

U−V − = e−2|κ−|r
(
r − r−
r−

)(
r+

r+ − r

)|κ−|/κ+
. (5.30)

We may as before analytically continue to U− ≥ 0 and V − ≥ 0 which gives the diagram 8.

We now have the regions V and VI in which 0 < r < r−. These regions contain the

curvature singularity at r = 0 (U−V − = −1) which is timelike. Region III’ is isometric to

region III and so by ontroducing new coordinates (U+′, V +′) this can be analytically continued

to the future to give further new regions I’, II’, and IV’ as shown in figure 9. In this diagram

the regions I’ and IV’ are new asymptotically flat regions isometric to I and IV. We may repeat

this procedure indefinitely to the future and past, so that the maximal analytic extension of

the RN solution contains infinitely many regions. The resulting Penrose diagram is given in

figure 10. It extends to infinity in both the past and future.

This seems a bit crazy, infinite universes, what is happening here? Notice that if you are

an observer falling into the black hole from far away r+ is just like the Schwarzschild horizon.
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Figure 8: The Reissner–Nordström solution in (U−, V −) coordinates.

At this radius r switches from being a spacelike coordinate to a timelike one and therefore

you necessarily move in the direction of decreasing r. Witnesses outside the black hole see

the same phenomena that they would for the Schwarzschild solution, the infalling observer is

seen to move more and more slowly and is increasingly redshifted.

The inevitable fall from r+ to ever-decreasing radii only lasts until you reach the null

surface at r = r− where r switches from being a timelike coordinate back to being spacelike.

You need not continue travelling on a trajectory of decreasing r and therefore your inevitable

doom of hitting the singularity can be stopped. Indeed r = 0 is a timelike line and you are

therefore and therefore not necessarily in your future.

At this point you can continue on to r = 0 or begin to move in the direction of increasing

r back through the null surface at r = r−. Then r will once again be a timelike coordinate,

however now the orientation is reversed and you must travel in the direction of increasing r

until you are spat out of the event horizon at r = r+. This is like emerging from a white hole

into the rest of the universe. From here you can choose to go back into the black hole, this

time a different one to the one you initially entered. You may then repeat this to your hearts

content.
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Figure 9: The regions I’, II’, IV’ of the Reissner–Norström solution.

How much of this story is actually science over science fiction? Well, not much. Viewing

the universe from the point of an observer inside the black hole tho is about to cross the event-

horizon at r = r− you notice that the observer can look back in time to see the entire history

of the external universe, at least as seen from the black hole. They see this infinitely long

history in a finite proper time thus any signal that gets to them as they approach r = r− is

infinitely blue-shifted. Therefore it is likely that any non-spherically symmetric perturbation

that comes into an RN black hole will violently disturb the geometry. For this reason it is

difficult to say exactly what the actual geometry inside the horizon looks like, but there is no

good reason why it must contain and infinite number of asymptotically flat regions connecting

to each other via various wormholes.
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Figure 10: The Penrose diagram of the RN black hole.
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5.2.3 Extremal RN: M2 = e2

Finally let us consider the extremal RH when the two roots become equal and we obtain a

double root. The metric of the RN extremal solution is

ds2 = −
(
1− M

r

)2

dt2 +

(
1− M

r

)−2

dr2 + r2ds2(S2) , (5.31)

which has a coordinate singularity at r = r+ = r− =M .

The coordinate r is never time-like, it becomes null on the horizon at r = r+ = r− but is

spacelike either side of the horizon. The singularity at r = 0 is once again a timelike line and

as in the other cases may be avoided. You may avoid the singularity and continue to move

to the future to extra copies of the asymptotically flat region, the singularity is always to the

“left”. The Penrose diagram is given in figure 11

Extremal black holes appear frequently when considering supersymmetric theories, they

are generally the black holes which preserve supersymmetry. As we will see extremal implies

that the temperature of the black hole vanishes. The solution seems unstable since adding

a little matter will take us to the sub extremal solution. In the extremal case the mass is

balanced by the charge, this can be reformulated when considering a supersymmetric theory

as saturating the Bogomol’nyi–Prasad–Sommerfield bound. Two extremal black holes with

the same sign charges will attract each other gravitationally but repel each other electro-

magnetically and the two forces precisely cancel. We can find exact solutions to the coupled

Einstein–Maxwell equations representing any number of such black holes in a stationary con-

figuration.

To see this it is useful to first rewrite the RN solution and to focus on just electric charges

for simplicity. Define the radial coordinate

ρ = r −M (5.32)

then the metric takes the isotropic form

ds2 = −H(ρ)−2dt2 +H(ρ)2
[
dρ2 + ρ2ds2(S2)

]
, (5.33)

where

H(ρ) = 1 +
M

ρ
. (5.34)

Since the bracketed part of the metric is just the metric on R3 we may rewrite the metric as

ds2 = −H(x⃗)−2dt2 +H(x⃗)2
[
dx2 + dy2 + dz2

]
, (5.35)
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Figure 11: The Penrose diagram of the extremal RN black hole.

58



with

H(x⃗) = 1 +
M

|x⃗|
. (5.36)

In the original components the electric field of the extremal solution can be expressed in terms

of a vector potential A as

Frt =
Q

r2
= ∂rA0 , A0 = −

Q

r
. (5.37)

We may rewrite this as

A0 = H−1 − 1 . (5.38)

We can now forget that H takes the form above and just plug the metric into the field

equations and we find that we have a solution provided

∇2H = 0 , (5.39)

with ∇2 the Laplacian on R3. It is straightforward to write down all solutions that are well

behaved at infinity, they take the form

H = 1 +
N∑
a=1

Ma

|x⃗− x⃗a|
, (5.40)

for some set of N spatial points x⃗a. These are the locations of the N extremal RN black holes

with masses Ma and electric charges Qa =Ma.

5.3 Charges in curved spacetime

We now want to see how to compute the electric and magnetic charges of the solution and

check that they do indeed agree with the parameters Q and P in the RN solution. Consider

Maxwell’s equation in the presence of a current density J :

d ⋆ F = −4π ⋆ J , dF = 0 . (5.41)

The first implies that d ⋆ J = 0, which in components is equivalent to ∇µJµ = 0 which is the

definition of a conserved current.

Consider a spacelike hypersurface Σ. We define the total electric charge on Σ to be

Q = −
∫
Σ
⋆J . (5.42)

Using Maxwell’s equations we can write

Q =
1

4π

∫
Σ
d ⋆ F , (5.43)
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and assuming Σ has boundary ∂Σ Stoke’s theorem gives

Q =
1

4π

∫
∂Σ
⋆F . (5.44)

This is the analogue of Gauss’ law Q ∼
∫
E⃗ · dS⃗.

Consider Minkowski spacetime in spherical polar coordinates and choose the orientation

so that the volume form is

dvol = r2 sin θdt ∧ dr ∧ dθ ∧ dϕ . (5.45)

Take Σ to be the surface at fixed t = 0.14 We may view Σ as the boundary of the region t ≤ 0

then Stoke’s theorem fixes the orientation of Σ as r2 sin θdr∧dθ∧dϕ. Let ΣR be the region of

Σ with r ≤ R of Σ, the boundary is then the two-sphere with radius R: S2
R. Stokes’ theorem

fixes the orientation of the two-sphere to be dθ ∧ dϕ. Consider the Coulomb potential

A = −q
r
dt , F = − q

r2
dt ∧ dr . (5.46)

Taking the Hodge dual gives

⋆F = q sin θdθ ∧ dϕ , (5.47)

and hence the charge on ΣR is

S[ΣR] =
1

4π

∫
S2
R

⋆F =
1

4π
q sin θdθ ∧ dϕ = q . (5.48)

Our definition of Q gives the expected result.

For an asymptotically flat hypersurface in Minkowski spacetime we can take the limit

R → ∞ to express the total charge on Σ as an integral at infinity. Motivated by this we

define the charges at asymptotic infinity to be

Q =
1

4π
lim
r→∞

∫
S2
r

⋆F , P =
1

4π
lim
r→∞

∫
S2
r

F , (5.49)

where S2
r is the sphere with radius r.

Note that even when there is no charged matter, J = 0 we can still obtain a non-trivial

charge, for example the RN solution above. The total charge on a spacelike hypersurface

vanishes, since J = 0, however when we convert the integral to a surface integral at infinity

we obtain two terms because the surface has two asymptotically flat ends. The charges on each

of these boundary pieces can be non-zero, so long as they cancel each other when summed.

14We could of course choose any value of t, 0 is just notationally simpler.
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It remains to be seen why we call this a conserved charge. Consider two spacelike surfaces

Σ1 and Σ2. Consider the cylindrical surface, V which is bounded by Σ1 and Σ2, and large

enough to contain all of the sources, see figure 12. From this latter condition it follows that

J = 0 on the boundaries and outside V . We then have

0 =

∫
V
d ⋆ J

=

∫
∂V
⋆J

=

∫
Σ1

⋆J −
∫
Σ2

⋆J

=
1

4π

∫
∂Σ1

⋆F − 1

4π

∫
∂Σ2

⋆F

= Q[Σ1]−Q[Σ2] .

(5.50)

Σ1

Σ2

∂Σ1

∂Σ2

V

Sources

Figure 12: The region V bounded by the two spacelike hypersurfaces Σi and containing all

the sources.

61



We can also define magnetic charges similarly. Since they are already defined on the

spacelike hypersurface we just need to integrate F , as opposed to ⋆F . A similar argument

for showing that it is conserved holds as well.

Let us do this for the RN black hole. We have

F =
Q

r2
dr ∧ dt+ P sin θdθ ∧ dϕ . (5.51)

The magnetic charge is defined to be

P [S2] =
1

4π

∫
S2

F =
P

4π

∫
S2

dvol(S2) = P . (5.52)

For the electric charge we need the Hodge dual. We have

⋆F =
1

r2
dt ∧ dr +Q sin θdθ ∧ dϕ . (5.53)

Therefore the electric charge is

Q[S2] =
1

4π

∫
S2

Q sin θdθ ∧ dϕ = Q . (5.54)

We find that indeed the parameters Q and P are the electric and magnetic charges.

6 Rotating black holes

All the solutions we have seen so far have been static and spherically symmetric, though these

are nice testing grounds for us to learn things from they are not likely to be objects that we

will see in our universe. Observational evidence seems to suggest that black holes should

rotate. Our goal in this section is to study rotating black holes.

Since the black holes are rotating we must give up our spherical symmetry, they can

however be axisymmetric: symmetric under rotations about an axis. Moreover we must give

up our metric being static, and reduce to the weaker stationary class of metric. This follows

since if we were to dun time in the opposite direction we must see rotation in the opposite

direction, clearly this cannot be static, we should then impose the weaker stationary condition.

These generalisations make the metric a lot more complicated. Although the Schwarzschild

solution and Reissner–Nordström solutions were discovered shortly after general relativity

was invented, the metric we will study, known as the Kerr(–Newman) metric was first found

in 1963. Kerr originally found the rotating metric without any charges but was later extended

by Newman to include charges.
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6.1 The Kerr–Newman solution

The Kerr–Newman solution in Boyer-Lindquist coordinates is

ds2 = −∆(r)− a2 sin2 θ
ρ(r, θ)2

dt2 − 2a sin2 θ(r2 + a2 −∆(r))

ρ(r, θ)2
dtdϕ

+
(r2 + a2)2 − a2 sin2 θ∆(r)

ρ(r, θ)2
sin2 θdϕ2 +

ρ(r, θ)2

∆(r)
dr2 + ρ2(r, θ)dθ2 ,

A = − 1

ρ(r, θ)2

(
Qr(dt− a sin2 θdϕ) + P cos θ(adt− (r2 + a2)dϕ)

)
.

(6.1)

The functions are

ρ(r, θ)2 = r2 + a2 cos2 θ , ∆(r) = r2 − 2Mr + a2 + e2 , e2 = Q2 + P 2 . (6.2)

At larger r the above coordinates reduce to the spherical polar coordinates in Minkowski

spacetime, θ, ϕ have the usual interpretation as angles on S2, so we have 0 < θ < π and

ϕ ∈ [0, 2π]. This depends on 4 parameters, a, M , Q and P . You may guess that M is the

mass, Q the electric charge, P the magnetic charge and a related to the angular momentum.

We will show how to compute the angular momentum and mass soon, but for the moment

let us just give the result. The parameter a is the angular momentum per unit mass,

a =
J

M
, (6.3)

with J the Komar angular momentum.

Note that the metric can be rearranged into the form

ds2 = − ∆(r)

ρ2(r, θ)
(dt− a sin2 θdϕ)2 + ρ2(r, θ)

∆(r)
dr2 +

sin2 θ

ρ2(r, θ)
(adt− (r2 + a2)dϕ)2 + ρ2(r, θ)dθ2 ,

(6.4)

which makes clear that the a = 0 limit recovers the Reissner–Nordstrom solution of the

previous section.

This is the unique stationary black hole solution of the Einstein–Maxwell theory. An equi-

librium black hole in the presence of the elctromagnetic field is therefore fully characterised

by the three numbers M , J and Q.

6.2 The Kerr solution

Since all of the essential phenomena persist in the absence of charge we will set Q = P = 0

in the remainder of this section. If we set a → 0 the metric reduces to the Schwarzschild
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solution. If instead we keep a fixed but set M → 0 then we recover flat space, but in funky

coordinates:

ds2 = −dt2 + r2 + a2 cos2 θ

r2 + a2
dr2 + (r2 + a2 cos2 θ)dθ2 + (r2 + a2) sin2 θdϕ2 . (6.5)

The spatial part of the metric is flat three-dimensional space written in ellipsoidal coordinates,

see figure 13. They are related to Cartesian coordinates in three-dimensional space by

x =
√
r2 + a2 sin θ cosϕ ,

y =
√
r2 + a2 sin θ sinϕ ,

z = r cos θ .

(6.6)

Constant θ

Constant r

r = 0

Figure 13: The structure of the ellipsoidal coordinates of the Kerr metric. The region r = 0

is a two-dimensional disc with length 2a.

There are two Killing vectors of the metric both of which are manifest since the metric

is independent of both t and ϕ. Both K = ∂t and R = ∂ϕ are Killing vectors. K is not

orthogonal to t =constant hypersurfaces and hence the metric is stationary and not static.

This makes sense since the black hole is rotating, so not static, but it is spinning in exactly
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the same way at all times so it is stationary. R expresses the axial symmetry of the solution,

we have a symmetry rotating the solution around the axis of rotation.

Besides the Killing vectors the Kerr metric also has a Killing tensor. A Killing tensor is

any symmetric (0, n) tensor σµ1...µn satisfying

∇(νσµ1...µn) = 0 . (6.7)

For the Kerr geometry we can define the (0, 2) tensor

σµν = 2ρ2l(µnν) + r2gµν , (6.8)

where

lµ =
1

∆
(r2 + a2,∆, 0, a) , nµ =

1

2ρ2
(r2 + a2,−∆, 0, a) , (6.9)

both vectors are null and satisfy

lµlµ = 0 , nµnµ = 0 , lµnµ = −1 . (6.10)

The coordinates have been chosen so that the event horizons occur at those fixed values

of r for which grr = 0. Since grr = ∆/ρ2 we have zeroes when

∆(r) = r2 − 2Mr + a2 = 0 . (6.11)

We may then write

∆ = (r − r+)(r − r−) , r± =M ±
√
M2 − a2 . (6.12)

The solutions with M2 − a2 < 0 describe a naked singularity, and the M2 = a2 solution is

unstable, so lets assume that M2 > a2 from now on. The metric is also singular at θ = 0, π

but these are just coordinate singularities of spherical polars so we will ignore these. There

is also a singularity at ρ2 = 0 when r = 0 and θ = π
2 .

Let us show that r = r+ is just a coordinate singularity. To do this we define Kerr

coordinates (v, r, θ, χ) for r > r+ by

dv = dt+
r2 + a2

∆(r)
dr , dχ = dϕ+

a

∆(r)
dr . (6.13)

In the new coordinates we have χ ∼ χ+ 2π and the Killing vectors are

K =
∂

∂v
, R =

∂

∂χ
. (6.14)
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The new metric in these coordinates is

ds2 = −∆(r)− a2 sin2 θ
ρ2

dv2 + 2dvdr − 2a sin2 θ(r2 + a2 −∆(r))

ρ2
dvdχ

− 2a sin2 θdχdr +
(r2 + a2)2 −∆(r)a2 sin2 θ

ρ2
sin2 θdχ2 + ρ2dθ2 .

(6.15)

This change of coordinates shows that the metric is non-degenerate at r = r+. We can

analytically continue through the surface r = r+ into a new region with 0 < r < r+.

The surface r = r+ is a null hypersurface with normal

ξµ = Kµ +ΩHR
µ , (6.16)

with

ΩH =
a

r2+ + a2
. (6.17)

Note that one-form

ξ =
ρ(r, θ)

r2 + a2
dr , (6.18)

vanishes on the r = r+ surface and is therefore normal to this hypersurface. The dual one-form

is

ξ = ∂v +
∆(r)

r2 + a2
∂r +

a

r2 + a2
∂χ , (6.19)

which agrees with ξ above on the horizon where ∆(r+) = 0. The norm of ξ is

ξµξµ =
ρ2(r, θ)∆(r)

(r2 + a2)2
, (6.20)

which clearly vanishes at r = r+ and therefore the vector ξ is a null Killing vector on r = r+.

The region r ≤ r+ part of the black hole region of this spacetime with r = r+ is the future

event horizon H+. In Boyer–Lindquist coordinates the Killing vector is

ξ =
∂

∂t
+ΩH

∂

∂ϕ
. (6.21)

Observe that ξµ∂µ(ϕ − ΩHt) = 0 and therefore ϕ = ΩHt + const on integral curves of ξµ.

Conversely integral curves of K have ϕ = const. We see that particles moving on orbits of ξ

rotate with angular velocity ΩH with respect to a stationary observer (someone on an orbit of

K). In particular they rotate with this angular velocity with respect to a stationary observer

at infinity. Since ξ is tangent to the generators of H+, then these generators rotate with

angular velocity ΩH with respect to a stationary observer at infinity so we can interpret ΩH

as the angular velocity of the black hole.
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6.3 Komar Integrals

In the above we have claimed that the Kerr black hole is rotating and has angular momentum

J = aM , we would like to back up this claim. This relies on us defining a Komar integral,

which is essentially a charge associated to a Killing vector.

We have seen that we can define conserved electric and magnetic charges given a gauge

field, one can understand the need for a charge associated to a Killing vector by playing

a little game with Kaluza–Klein reduction.

Consider Einstein gravity in five-dimensions without a cosmological constant. Let us

take an ansatz for the metric of the form

ds2 = ϕ2(x)
(
dψ +Aµdx

µ
)2

+ gµνdx
µdxν , (6.22)

where ∂ψ is a Killing vector and the one-form A is defined only on the base with coor-

dinates x. Note that gauge transformations are just coordinate transformations in this

formalism.

We can now plug this into the five-dimensional vacuum Einstein equations. One

finds that there are three conditions one must impose in order for the metric to satisfy

the five-dimensional Einstein vacuum equations:

□ϕ =
1

4
ϕ3FµνFµν ,

∇µ
(
ϕ3Fµν

)
= 0 ,

Rµν −
1

2
gµνR =

1

2
ϕ2

(
FµρF

ρ
ν −

1

4
gµνFρσF

ρσ
)
+

1

ϕ
(∇µ∇νϕ− gµν□ϕ) ,

(6.23)

where Fµν = ∂µAν − ∂νAµ and everything is a four-dimensional object defined by the

metric gµν . For a constant ϕ we can see the Maxwell equation and Einstein equation of

the Einstein–Maxwell theory, of course setting ϕ =constant imposes a non-trivial relation

on the F but let us forget about this for the moment.

We see that if 5-dimensional spacetime has a circle which is small, then we see a

four-dimensional spacetime which is Einstein gravity plus electromagnetism. Now we

know that in the four-dimensional theory we can define electric (and magnetic) charges,

but there should be some remnant of these electric charges in the five-dimensional theory.

In the five-dimensional theory it must enter through the gauge field A and therefore it is

connected to the Killing vector ∂ψ: there must be a way of defining a conserved charge to

a Killing vector which is the analogue of the electric charge in the dimensionally reduced

theory.

Let k be a Killing vector, recall that this implies that ∇(µkν) = 0, and therefore ∇µkν is
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anti-symmetric. We can define the two-form

Kµν = ∇µkν , K = dk , (6.24)

were we have abused notation to write k for the form and also the vector. For any vector X

recall that we have

(∇µ∇ν −∇ν∇µ)Xσ = RσρµνX
ρ . (6.25)

Let us use this with the Killing vector and contract the σ and µ indices, we have

∇µ∇νkµ −∇ν∇µkµ = Rρνk
ρ

= ∇µ∇νkµ

= ∇µKνµ ,

(6.26)

and therefore we have (Exercise)

∇µKµν = −2Rνµkµ . (6.27)

In form notation we have

d ⋆ dk = 8πGN ⋆ J = 2 ⋆ Rµνk
µdxν . (6.28)

This should look reminiscent of how we defined electric charges in the previous section. We

may rewrite the above using Einstein’s equations:

Rµν = 8πGN

(
Tµν −

1

2
T ρρgµν

)
, (6.29)

to find the current

Jµ = 2
(
Tµν −

1

2
T ρρgµν

)
kν . (6.30)

Thus d ⋆ J = 0. In analogy to how we defined a charge in electromagnetism, on a spatial

hypersurface Σ, we may define the conserved charge

Qk(B) = −
∫
Σ
⋆J =

1

8π

∫
Σ
d ⋆ dk =

1

8π

∫
∂Σ
⋆dk (6.31)

We define the charge to be taken at asymptotic infinity.

Definition: Komar mass

Let Σ be a spacelike hypersurface with boundary S2
r in an asymptotically flat stationary

spacetime, with time-like Killing vector k. The Komar mass (or Komar energy) is

MKomar = −
1

8π
lim
r→∞

∫
S2
r

⋆dk . (6.32)
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This is a measure of the total energy of the spacetime. This energy comes from both

matter and the gravitational field. You have seen in GR1 exercises that even when computing

the Komar mass for the Schwarzschild solution, which is a vacuum solution with no matter,

we find a non-zero Komar mass which is equal to M .

Since the only property of k we used was that it is a Killing vector we can also define the

angular momentum.

Definition: Komar angular momentum

Let Σ be a spacelike hypersurface with boundary S2
r in an asymptotically flat stationary

spacetime with killing axisymmetric vector k. Then the Komar angular momentum is

JKomar =
1

16π
lim
r→∞

∫
S2
r

⋆dk . (6.33)

6.4 Maximal extension

The Kerr coordinates are analogous to the ingoing Eddington–Finkelstein coordinates that we

used for the Reisner–Nordström solution. One can similarly define retarded EF coordinates

and study the white hole region, before constructing Kruskal like coordinates which cover the

various regions of the metric.

Just as for the RN solution, the spacetime can be extended across the null hypersurfaces

at r = r− in regions II and III. The resulting maximal extension is similar to that of RN

except for the behaviour near the singularity. There is no longer a singularity at r = 0

but rather at ρ = 0, this is where the Kretschmann invariant RµνρσR
µνρσ diverges. Since

ρ2 = r2 + a2 cos2 θ is the sum of two manifestly non-negative quantities it can only vanish

when both vanish, this is then at

r = 0 , θ =
π

2
. (6.34)

For fixed v, r, θ the metric is

ds2
∣∣∣
v,r,θ Fixed

=
(r2 + a2)2 −∆(r)a2 sin2 θ

ρ2
sin2 θdχ2 (6.35)

We see that as we take r → 0 we have

ds2
∣∣∣
v,r,θ Fixed

= a2 sin2 θdχ2. (6.36)

This then defines a disc parametrised by θ and χ. When we also take θ = π
2 we end up

with the metric ds2 = a2dχ2 which is the metric on a ring of radius a. Therefore in the

Kerr metric, the curvature singularity has the structure of a ring. The rotation has softened
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the Schwarzschild singularity, spreading it out over a ring. If you travel toward r = 0 from

any other angle other than θ = π
2 you will not encounter the singularity and will instead

pass through and enter a new asymptotically flat region. This is not an identical copy of the

spacetime you came from though, instead it is described by the Kerr metric with r < 0. As

a result ∆ never vanishes and there are no horizons in this space.

This spacetime with r < 0 has an unusual feature. One finds that R = ∂ϕ becomes

time-like near the singularity, the metric at fixed t, r < 0 and θ = π
2 is

ds2 =
(
r2 + a2 +

2Ma

r

)
dχ2 , (6.37)

which close enough to the singularity is negative. Since χ is 2π-periodic we end up with closed

timelike curves. You may sometimes hear these referred to as time-machines. It is a curve

that is everywhere timelike and that eventually returns to where it started in spacetime. You

can then travel on this CTC and meet yourself in the past!

This region is unphysical. Much like in the case of sub-extremal RN the inner horizon

at r = r− becomes a curvature singularity in the presence of the smallest perturbations to

the Kerr metric: at the inner horizon perturbations are infinitely blueshifted, which leads to

divergences in the curvature scalars.

When we considered Schwarzschild we saw that it describes the metric outside a spherical

star. This was a consequence of Birkhoff’s theorem. In contrast the Kerr solution does not

describe the spacetime outside a rotating star. This solution is expected to describe only

the final state of gravitational collapse. One can’t obtain a solution describing gravitational

collapse to form a Kerr black hole by simply gluing in a ball of collapsing matter as was

possible for Schwarzschild. Additionally, the spacetime during collapse would not even be

stationary as gravitational waves must be emitted.

Theorem Carter 1971, Robinson 1975

If (M, g) is a stationary, axisymmetric, asymptotically flat vacuum spacetime suitably

regular on, and outside a connected event horizon then (M, g) is a member of the 2-parameter

Kerr family of solutions. The parameters are the angular momentum and mass.

This result says that the final state of gravitational collapse is generically a Kerr black

hole and is fully characterised by just 2 numbers. In contrast the initial state can be arbitrarily

complicated. Nearly all information about the initial state is lost during gravitational collapse:

either by radiation to infinity, or by falling into the black hole, and just 2 numbers are required

to describe the final state on and outside the event horizon. There is an extension of this

theorem for the 4-parameter Kerr–Newman solution.
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To draw the Penrose diagram it is now more difficult because the metric is no longer

spherically symmetric. Since the curvature singularity will appear only for θ = π
2 the Penrose

diagram will look different for θ ̸= π
2 and θ = π

2 . To represent both cases it is customary

to draw a Penrose diagram that is an amalgamation of the Penrose diagram for an observer

falling in from the north pole and along the equatorial plane at fixed χ. Notice that χ = const

means that ϕ is not constant so the observer falling in at θ = π
2 rotates about the polar axis.

See figure 14 for the Penrose diagram.

6.5 Ergosphere and Penrose process (or how to steal energy from a black hole)

By definition a black hole is a region of space where no matter nor light can escape from. It

may come as a surprise that we can extract energy from a black hole if it has an ergosphere.

The norm of the Killing vector K is

KµKµ = − 1

ρ2
(∆− a2 sin2 θ) , (6.38)

which we see does not vanish on the horizon, instead on the horizon it is spacelike. This

Killing vector is already spacelike at the outer horizon, except at the north and south poles

at θ = 0, π where it is null. The locus of points where KµKµ = 0 is called the stationary

limit surface and is given by

(r −M)2 =M2 − a2 cos2 θ , (6.39)

while the outer event horizon is given by

(r+ −M)2 =M2 − a2 . (6.40)

Thus there is a region between these two surfaces, which is called the ergosphere, where K

is spacelike, see figure 15. Therefore since in the ergosphere ∂t is not time-like one cannot

travel along its integral curves and remain stationary with respect to observers at infinity. A

stationary observer is someone whose 4-velocity is parallel to K, since this is spacelike in the

ergosphere they cannot be stationary. Recall that in order to be timelike we need to satisfy

gµν ẋ
µẋν = −1 inside the ergosphere. However each of the terms of the metric are positive

definite inside the ergosphere except the term gtϕ, and therefore ϕ̇ ̸= 0 and so must rotate.

Since ṫ > 0 for a future directed worldline, we must have ϕ̇ > 0 and therefore the timelike

worldline is dragged around in the direction of the rotation of the black hole. This effect is

an example of frame dragging.

We may exploit this to obtain energy from the black hole. Consider a particle with 4-

momentum Pµ = mẋµ with m the rest of the particle. Recall that the existence of Killing
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Figure 14: The Penrose diagram for sub-extremal Kerr. There are and infinite number of

copies of the region outside the black hole. The singularity at r = 0 only appears for θ = π
2

and is absent for other values of θ. The regions beyond the singularity are where we have

CTCs.

vectors implies the existence of conserved quantities along geodesics. We have the two con-
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Figure 15: The horizon structure around the Kerr solution. The event horizons are null

surfaces that separate points past which it is impossible to return to a certain region of space.

The stationary limit surface, is timelike everywhere except where it is tangent to the event

horizon at the poles. It represents the place past which it is impossible to be a stationary

observer. The ergosphere between the stationary limit surface and the outer event horizon is

a region in which it is possible to enter and leave again but not to remain stationary.

served quantities:

E = −Kµp
µ = m

[(
1− 2Mr

ρ2

) dt

dτ
+

2Mar

ρ2
sin2 θ

dϕ

dτ

]
,

l = Rµp
µ = m

[
− 2Mar

ρ2
sin2 θ

dt

dτ
+

(r2 + a2)2 −∆(r)a2 sin2 θ

ρ2
sin2 θ

dϕ

dτ

]
.

(6.41)

These differ slightly with the definitions before where we had energy and angular momentum

per unit mass, here we have multiplied by the mass of the particle. They are of course still

conserved. The minus sign in E is because at infinity both K and p are timelike and so their

inner product is negative and we want energy to be positive.

Let the particle approach a Kerr black hole along a geodesic. The energy of the particle

according to a stationary observer at infinity is conserved along the geodesic. Inside the

ergosphere, since K becomes spacelike we can imagine particles for which

E = −Kµp
µ < 0 . (6.42)

This may bother you slightly that there is a particle with negative energy however, one can

find that all particles have positive energy outside the ergosphere, those with negative energy

must remain in the ergosphere or be accelerated until its energy is positive if it is to escape.

This allows for a way of extracting energy from a rotating black hole. Let us start away

far from the black hole and throw something into the black hole along a geodesic. Let us
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denote the 4-momentum to be p0, then its total energy that we measure is

E0 = −pµ0Kµ , (6.43)

which is conserved. Let the object enter the ergosphere. We arrange for the object to eject a

mass, in a smart way, whilst in the ergosphere. Conservation of momentum gives

p0 = p1 + p2 , (6.44)

with p1 the momentum of the object and p2 the momentum of the ejected mass. Contracting

with the Killing vector K we have the expected relation

E0 = E1 + E2 . (6.45)

If we arrange for E2 < 0 by a clever choice of way of ejecting the mass, then we must have

E1 > E0. Penrose showed that the ejected mass with negative energy must fall into the black

hole, while the object can now escape with more energy than it initially began with. This is

the Penrose process and is a method for extracting energy from a rotating black hole.

So can a rotating black hole be used as an infinite source of energy? There is no such

thing as a free lunch (though cafe pi occasionally has free lunch samples), so the energy must

comes from somewhere, and the only candidate is that it comes from the black hole. The

Penrose process extracts energy from the black hole by decreasing the black holes angular

momentum. When the mass is ejected we need to it to be ejected against the black hole’s

rotation. Recall that we saw that the event horizon was a Killing horizon for the Killing

vector

ξµ = Kµ +ΩHR
µ . (6.46)

On the outer event horizon this indeed becomes null. The statement that the object with

momentum p2 crosses the event horizon by moving forward in time, is simply that

pµ2ξµ < 0 . (6.47)

Plugging in the definitions of E and l, we see that this is equivalent to

l2 <
E2

ΩH
. (6.48)

Since E2 is negative and ΩH positive it follows that l2 < 0 and therefore the particle has

negative angular momentum, therefore it is moving against the rotation of the black hole.
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Once our object has escaped the ergosphere and the mass has fallen inside the event

horizon the mass and the angular momentum of the black hole are changed. They are now

the initial values plus the negative contributions from the in-falling mass:

δM = E2 , δJ = l2 , (6.49)

with J = Ma the angular momentum of the black hole. The inequality 6.48 then translates

into a limit on the amount the angular momentum can decrease

δJ < δMΩ−1
H . (6.50)

The ideal process would be when we have equality, in this case the mass thrown into the black

hole becomes more and more null (since in this limit we have pµ2ξµ → 0).

There is now a slight curiosity that appears, we can use the Penrose process to reduce the

mass of the black hole, however there is a non-decreasing quantity: the area of the horizon.

Let us compute the area of the event horizon at r = r+. To do this we look at the induced

metric on the horizon by setting t =const r = r+. The induced metric is

ds2(horizon) = γijdx
idxj = ds2(dt = 0 ,dr = 0 , r = r+)

(r2+ + a2)2

r2+ + a2 cos2 θ
sin2 θdϕ2 + (r2+ + a2 cos2 θ)dθ2 ,

(6.51)

The area of the horizon is then simply

A =

∫
dvol(horizon) . (6.52)

For the metric at hand the determinant is

det(γ) =
(r2+ + a2)2

r2+ + a2 cos2 θ
sin2 θ × (r2+ + a2 cos2 θ) = (r2+ + a2)2 sin2 θ ,

dvol(horizon) = (r2+ + a2) sin θdθ ∧ dϕ .

(6.53)

The area is then

Ahorizon = (r2+ + a2)

∫
sin θdϕdθ = 4π(r2+ + a2) . (6.54)

To show that this does not decrease we work with the so called irreducible mass defined by

M2
irreducible =

A

16π
. (6.55)

Then we have

M2
irreducible =

r2+ + a2

4

=
1

2

(
M2 +

√
M4 −M2a2

)
=

1

2

(
M2 +

√
M4 − J2

)
.

(6.56)
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We can differentiate to obtain ho Mirreducible is affected by changes in the mass or angular

momentum:

δMirreducible =
a

4Mirreducible

√
M2 − a2

(Ω−1
H δM − δJ) . (6.57)

We see that the inequality (6.50) becomes

δMirreducible > 0 . (6.58)

The irreducible mass can never be reduced, hence the name. It follows that the maximum

amount of energy that can be extracted from the black hole is

max(E) =M −Mirreducible =M − 1√
2

√
M2 +

√
M4 − J2 . (6.59)

The result after a complete extraction of this amount of energy is a Schwarzschild solution

with mass Mirreducible. The most efficient process is to start with an extremal Kerr black hole

and then one can extract out approximately 29% of its total energy.

The irreducibility ofMirreducible immediately shows that the surface area is non-decreasing.

We have

δA =
8πa

ΩH
√
M2 − a2

(
δM − ΩHδJ

)
. (6.60)

This may be recast as

δM =
κ

8π
δA+ΩHδJ , (6.61)

where κ is

κ =

√
M2 − a2

2M(M +
√
M2 − a2)

. (6.62)

The quantity κ is the surface gravity of the Kerr solution. This is the force that an observer

at infinity would have to exert in order to keep a unit mass at the horizon.

For every Killing horizon we can associate a quantity called the surface gravity. Given

the Killing horizon we have an associated Killing vector, ξ which is null on the horizon.

Since ξ is a normal vector to the Killing horizon it obeys the geodesic equation

ξµ∇µξν = −κξν . (6.63)

It turns out that κ is constant over the horizon (we will prove this later).

The above equation first started people thinking about a correspondence between the

laws of thermodynamics and black holes. The first law of thermodynamics is

dE = TdS − pdV , (6.64)
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where T is the temperature, S the entropy, p the pressure and V the volume, thus pdV is the

work done on the system. It is then natural to think of the term ΩHδJ as the work we do on

the black hole by throwing our mass into the black hole. It is then natural to construct the

dictionary

E ↔M , S ↔ A

4GN
, T ↔ κ

2π
. (6.65)

This observation leads nicely on towards studying black hole thermodynamics. Before

we get there we need to introduce some more formal definitions of what a black hole is and

a little more technology.

7 Causality and singularities

Many physical questions can be rephrased as an initial value problem. Given the state of a

system at some moment in time what will be the state of the system at some later time. The

fact that this has a definitive answer is due to causality: future events can be understood

as consequences of initial conditions plus the laws of physics. Initial value problems are as

common in GR as in Newtonian physics or special relativity, however the dynamical nature

of the spacetime background introduces new ways in which an initial value formulation could

break down.

For the moment we will look at the problem of evolving matter fields on a fixed back-

ground spacetime rather than the evolution of the metric. The guiding principle is that no

signals can travel faster than the speed of light; therefore information can only flow along

timelike or null paths, not necessarily geodesics. We will define a causal curve to be any path

which is timelike or null everywhere. Given any subset S of a manifold M , we can define the

causal future of S denoted J+(S) to be the set of points that can be reached from S following

a future directed causal curve. The chronological future I+(S) is the set of points that can be

reached by following a future directed timelike curve. A point p will always be in its causal

future J+(S) but not necessarily its own chronological future I+(p), though it could be. The

causal past J− and chronological past I− are defined analogously.

A subset S ⊂ M is called achronal if no two points in S are connected by a time-like

curve. For example any edgeless spacelike hypersurface in Minkowski space is achronal. Given

a closed (the complement is open) achronal set we define the future domain of dependence of

S, D+(S) to be the set of all points p such that every past moving inextendible causal curve

through p must intersect S. By inextendible we mean that the curve goes on forever and does

not end at some finite point. Elements of S are elements of D+(S). A similar definition of
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the past domain of dependence, D−(S) holds by replacing future with past. We define the

boundary of D+(S) to be the future Cauchy horizon H+(S) and likewise the boundary of

D−(S) to be the past Cauchy horizon H−(S). They are both null surfaces. We have sketched

this in figure 16.

S

Σ H+(S ) D+(S )

H−(S ) D−(S )

Figure 16: A depiction of the domains of dependence of the set S on the achronal surface

Σ.

If nothing moves faster than light, signals cannot propagate outside the lightcone of any

point p. Therefore if every curve that remains inside the lightcone must intersect S then

information specified on S should be sufficient to predict what the situation is at p. That is,

initial data for matter fields on S can be used to solve for the matter fields at p. The set

of all points for which we can predict what happens by knowing what happens on S is the

union D(S) = D+(S)∪D−(S) is called the domain of dependence. A closed achronal surface

Σ is said to be a Cauchy surface if the domain of dependence D(Σ) is the entire manifold.

Information given on the Cauchy surface can be used to predict what happens throughout

all of spacetime. If a spacetime has a Cauchy surface (it need not) it is said to be globally

hyperbolic.

Therefore a globally hyperbolic spacetime is one in which one can predict what happens

everywhere from data on Σ. Minkowski spacetime is an example of a globally hyperbolic

spacetime as is the Kruskal spacetime. Examples of non globally hyperbolic spacetimes is

2d Minkowski space with the origin removed. In this case for any partial Cauchy surface Σ,

78



there will be some inextendible causal curves which don’t intersect Σ because they end at the

origin.

8 Singularity theorem

We have seen that a spherically symmetric gravitational collapse results in the formation of

a singularity. One can ask whether this is an artefact of the spherical symmetry or if it is

something more generic?In Newtonian gravity the collapse of a spherically symmetric ball of

matter produces a singularity with infinite density at the origin, however a tiny perturbation

of the spherical symmetry does not lead to a singularity, rather a bouncing solution. One

could ask whether this is the same for GR. Work by Roger Penrose answered this question

and showed that singularities are a generic prediction of general relativity.15

8.1 Singularities

We have seen numerous different types of singularity so far. We have defined a metric singu-

larity to arise in some basis if its components are not smooth or the determinant vanishes. A

coordinate singularity can be eliminated by a change of coordinates, for example r = 2M in

the Schwarzschild spacetime in Schwarzschild coordinates. These singularities are unphysical

and can be removed by a better choice of coordinates. If it is not possible to remove the

singularity by a change of coordinates then we have a physical singularity. A scalar curvature

singularity is a singularity where some scalar constructed from the Riemann tensor blows up.

Not all physical singularities are curvature singularities however, we have seen one in

problem sheet 2. Consider the manifold M = R2 and introduce plane polar coordinates (r, ϕ)

with ϕ ∼ ϕ+ 2π and define the Riemannian metric

g = dr2 + λ2r2dϕ2 , (8.1)

with λ > 0. The metric determinant vanishes at r = 0, however for λ = 1 this is just

Euclidean space in polar coordinates so we can convert to Cartesian coordinates to see that

r = 0 is just a coordinate singularity. However for λ ̸= 1 and define ϕ′ = λϕ. Then the metric

is

g = dr2 + r2dϕ′2 , (8.2)

15It is sometimes said that GR predicts its own downfall. This is because GR predicts singularities but is

ill equipped to deal with them. To fully understand them we need a theory of quantum gravity, which GR is

not.
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which is locally isometric to Euclidean space and therefore curvature singularity free. How-

ever, it is not globally isometric to Euclidean space because the period of ϕ′ is 2πλ. Consider

a circle r = ϵ, this has
circumference

radius
=

2ϕλϵ

ϵ
= 2πλ , (8.3)

which does not tend to 2π as ϵ→ 0. Recall that any smooth Riemannian manifold is locally

flat, i.e. one recovers results of Euclidean geometry on sufficiently small length scales. The

above shows that this is not true for the above metric for small circles around r = 0 and

therefore the metric cannot be extended smoothly to r = 0. This is an example of a conical

singularity.

A problem in defining singularities is that they are not places, they do not belong to

the spacetime manifold because we define spacetime as the pair (M, g) where g is a smooth

Lorentzian metric. This is the reason we remove r = 0 from the Kruskal spacetime, the metric

is no longer smooth there. Similarly in the above example if we want a smooth manifold we

should take M = R2/(0, 0) so that r = 0 is not part of the spacetime M .

In both examples the existence of the singularity implies that some geodesics cannot be

extended to arbitrarily large affine parameter because they end at the singularity. We will

use this property to define what we mean by a singular spacetime.

First eliminate the trivial case where a geodesic ends because we haven’t taken the range

of its parameter to be large enough. A curve is a smooth map γ : (a, b) → M . Sometimes a

curve can be extended, that is it is part of a bigger curve. If this happens then the first curve

will have an endpoint, which is defined as follows.

Definition future endpoint

The point p ∈ M is a future end-point of a future-directed causal curve γ : (a, b) → M if,

for any neighbourhood O of p there exists t0 such that γ(t) ∈ O for all t > t0. We say that

γ is future inextendible if it has no future endpoint. Similarly for past endpoints and past

inextendibility. The curve γ is inextendible if it is both future and past inextendible.

Example Let (M, g) be Minkowski spacetime and let γ : (−∞, 0) → M be γ(t) =

(t, 0, 0, 0). Then the origin is a future end-point of γ. However if we instead let (M, g) be

Minkowski spacetime with the origin removed then γ is future inextendible.

Definition Complete

A geodesic is complete if an affine parameter for the geodesic extends to ±∞. A spacetime is

geodesically complete if all inextendible causal geodesics are complete.

Example Minkowski spacetime is goedesically complete as is the spacetime describing a

spherically symmetric star. Kruskal spacetime on the other hand is goedesically incomplete
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because some geodesics have r → 0 in finite affine parameter and hence cannot be extended

to infinite affine parameter.

A spacetime which is extendible will also be geodesically incomplete. The incompleteness

in this case is because we are not considering the full spacetime. We will therefore regard a

spacetime as singular if it is geodesically incomplete and inextendible. This is true for the

Kruskal spacetime, Kruskal extension of the RN and Kerr–Newman black holes.

8.2 Null hypersurfaces

To begin let us define what it means for a hypersurface to be null.

Definition: Null hypersurface

A null hypersurface is a hypersurface whose normal is everywhere null.

Example Consider surfaces of constant r in Schwarzschild spacetime. The one-form

n = dr is normal to such surfaces. The norm is

n2 = 1− 2M

r
. (8.4)

We see that the hypersurface r = 2M is a null hypersurface.

Let nµ be normal to a null hypersurface N . Then any (non-zero) vector Xµ tangent to

the hypersurface obeys nµX
µ = 0. Therefore, either Xµ is spacelike or Xµ is parallel to nµ.

In particular note that nµ is tangent to the hypersurface, since it is null, hence on N the

integral curves of nµ lie within N .

Proposition: The integral curves of n are null geodesics. They are called the generators

of N .

Proof: Let N be given by the equation f =constant for some function f with df ̸= 0 on

N . Then we have n = hdf for h some function which does not vanish on f =constant. Let

N = df , the integral curves of n and N are the same up to a choice of reparametrisation.16

Since N is null we have that NµNµ = 0 on N which implies that the gradient of this function

16To see this consider the integral curves defined by nµ:

nµ =
dx̃µ(λ̃)

dλ̃
.

We have that the integral curves for N are then

Nµ =
dxµ

dλ
= h−1nµ = h−1 dx̃

µ

dλ̃
=

[
h−1 dλ

dλ̃

]
dx̃µ

dλ
.

By choosing the parameter λ(λ̃) so that dλ

dλ̃
= h we may make the bracket in the last term become unity and

therefore we have shown that the integral curves are the same up to a choice of reparametrisation.
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is normal to N :

∇µ(NνNν)
∣∣∣
N

= 2αNµ , (8.5)

with α some function on N . Now since ∇µNν = ∇µ∇νf = ∇ν∇µf = ∇νNµ we have

Nν∇µNν = Nν∇νNµ ⇒ Nν∇νNµ

∣∣∣
N

= αNµ . (8.6)

This is nothing but the geodesic equation for a non-affinely parametrised geodesic. Hence on

N the integral curves of N , and therefore also n are null geodesics.

Consider Kruskal spacetime, with metric (1.69). Let N = dU , this is null everywhere

(since gUU = 0) and is normal to a family of null hypersurfaces defined by U =constant.

Since N2 = 0 everywhere it follows that N is tangent to affinely parametrised null geodesics.

Raising an index gives

Nµ = − r

16M3
e
r

2M

(
∂

∂V

)µ
. (8.7)

Let N be the surface U = 0. Since U = 0 corresponds to r = 2M on N we have that N

is simply a constant multiple of ∂
∂V . Thus V is an affine parameter for the generators of N .

Similarly U is an affine parameter of for the generators of the null hypersurface V = 0.

Black holes are characterised by the fact that you can enter them but never exit. The most

important feature is therefore not the singularity but rather than event horizon. An event

horizon is a hypersurface separating those spacetime points that are connected to infinity by

a timelike path from those that are not.

8.3 Geodesic Deviation

Definition one-parameter family of geodesics

A one-parameter family of geodesics is a map γ : I × I ′ → M where both I and I ′ are

open intervals of R such that: for fixed σ, γ(σ, λ) is a geodesic with affine parameter λ; the

map (σ, λ) 7→ γ(σ, λ) is smooth, one to one and with a smooth inverse. The latter condition

implies that the family of geodesics sweeps out a 2d surface Σ ⊂M .

Let X be the tangent vector to the geodesics and S the vector tangent to the curves of

constant λ, which are parametrised by σ. In a coordinate chart xµ the geodesics are specified

by xµ(σ, λ) with

Sµ =
∂xµ

∂σ
, Xµ =

∂xµ

∂λ
. (8.8)

Hence

xµ(σ + δσ, λ) = xµ(σ, λ) + Sµ(s, λ)δs+O(δs2) . (8.9)

82



We see that Sµ points from one geodesic to an infinitesimally nearby one in the family. The

vector S is called the deviation vector or separation vector.

On the surface Σ we can use σ, λ coordinates and therefore we have

S =
∂

∂σ
, X =

∂

∂λ
. (8.10)

Hence S and X commute:

[X,S] = 0 , ⇔ Xµ∇µSν = Sµ∇µXν . (8.11)

From here we find the geodesic deviation equation:

Xρ∇ρ
(
Xµ∇µSν

)
= RνµρτX

µXρSτ . (8.12)

8.4 Geodesic congruences

A more comprehensive picture of the behaviour of neighbouring geodesics comes from con-

sidering not just a one-parameter family but an entire congruence of geodesics. Let U be an

open region of M . A congruence of U is a set of geodesics such that every point in U lies on

precisely one curve. A geodesic congruence can be thought of as a tracing out the paths of a

set of non-interacting particles moving through spacetime with non-intersecting paths. If the

geodesics cross then the congruence comes to an end at that point. Consider a congruence for

which all the geodesics are of the same type, (timelike, spacelike, null). We can then arrange

such that the tangent vector, Xµ is normalised to XµXµ = ±1, 0 depending on the type.

Let Xµ = dxµ

dτ and consider a 1-parameter family of geodesics belonging to a congruence.

Then [S,X] = 0 can be written as

Xµ∇µSν = Bν
µS

µ , Bν
µ = ∇µXν , (8.13)

and measures the failure for S to be parallely transported along the geodesic with tangent

X. It therefore measures the extent to which neighbouring geodesics deviate from remaining

parallel. Note that due to X being a geodesic and normalised to have fixed constant norm,

we have

XνB
ν
µ = Bν

µX
µ = 0 . (8.14)

This implies that

Xµ∇µ(XνSν) = XµBµνS
ν = 0 . (8.15)

Thus SµX
µ is constant along the congruence.
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Even after normalising the norm XµXµ by an appropriate choice of the affine parameter

we still have the freedom to shift by a constant. We can define the constant to be different

on different geodesics, allowing it to depend on σ: λ′ = λ−a(σ) for some function a(σ). This

changes the deviation vector to

S′µ = Sµ +
da(σ)

dσ
Xµ . (8.16)

This is still a deviation vector pointing to the same geodesic as Sµ. Now we have

XµS′
µ = XµSµ +

da(σ)

dσ
XµXµ , (8.17)

and therefore in the time-like and space-like case we may fix XµSµ = 0, which is a sort of

“gauge” freedom. Since XµSµ is constant we have XµSµ = 0 everywhere. We can define the

projector

Pµν = δµν − |X|−2XµXν , (8.18)

which projects onto the vector space of the tangent space of a point p vectors normal to X.

Null case This of course does not work for null geodesics since XµXµ = 0 and therefore

XµS′
µ = XµSµ. We can instead fix the gauge freedom by picking a spacelike hypersurface Σ

which intersects each geodesic once. Let Nµ be a vector field defined on Σ obeying N2 = 0

and NµXµ = −1 on Σ. Now we can extend N off of Σ by parallel transport along the

geodesics: Xµ∇µNν = 0. This implies that N2 = 0 and NµXµ = −1 everywhere. We have

therefore constructed a vector field such that

N2 = 0 , XµNµ = −1 , Xµ∇µNν = 0 . (8.19)

We can decompose any deviation vector uniquely as

Sµ = αXµ + βNµ + Ŝµ , (8.20)

where

UµŜµ = NµŜµ = 0 , (8.21)

which implies that Ŝ is either spacelike or zero. Now UµSµ = −β and therefore β is constant

along each geodesic. Therefore we can write the the deviation vector S as the sum of a part

αXµ + Ŝµ orthogonal to X and a part βN that is parallely transported along each geodesic.

An important case is when the congruence contains the generators of a null hypersurface

N and we are interested only in the behaviour of these generators. In this case we pick a
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one-parameter family of geodesics contained within N then the deviation vector S will be

tangent to N and hence obey XµSµ = 0 since X is normal to N , in the decomposition above

this is equivalent to β = 0.

We can write

Ŝµ = P̃µνS
ν , (8.22)

where P̃ is the projector

P̃µν = δµν +NµXν +XµNν , (8.23)

acting on the tangent space at p onto T⊥ the 2d space of vectors at p orthogonal to X and

N . Since both X and N are parallely transported so is P ,

Xµ∇µP̃ νσ = 0 . (8.24)

8.5 Expansion, rotation and shear

Bµν is a (0, 2) tensor and so we may decompose it into its: anti-symmetric part, symmetric

traceless part, and trace part.

Let us restrict to the null case. Then we may act on B with the projector P̃ as

B̂µ
ν = P̃µρB

ρ
σ P̃

σ
ν , (8.25)

which is restricted to the 2d space T⊥. We define

Definition: Expansion, shear and rotation

The expansion, shear and rotation of the null geodesic congruence are

θ = B̂µ
µ , σµν = B̂(µν) −

1

2
θP̃µν , ωµν = B̂[µν] . (8.26)

We have

B̂µ
ν =

1

2
θP̃µν + σµν + ωµν , (8.27)

and

θ = gµνBµν = ∇µXµ , (8.28)

the latter shows that it is independent of the vector N and therefore is an intrinsic property of

the congruence. Moreover the scalar invariants of the rotation and shear, for example ωµνω
µν

or the eigenvalues of σ are also independent of the choice of N .

Proposition If the congruence contains the generators of a (null) hypersurface N then

ωµν = 0 on N . Conversely if ωµν = 0 everywhere then X is everywhere hypersurface orthog-

onal, that is orthogonal to a family of null hypersurfaces.
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proof The definition of B̂ and XµB̂µν = 0 = B̂µνX
ν implies

B̂µ
ν = Bµ

ν +XµNρB
ρ
ν +XνB

µ
ρN

ρ +XµXνNρB
ρ
τN

τ . (8.29)

From here we have

X[µωνρ] = X[µB̂νρ] = X[µBνρ] , (8.30)

since the other terms drop in the anti-symmetrisation. Using the definition of B we have

X[µωνρ] = X[µ∇ρXν] = −
1

6
(X ∧ dX)µνρ . (8.31)

If X is normal to N then X ∧ dX = 0 on N . Hence on N

0 = X[µωνρ] =
1

3

(
Xµωνρ +Xνωρµ +Xρωµν

)
. (8.32)

Using that XµNµ = −1 and ωµνN
ν = 0 we have ωµν = 0 on N . Conversely if ω = 0

everywhere then the above shows thatX is hypersurface orthogonal using Frobenius’ theorem.

Figure 17: A depiction of the shear and expansion for a null hypersurface.

8.6 Expansion and shear of a null hypersurface

Assume that we have a congruence which includes the generators of a null hypersurface N .

The generators of a null hypersurface have ω = 0. To understand how these generators behave

let us restrict to deviation vectors tangent to N , i.e. a one-parameter family of generators

of N . Consider the evolution of the generators of N as a function of affine parameter λ as

shown in figure 17.
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Qualitatively θ corresponds to neighbouring generators moving apart for θ > 0, together

for θ < 0. Shear on the other hand corresponds to geodesics moving apart in one direction

and together in the orthogonal direction whilst preserving the cross-sectional area.

To make this more precise let us introduce Gaussian null coordinates near N as follows.

Pick a spacelike 2-surface S within N and let yi (i = 1, 2) be coordinates on this surface.

Assign coordinates (λ, yi) to the point affine parameter distance λ from S along the generator

of N with tangent Xµ which intersects the surface S at the point with coordinates yi. Now

we have coordinates (λ, yi) on N such that the generators are lines of constant yi and X = ∂λ.

Let V be a null vector field on N satisfying V ·∂yi = 0 and V ·X = 1. Assign coordinates

(r, λ, yi) to the point affine parameter distance r along the null geodesic which starts at the

point on N with coordinates (λ, yi) and has tangent vector V there.

This defines a coordinate chart in a neighbourhood of N such that N is at r = 0 with

X = ∂λ on N and ∂r is tangent to affinely parametrised null geodesics. The latter implies

that grr = 0 everywhere.

At r = 0 we have grλ = X · V = 1 since V = ∂r on N , and gri = V · ∂yi = 0. Since

grµ is independent of r these results are valid for all r. We also know that gλλ = 0 at r = 0,

since X is null, and gλi = 0 at r = 0 (since ∂yi is tangent to N and hence orthogonal to

X). Therefore we can write gλλ = rF and gλi = rhi for some smooth functions F and hi.

Therefore the metric takes the form

ds2 = 2drdλ+ rFdλ2 + 2rhidy
idλ+ hijdy

idyj . (8.33)

On N the metric is

g
∣∣∣
N

= 2drdλ+ hijdy
idyj , (8.34)

so Xµ = (0, 1, 0, 0) on N implies that Uµ = (1, 0, 0, 0) on N . Now X ·B = B ·X = 0 implies

that Br
µ = Bµ

λ = 0. We saw above that θ = Bµ
µ . Hence on N we have

θ = Bi
i = ∇iXi = ∂iX

i + ΓiiµX
µ =

1

2
giµ

(
∂λgµi + ∂igµλ − ∂µgiλ

)
. (8.35)

In the final expression note that giµ is non-zero only when µ = j and that gij = hij where

hij is the inverse of hij . Therefore on N

θ =
1

2
hij(∂λgij + ∂igjλ − ∂jgiλ) =

1

2
hij∂λhij =

1√
h
∂λ
√
h , (8.36)

where we used giλ = 0 on N and defined h = dethij . Therefore we have

∂

∂λ

√
h = θ

√
h . (8.37)
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From the form of the metric we see that
√
h is nothing but the area element on a surface of

constant λ within N so θ measures the rate of increase of this area element with respect to

affine parameter along the geodesics.

8.7 Trapped surfaces

Consider a 2d spacelike surface S i.e. a 2d submanifold for which all tangent vectors are

spacelike. For any p ∈ S there will be precisely two future directed null vectors X1 and X2

orthogonal to S, up to rescalings. If we assume S is orientable then Xµ
1 and Xµ

2 can be

defined continuously over S. This defines two families of null geodesics which start on S and

are orthogonal to S. These null geodesics form two null hypersurfaces N1 and N2. In simple

situations these correspond to the set of out-going and in-going light rays that start on S.

Consider a null congruence that contains the generators of Ni. By the proposition above we

will have ωµν = 0 on N1 and N2.

Example Let S be a two-sphere U = U0 and V = V0 in the Kruskal spacetime. By

symmetry the generators of Ni will be radial null geodesics, see figure 19

Figure 18: Null hypersurfaces orthogonal to a sphere S (U = U0 V = V0) in the Kruskal

spacetime.

Hence Ni must be surfaces of constant U or constant V with generators tangent to dU
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and dV respectively. We saw above that dU and dV correspond to affine parametrisation.

Raising an index we find

X1 = rer/2M
∂

∂V
, X2 = rer/2M

∂

∂U
, (8.38)

where we have discarded an overall constant and fixed the signs so that X1 and X2 are future-

directed. The vectors ∂
∂U and ∂

∂V are future-directed because they are globally null and hence

define time-orientations. In region I they both give the same time orientation as the one

defined by K.

We can compute the expansion of these congruences:

θ1 = ∇µXµ
1 =

1√
−g

∂µ

(√
−gXµ

1

)
= r−1er/2M∂V

(
re−r/2Mrer/2M

)
= 2er/2M∂V r . (8.39)

The right-hand side can be calculated by using the implicit definition of U, V , this gives

θ1 = −
8M2

r
U , (8.40)

and a similar calculation gives

θ2 = −
8M2

r
V . (8.41)

We can now set U = U0 and V = V0 to study the expansion on S of the null geodesics normal

to S. For S in region I we have θ1 > 0 and θ2 < 0 i.e. the outgoing null geodesics normal

to S are expanding and the ingoing geodesics are converging. Similarly in region IV we have

θ2 > 0 and θ1 < 0 so again we have an expanding family and a converging family. However in

region II we have θ1 < 0 and θ2 < 0: both families of geodesics normal to S are converging.

In region III we have θ1 > 0 and θ2 > 0 so both families are expanding.

Definition: Trapped

A compact orientable spacelike 2-surface is trapped if both families of null geodesics orthogonal

to S have negative expansion everywhere on S. It is marginally trapped if both families have

non-positive expansion everywhere on S.

In Kruskal spacetime all 2-spheres (U = U0, V = V0) in region II are trapped and

2-spheres on the event horizon (U0 = 0, V0 > 0) are marginally trapped.

8.8 Raychaudhuri’s equation

We now want to understand how the expansion evolves along the geodesic of a null geodesic

congruence.

Proposition: Raychaudhuri’s equation

dθ

dλ
= −1

2
θ2 − σµνσµν + ωµνωµν −RµνXµXν . (8.42)
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Proof: From the definition of θ we have

dθ

dλ
= Xµ∇µθ = Xµ∇µBρ

σ P̃
σ
ρ = P̃ σρX

µ∇µBρ
σ = P̃ σρX

µ∇µ∇σXρ . (8.43)

Now commute derivatives using the definition of the Riemann tensor:

dθ

dλ
= P̃ σρX

µ
(
∇σ∇µXρ +RρτµσX

τ
)

= P̃ σρ

(
∇σ

(
Xµ∇µXρ

)
−
(
∇σXµ

)(
∇µXρ

))
+ P̃ σρR

ρ
µνσX

µXν

= −Bρ
νP

ν
µB

µ
ρ −RµνXµXν ,

(8.44)

where we used the geodesic equation and in the final term the anti-symmetry of the Riemann

tensor allows us to replace P̃ σρ with δσρ . Finally we can rewrite the first term so that

dθ

dλ
= −B̂µ

ν B̂
ν
µ −RµνXµXν . (8.45)

The result then follows by using the expansion of B̂µ
ν in equation (8.27).

Similar calculations give equations governing the evolution of shear and rotation

8.9 Energy conditions

Raychaudhuri’s equation involves the Ricci tensor and so is purely geometric. Through the

Einstein equation this is related to the energy-momentum tensor of matter. We want to

consider only physical matter which implies that the energy-momentum tensor should satisfy

some conditions. For example, an observer with 4-velocity uµ would measure and energy

momentum current jµ = −Tµν uν . We would expect that physically reasonable matter should

not move faster than light, this current should be non-spacelike. This motivates:

Dominant energy condition For all future-directed timelike vectors V µ the vector

−Tµν V ν is a future-directed causal vector or zero.

For matter satisfying the dominant energy condition, if Tµν is zero in some closed region

S of a spacelike hypersurface Σ then Tµν will be zero within D+(S).

Example

Consider a massless scalar field

Tµν = ∂µϕ∂νϕ−
1

2
gµν∂ρϕ∂

ρϕ . (8.46)

Let

jµ = −Tµν V ν = −V ν∂νϕ∂
µϕ+

1

2
V µ∂ρϕ∂

ρϕ , (8.47)

then for timelike V µ

j2 =
1

4
V 2

(
∂ρϕ∂

ρϕ
)2
≤ 0 (8.48)
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so j is indeed causal or zero. Now consider

V µjµ = −(V µ∂µϕ)
2 +

1

2
V 2(∂ρϕ∂

ρϕ)

= −1

2
(V µ∂µϕ)

2 +
1

2
V 2 +

1

2
V 2

(
∂ρϕ−

V · ∂ϕ
V 2

Vρ

)(
∂ρϕ− V · ∂ϕ

V 2
V ρ

) (8.49)

the final expression in brackets is orthogonal to V and hence must be spacelike or zero so its

norm is non-negative. We then have V · j ≤ 0 using V 2 < 0. Hence jµ is future directed or

zero.

A less restrictive condition requires only that the energy density measured by all observers

is positive:

Weak energy condition For any causal vector V we have

TµνV
µV ν ≥ 0 . (8.50)

Null energy condition For any null vector V we have

TµνV
µV ν ≥ 0 . (8.51)

The dominant energy condition implies the weak energy condition, which implies the null

energy condition. Another energy condition is:

Strong energy condition For all causal vector V we have(
Tµν −

1

2
gµνT

ρ
ρ

)
V µV ν ≥ 0 . (8.52)

Using the Einstein equation this is equivalent to

RµνV
µV ν ≥ 0 , (8.53)

or gravity is attractive. Despite its name the strong energy condition does not imply any of

the other conditions. The strong energy condition is needed to prove some of the singularity

theorems, but the dominant energy condition is the most important physically. For example

our universe appears to contain a positive cosmological constant. This violates the strong

energy condition but respects the dominant energy condition.

8.10 Conjugate points

In a spacetime satisfying Einstein’s equation with matter obeying the null energy condition,

the generators of a null hypersurface satisfy

dθ

dλ
≤ −1

2
θ2 . (8.54)

91



Consider the RHS of Raychaudhuri’s equation. The generators of a null hypersurface

have ω = 0. Since vectors in T⊥ are all spacelike, so the metric restricted to T⊥ is positive

definite. Hence σµνσ
µν ≥ 0. Einstein’s equations gives RµνX

µXν = 8πTµνX
µXν because X

is null. Hence the null energy condition implies RµνX
µXν ≥ 0 and the result follows from

Raychaudhuri’s equation.

Corollary If θ = θ0 < 0 at a point p on a generator γ of a null hypersurfaces then θ → −∞
along γ within an affine parameter distance 2|θ0|−1 provided γ extends this far.

Proof: Let λ = 0 at p. Then equation (8.54) implies

d

dλ
θ−1 ≥ 1

2
. (8.55)

Integrating gives θ−1 − θ−1
0 ≥ λ

2 which can be rearranged to give

θ ≤ 2θ0
2 + λθ0

. (8.56)

If θ0 < 0 then the RHS goes to ∞ as λ→ 2
|θ0| .

Definition: Conjugate

Points p, q on a geodesic γ are conjugate if there exists a solution of the geodesic deviation

equation along γ that vanishes at p and q but it not identically zero.

Since gravity is an attractive force it focuses geodesics and if the generated curvature is

strong enough conjugate points always develop provided we can extend the geodesics arbi-

trarily far in the past and in the future.

8.11 Definition of a black hole and the event horizon

We can now define a black hole and its event horizon. Consider a manifold with metric (M, g)

and its conformal compactification (M̄, ḡ). Recall that the causal past J− of a region is the

set of all points we can reach from that region by moving along a past-directed timelike paths.

We can define the causal past of scri-plus J−(I +) ⊂ M̄ . The set of points of M that can

send a signal to I + is M ∩ J−(I +). We define the black hole region to be the complement

of this region, and the future event horizon to be the boundary of the black hole region:

Definition: Black hole region, future event horizon

Let (M, g) be a spacetime that is asymptotically flat at null infinity. The Black hole region is

B =M\[M ∩ J−(I +)] , (8.57)

where J−(I +) is defined using the unphysical spacetime (M̄, ḡ). The future event horizon is

H+ = ∂B.
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Similarly the white hole region is

W =M\[M ∩ J+(I −)] , (8.58)

and the past event horizon is H− = ∂W.

Definition Killing horizon

A null hypersurface N is a Killing horizon if there exists a Killing vector field ξ defined

in a neighbourhood of N such that ξ is normal to N .

Theorem: Hawking 1972

In a stationary, analytic, asymptotically flat vacuum black hole spacetime H+ is a Killing

horizon.

A naked singularity is a singularity from which signals can reach I +, i.e. one that is not

hidden behind an event horizon.

Definition: Strong cosmic conjecture

Naked singularities cannot form in gravitational collapse from generic initially non-singular

states in an asymptotically flat spacetime obeying the dominant energy conditions.

8.12 Penrose Singularity Theorem

Theorem Penrose 1965

Let (M, g) be globally hyperbolic with a non-compact Cauchy surface Σ. Assume that

the Einstein equation and the null energy condition are satisfied and that M contains a

trapped surface T . Let θ0 < 0 be the maximum value of θ on T for both sets of null geodesics

orthogonal to T . Then at least one of these geodesics is future inextendible and has an affine

lengths no greater than 2/|θ0|.
This implies that if there is a trapped surface then the maximal development is not

geodesically complete. Such incompletenesss might arise because the maximal development

is extendible, but the strong cosmic censorship conjecture would exclude this. Hence it is ex-

pected that generically the singularity arises because the maximal development is singular. In

fact a different singularity theorem, due by Hawking and Penrose, eliminates the assumption

that spacetime is globally hyperbolic and still proves the existence of incomplete geodesics.

So even if the maximal development is extendible then the Hawking–Penrose theorem implies

that this extended spacetime must be geodesically incomplete, i.e. singular.

Hence there are very good reasons to believe that gravitational collapse leads to formation

of a singularity. Note that these theorems tell us nothing about the nature of this singularity,

we do not know that it must be a curvature singularity as occurs in spherically symmetric

collapse.
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9 Laws of black hole thermodynamics

In 1973 Bardeen, Carter and Hawking (BCH) wrote a paper, [3], in which they considered

Figure 19: The BCH paper.

stationary axisymmetric black holes. They found that black holes obeyed laws reminiscent

of the laws of thermodynamics. At the time they thought it was just an analogy. There

seem to be some glaring flaws in this analogy: since nothing can escape from a black hole the

temperature must vanish, secondly, the entropy is dimensionless whereas the horizon area is

a length squared, our final perceived flaw is that the area of every black hole is separately

non-decreasing, whereas only the total entropy is non-decreasing in thermodynamics. The

resolution to all these flaws lies in the incorporation of quantum theory, recall that going

to a quantum theory was also the resolution for apparent paradoxes in thermodynamics, for

example black body radiation. We will not study quantum gravity, this is an active area of

research but present the classical laws and possibly some semi-classical analysis.

There are four laws of black hole thermodynamics which should be contrasted with the

laws of thermodynamics:
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Law Thermodynamics Black holes

0th
The temperature T is constant

throughout a system in thermal equi-

librium.

The surface gravity κ is constant over

the even horizon of a stationary black

hole.

1st dE = TdS +
∑

i µidNi dM = 1
8πκdA+ΩHdJ +ΦHdQ

2nd dS ≥ 0 dA ≥ 0

3rd
T cannot be reduced to zero by a finite

number of operations.

κ cannot be reduced to zero by a finite

number of operations.

It may seem strange to say that a black hole has a temperature since nothing can escape

from a black hole and therefore they cannot radiate. This would also mean that they cannot

have a physical entropy. Once quantum effects are taken into account it turns out that a

black hole can have a temperature. Moreover, as pointed out by Jacob Bekenstein the second

law of thermodynamics would be violated if black holes did not have an entropy. One could

throw in arbitrary objects into the black hole which have a large entropy and thus lower the

entropy of the exterior universe. In order to save the 2nd law of thermodynamics it is essential

for a black hole to have an entropy and more over it must be proportional to the surface area

of the horizon. Bekenstein’s generalised second law states that

dStotal = d
(
Sextermal + SBH

)
≥ 0. (9.1)

In 1974 Hawking announced that black holes are hot and radiate just like any hot body

with a temperature

TH =
ℏκ

2πkB
, (9.2)

from which it follows that a black holes has an entropy given by

SBH =
A

4GNℏ
. (9.3)

which is known as the Bekenstein–Hawking entropy.

In the remainder of the course our goal is to understand the laws of black hole thermo-

dynamics as presented above.

9.1 Zeroth law of black hole mechanics

Proposition

Consider a null geodesic congruence that contains the generators of a Killing horizon N .

Then θ = σ = ω = 0 on N .

Proof : We have already seen that ω = 0 since the generators are hypersurface orthogonal.

Let ξ be a Killing vector field normal to N . On N we can write ξµ = hUµ where Uµ is tangent
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to the affinely parametrised generators of N and h is a function on N . Le N be specified by

an equation f = 0. Then we can write Uµ = h−ξµ + fV µ where V µ is a smooth vector field.

We can then calculate

Bµν = ∇νUµ = (∂νh
−1)ξµ + h−1∇νξµ + ∂νfVµ + f∇νVµ , (9.4)

evaluating on N and using Killing’s equation gives

B(µν)

∣∣∣
N

=
[
ξ(µ∂ν)h

−1 + V(µ∂ν)f
]∣∣∣∣

N
. (9.5)

Since both ξµ and ∂µf are parallel to Uµ on N when we project onto T⊥ both terms are

eliminated and we have

B̂µν

∣∣∣
N

= 0 (9.6)

and thus θ = σ = 0 on N .

Theorem: Zeroth law of black hole mechanics

The surface gravity κ is constant on the future event horizon of a stationary black hole

spacetime obeying the dominant energy condition.

Proof: Using Hawking’s theorem we have that H+ is a Killing horizon with respect to

some Killing vector ξ. We know that θ = 0 along the generators of H+, and therefore dθ
dλ = 0

along these generators. Moreover we have just seen that on H+ σ = ω = 0. Therefore

Raychaudhuri’s equation gives

0 = Rµνξ
µξν

∣∣∣
H+

= 8π(Tµν −
1

2
gµνT

ρ
ρ)ξ

µξν
∣∣∣
H+

= 8πTµνξ
µξν

∣∣∣
H+

(9.7)

where we have used Einstein’s equation and that ξ is null on H+. This implies

Jµξ
µ
∣∣∣
H+

= 0 , where Jµ ≡ −Tµνξν . (9.8)

Since ξ is a future-directed causal vector field, then by the dominant energy condition, so is

Jµ (unless it is zero). Thus Jµ is parallel to ξµ on H+ and consequently

0 = ξ[µJν]

∣∣∣
H+

= −ξ[µTν]ρξρ
∣∣∣
H+
− 1

8π
ξ[µRν]ρξ

ρ
∣∣∣
H+

, (9.9)

where we have used Einstein’s equation in the final step. One problem sheet 4 you are asked

to show that this is equivalent to

0 =
1

8π
ξ[µ∂ν]κ . (9.10)

Therefore ∂νκ is proportional to ξν and therefore for any vector field t tangent to H+ it follows

that tµ∂µκ. Therefore κ is constant on H+ provided H+ is connected.
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Let us the identity we need for proving that the surface gravity is constant on the horizon.

We must be very careful with the formulae we use for the surface gravity and acting on

them with derivatives since some only hold on the horizon. Since ξ2
∣∣
H+ = 0 we have that

∇µ
(
ξ2
)
is normal to the horizon and therefore there is a function κ on the horizon such

that

∇µ(ξ2) = −2κξµ . (9.11)

We may rewrite this as

ξµ∇νξµ = −ξµ∇µξν = −κξν , (9.12)

which is just the geodesic equation in a non-affine parametrisation. The above derivation

of the expression for the surface gravity makes clear that it holds on the Killing surface.

This means that applying derivatives to the above expression is somewhat subtle, we

can only differentiate on the Killing surface and not normal to it. Instead observe that if

ϵµνρσ is the 4d volume element then ϵµνρσξσ is tangent to the horizon since ϵµνρσξσξρ = 0.

Therefore we may use this to project the differential operator onto the horizon by acting

with ϵµνρσξρ∇σ and then this may be applied to any object defined on the horizon.

Equivalently we may act with ξ[µ∇ν] on any object. Now applying this to (9.12) we

obtain

ξ[ρ∇σ](κξν) = ξνξ[ρ∇σ]κ+ κξ[ρ∇σ]ξν
= ξ[ρ∇σ]

(
ξµ∇µξν

)
=

(
ξ[ρ∇σ]ξµ

)(
∇µξν

)
+ χµξ[ρ∇σ]∇µξν

=
(
ξ[ρ∇σ]ξµ

)(
∇µξν

)
+ χµR τ

µν[ρ ξσ]ξτ

(9.13)

We may simplify the first term by using the condition that ξ is hypersurface orthogonal

and hence satisfies ξ[µ∇νξρ] = 0. We find

(
ξ[ρ∇σ]ξµ

)(
∇µξν

)
= −1

2

(
ξµ∇ρξσ

)
∇µξν

= −1

2
κξν∇ρξσ

= κξ[ρ∇σ]ξν

(9.14)

This cancels the second term of the first row of (9.14). We therefore have

ξνξ[ρ∇σ]κ = ξµR τ
νµ[σ ξρ]ξτ (9.15)

Since ξ is hypersurface orthogonal we have

ξρ∇µξν = −2ξ[µ∇ν]ξρ , (9.16)
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and acting on this with with ξ[σ∇τ ] we obtain(
ξ[σ∇τ ]ξρ

)
∇µξν + ξρξ[σ∇τ ]∇µξν = −2

(
ξ[σ∇τ ]ξ[µ

)
∇ν]ξρ − 2

(
ξ[σ∇τ ]∇[νξ|ρ|

)
ξµ] . (9.17)

Application of (9.16) results in

−ξρR λ
µν[τ ξσ]ξλ = 2ξ[µR

λ
ν]ρσ ξρξλ . (9.18)

Contracting over the ρ and τ indices gives

−ξ[µR λ
ν] ξλξσ = ξ[µR

λ
ν]ρσ ξρξλ , (9.19)

with the right-hand-side being the expression we required above. We therefore find

ξ[µ∇ν]κ = −ξ[µR
ρ

ν] ξρ . (9.20)

Plugging this into the formulae above gives the required result.

9.2 First law

We have already seen a form of the first law when we considered the irreducible mass of the

Kerr solution. We will give a somewhat heuristic argument here of the first law and then check

it in more detail for the black holes we have studied previously consider the Killing vector

associated to the Killing horizon, it takes the form ξ = K + ΩHR where K generates time

translations and R generates the axisymmetry. The corresponding charge is a combination

of the mass and the angular momentum:

Qξ = −
1

8π

∫
S2
∞

⋆dξ = − 1

8π

∫
S2
∞

⋆dK − ΩH
8π

∫
S2
∞

⋆dR =M − 2ΩHJ . (9.21)

We can also evaluate Qξ in another way. Let Σ be a spacelike hypersurface intersecting the

horizon H+ on a two-sphere S2
H which together with the two-sphere S2

∞ at spatial infinity

forms the boundary of Σ. Using Stoke’s theorem we have:

Qξ = −
1

8π

∫
S2
H

⋆dξ − 1

8π

∫
Σ
d ⋆ dξ

= − 1

8π

∫
S2
H

⋆dξ + 2

∫
Σ

(
Tµν −

1

2
gµνT

ρ
ρ

)
ξν ⋆ dxµ ,

(9.22)

where in the last step we used

⋆d ⋆ dX = 8πJ , J = 2
(
Tµν −

1

2
gµνT

ρ
ρ

)
Xνdxν (9.23)

The integral over S2
H may be regarded as the contribution from the black hole while the one

over Σ is a combination of the mass and angular momentum of the matter and radiation
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outside the horizon. In order to treat the integral over S2
H we observe that the volume form

on S2
H , can be written as

dvol(S2
H) = ⋆(n ∧ ξ) , (9.24)

evaluated at the horizon. Here nµ is another null vector normal to S2
H , normalised so that

nµξµ = −1. Therefore ∫
S2
H

⋆dξ =

∫
S2
H

dvol(S2
H)

(
⋆
(
n ∧ ξ

))µν
(⋆dξ)µν

= 2

∫
S2
H

dvol(S2
H)n

νξµ∇µξν

= −2κ
∫
S2
H

dvol(S2
H)

= −2κAH .

(9.25)

Plugging this into (9.22) we arrive at

M =
κAH
4π

+ 2ΩHJ + 2

∫
Σ

(
Tµν −

1

2
gµνT

ρ
ρ

)
ξν ⋆ dxµ (9.26)

If we are in pure GR, then Tµν = 0 and our spacetime is the Kerr black hole and the formula

reads

M =
κA

4π
+ 2ΩHJ . (9.27)

This is Smarr’s formula for the mass of a Kerr black hole. A formula for δM in the vacuum

case can be obtained by varying (9.27)

δM =
1

4π

(
AHδκ+ κδAH

)
+ 2

(
JδΩH +ΩHδJ

)
. (9.28)

An alternative computation gives

δM = − 1

4π
AHδκ− 2JδΩH . (9.29)

Adding the two equations gives

δM =
1

8π
κδAH +ΩHδJ . (9.30)

In the case where there is an electric charge, we need to define the electric potential

ΦH = ξµAµ

∣∣∣
H+
− ξµAµ

∣∣∣
∞
. (9.31)

For asymptotically flat spacetimes we have that Aµ → 0 as we tend to ∞ and so the second

term drops out. The 1st law with electric charge is then

δM =
1

8π
κδAH +ΩHδJ +ΦHδQ (9.32)
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Kerr–Newman Let us check this for the Kerr–Newman solution:

ds2 = −∆(r)− a2 sin2 θ
ρ(r, θ)2

dt2 − 2a sin2 θ(r2 + a2 −∆(r))

ρ(r, θ)2
dtdϕ

+
(r2 + a2)2 − a2 sin2 θ∆(r)

ρ(r, θ)2
sin2 θdϕ2 +

ρ(r, θ)2

∆(r)
dr2 + ρ2(r, θ)dθ2 ,

A = − 1

ρ(r, θ)2

(
Qr(dt− a sin2 θdϕ)

)
.

(9.33)

The functions are

ρ(r, θ)2 = r2 + a2 cos2 θ , ∆(r) = r2 − 2Mr + a2 + e2 , e2 = Q2 + P 2 . (9.34)

The Kerr–Newman solution is the unique stationary black hole solution of the Einstein–

Maxwell theory.

Let us compute the quantities that we will need to check the relation. The outer Killing

horizon is at r = r+ with

r± =M ±
√
M2 − a2 −Q2 . (9.35)

First let us consider the horizon surface area. We fix an arbitrary time t = t0 and look

at the induced metric on the intersection t = t0 and r = r+, we find

ds2(H) = γµνdx
µdxν = ρ(r+, θ)

2dθ2 +
r2+ + a2

ρ(r+, θ)2
sin2 θdϕ2 . (9.36)

The volume form is

dvol(γ) = (r2+ + a2) sin θdθ ∧ dϕ , (9.37)

and so the surface area is

AH =

∫
H+

dvol(γ) =

∫ 2π

0
dϕ

∫ π

0
dθ(r2+ + a2) sin θ = 4π(r2+ + a2) . (9.38)

Next let us consider the surface gravity. We first need to find the Killing vector which is

null on the horizon and then to compute the surface gravity. Since the horizon is a Killing

horizon we know that it must be of the form

ξ = K +ΩHR , (9.39)

where K and R are the generators of time translations and the axis symmetry respectively.

Note that since a Killing vector remains a Killing vector under a constant rescaling there is an
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arbitrariness in how we pick such a Killing vector. We normalise such that K has coefficient

1. Now this needs to have zero norm on the horizon. The norm is

ξ2
∣∣∣
N+

=
a2 sin2 θ

r2+ + a2 cos2 θ
−

2a sin2 θ(r2+ + a2)

r2+ + a2 cos2 θ
ΩH +

(r2+ + a2)2

r2+ + a2 cos2 θ
sin2 θΩ2

H

=
sin2 θ

r2+ + a2 cos2 θ

(
a2 − 2a(r2+ + a2)ΩH + (r2+ + a2)2Ω2

H

)
,

(9.40)

and for this to vanish we need

ΩH =
a

r2+ + a2
. (9.41)

This is the angular velocity of the black hole.

We can now try to compute the surface gravity. In order to use the formula

∇µ(ξ2) = −2κξµ . (9.42)

we need to use coordinates in which the horizon is not a coordinate singularity. Rather than

changing coordinates we will instead use an alternative formula for the surface gravity

κ2 = lim
r→r+

gµν∂ν(ξ
2)∂µ(ξ

2)

4ξ2
. (9.43)

After a slightly painful computation we find

κ =
r+ − r−

2(r2+ + a2)
. (9.44)

Next let us compute the electric potential. We have

ΦH = ξµAµ

∣∣∣
H+

=
Qr+

r2+ + a2 cos2 θ
(1− ΩHa sin

2 θ)

=
Qr+

r2+ + a2
.

(9.45)

Finally let us remember that the electric charge is Q and the angular momentum is

J = aM . Putting everything together we have

AH = 4π
((
M +

√
M2 − a2 −Q2

)2
+ a2

)
= 4π

(
2M2 −Q2 + 2M

√
M2 −Q2 − a2

)
.

(9.46)

Since M , Q and J are independent parameters this implies

δA =
∂A

∂M
δM +

∂A

∂Q
δQ+

∂A

∂J
δJ . (9.47)
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After a some explicit computation (which you will do in problem sheet 4) and a little rear-

ranging we find

δM =
1

8π
κδA+ΩHδJ +ΦHδQ . (9.48)

We see that the proof is deceptively simple, all the hard work goes into proving the uniqueness

theorems. You need to know that the black hole settles down to another Kerr–Newman black

hole and not some other spacetime. It is worth noting that there exist proofs of the first law

known as physical process proofs that do not assume this.

9.3 Second law

The second law states that in any physical process the area of the event horizon can never

decrease. This is a very surprising feature of these complicated nonlinear PDEs which Hawking

proved using just the Einstein equation, the weak energy condition and cosmic censorship.

Let us give a sketch of the proof. Consider the congruence of the horizon and take a

cross sectional area AH at some value of the affine parameter λ along the geodesics. Then

the expansion θ satisfies
dAH
dλ

= θAH . (9.49)

If we imagine the theorem is violated so that the area decreases then we must have θ < 0

somewhere on the event horizon. Since the generators are geodesics the evolution of the

expansion is governed by Raychaudhuri’s equation. Recall that if θ < 0 and the null energy

condition is satisfied then θ → −∞ in finite λ. This causes a caustic, see figure 20. Since the

points p and q are timelike separated, this contradicts the assumption that the null curves

are the generators of an event horizon, as no two points on the event horizon can be timelike

separated. Thus by contradiction the cross sectional area of an event horizon cannot decrease.

Note that the proof assumes Einstein’s equations, they are not used in an essential way.

Let us use the second law. Consider a Schwarzschild black hole of mass M . Can a black

hole split into two black holes of smaller mass? It turns out that the second law forbids this.

To see this let the masses of the new black holes be m1 and m2. Conservation of energy

implies M = m1 + m2. The surface area of a Schwarzschild black hole is A = 4πM2. We

have that the entropy of the final state is Af = A1 + A2 = 4π(m2
1 +m2

2) and the entropy of

the initial state is Ai = 4πM2 = 4π(m1 +m2)
2 = 4π(m2

1 +m2
2 + 2m1m2). It is clear that

Ai > Af and therefore this process violates the second law. Black holes cannot split in two!
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Figure 20: A family of null geodesics with θ < 0 initially will form a caustic; the dotted curve

connecting p and q lies within the local light cone, so these points are timelike separated.

9.4 Third law

Of all the laws this is on the least firm ground. When the surface gravity of a black hole

vanishes it is called extremal. For the Kerr–Newman this condition corresponds to M2 =

a2+Q2+P 2. For Kerr and electrically charged Kerr black holes one can try to throw matter

into the black hole and make it extremal. One finds that it gets harder and harder for the

matter to make the black hole become closer to being an extremal black hole.

9.5 Why should black holes carry an entropy?

Two arguments supporting why black holes should have an entropy.

Black holes are formed from the collapse of matter which carries entropy. However the

matter that has contributed to form a black hole is not visible from an observer watching from

outside the event horizon. So the observer must conclude either that the entropy disappears in

the formation and growth of black holes and thus that the second principle of thermodynamics

is violated or that the black holes themselves carry entropy.17

17Famously Bekenstein’s advisor Wheeler, asked “what happens if we throw a cup of tea into a black hole?”
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In general relativity, black hole solutions are fully characterised by few conserved quan-

tities such as the mass, the angular momentum and the electric charge. Black holes do not

have hair. However there are many ways of forming a black hole with assigned values of

these charges. From this perspective black holes are macroscopic thermodynamic objects

with many microstates, corresponding to the different possible ways of forming the same

macroscopic solution. Enumerating these microstates leads to an entropy.

10 Hawking temperature (non-examinable)

General relativity is not a complete theory. For one, the singularity theorem provides evidence

that the theory is incomplete. More convincingly, GR is a classical theory while the world

is fundamentally quantum mechanical. Trying to understand quantum gravity is one of the

leading avenues of research in high energy theory. Though there has been much progress, a

full understanding of quantum gravity remains elusive.

There are two parts to GR: spacetime curvature and its influence on matter and the

dynamics. of the metric in response to a varying energy momentum tensor. Lacking a true

theory of quantum gravity we may still use the first part, saying that the quantum mechanical

matter propagates in a curved background which we will hold fixed. Rather than obeying

some dynamical equations, we take the metric to be fixed.

To begin let us review some quantum mechanics and quantum field theory before defining

quantum field theory in curved space.

10.1 Quantum mechanics

Quantum mechanics is profoundly different from classical mechanics, despite this both try to

answer the same three fundamental questions.

• The state of the system is represented as an element of a Hilbert space. Mathematically

a Hilbert space is just a complex vector space equipped with a complex-valued inner

product with the property that taking the inner product of two states in the opposite

order is equivalent to complex conjugation. We denote elements of the Hilbert space as

|ψ⟩ and elements of the dual space as ⟨ψ| so that the inner product of |ψ1⟩ and |ψ2⟩ is
⟨ψ2|ψ1⟩ and obeys

⟨ψ2|ψ1⟩∗ = ⟨ψ1|ψ2⟩ . (10.1)

In quantum mechanics the Hilbert space of interest are very often infinite-dimensional.

For example, if a classical system is represented by coordinate x and momentum p, the
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Hilbert space could be taken to consist of all square-integrable complex-valued functions

of x, or equivalently all square-integrable complex valued functions of p but not both

at once.

• Observables are represented by self-adjoint operators on the HIlbert space. An operator

is Hermitian if

A† = A , (10.2)

where

⟨ψ2|Aψ1⟩ = ⟨A†ψ2|ψ1⟩ , (10.3)

for all states |ψ1⟩, |ψ2⟩. Many operators will not be Hermitian, but observables should

be real and this requires the operator to be Hermitian. In general such operators do

not commute. This means that we cannot simultaneously specify the precise values of

everything we might want to measure. There will be a maximally set of commuting

observables which would represent all we can say about a system at once.

• Evolution of hte system may be represented in one of two ways: as unitary evolution

of the state vector in Hilbert space in the Schrodinger picture, or by keeping the state

fixed and allowing observables to evolve according to equations of motion called the

Heisenberg picture.

Consider a harmonic oscillator. This has Lagrangian

L =
1

2
ẋ2 − 1

2
ω2x2 , (10.4)

which has equation of motion

ẍ+ ω2x = 0 . (10.5)

In the Schrodinger picture, where states are represented by complex-valued wave functions

that evolve with time, such as ψ(x, t). The wave function is really the set of compo-

nents of the state vector |ψ⟩ expressed in the delta function position basis |x⟩ so that

|ψ(t)⟩ =
∫
dxψ(x, t)|x⟩. Canonical quantisation consists of imposing the canonical com-

mutation relation

[x̂, p̂] = i , (10.6)

on the coordinate operator x̂ and its conjugate momentum p̂. For states represented as

wave functions depending on t and x, the operator x̂ is simply multiplication by x, so the

commutation relation can be implemented by fixing

p̂ = −i∂x . (10.7)
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The Hamiltonian operator is

H = −1

2
∂2x +

1

2
ω2x2 , (10.8)

and the equation of motion is the Schrodinger equation

i∂tψ = Hψ . (10.9)

Since the Hamiltonian is time independent the solutions separate into functions of space and

functions of time, ψ(x, t) = f(t)g(x). The solutions then come in a discrete set labelled by

an integer n ≥ 0 and we find

ψn(x, t) = e−
ωx2

2 Hn(
√
ωx)e−iEnt , (10.10)

where Hn is a Hermite polynomial of degree n and

En =
(
n+

1

2

)
ω . (10.11)

These states are all eigenfunctions of H and En is an energy eigenvalue. An arbitrary state

of the oscillator will consist of a superposition of the energy eigenstates,

ψ(x, t) =
∑
n

cnψn(x, t) , (10.12)

for some set of appropriately normalised coefficients cn.

Note that there is a discrete spectrum of energy eigenstates, this is a quantum property.

There is a ground state of lowest energy plus a set of excited states labelled by their energy

eigenvalue. The ground state has a nonvanishing energy

E0 =
1

2
ω , (10.13)

which is sometimes called the zero-point energy. The classical system would have had zero

energy representing a particle with x = p = 0. The quantum zero-point energy can be traced

to the Heisenberg uncertainty principle, which forbids us from localizing a state simultane-

ously in both position and momentum. There is a consequently a minimum amount of jiggle

in the oscillator leading to a non-zero ground state energy.

An alternative way to solve the simple harmonic oscillator is to introduce creation and

annihilation operators â† and â defined by

â =
1√
2ω

(ωx̂+ ip̂) , â† =
1√
2ω

(ωx̂− ip̂) . (10.14)
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From the commutation relations for x̂ and p̂ we find

[â, â†] = 1 , (10.15)

and the Hamiltonian becomes

H = ω
(
ââ† +

1

2

)
. (10.16)

The creation and annihilation operators satisfy

[H, â] = −ωâ , [H, â†] = ωâ† . (10.17)

We define the number operator

n̂ = â†â . (10.18)

Consider an eigenstate |n⟩ of the number operator,

n̂|n⟩ = n|n⟩ . (10.19)

By playing with the commutation relations we have

n̂â†|n⟩ = (n+ 1)â†|n⟩

n̂â|n⟩ = (n− 1)â|n⟩ ,
(10.20)

thus when acting with â† on |n⟩ we obtain another eigenstate of n̂ with eigenvalue raised by

one and â gives an eigenstate with eigenvalue lowered by 1. n takes integral values from 0 to

∞ and therefore there must be a vacuum state with

â|0⟩ = |0⟩ . (10.21)

By acting with â† we can construct all of the eigenstates

|n⟩ = 1√
n!
(a†)n|0⟩ . (10.22)

The basis states are taken to be tome independent so a physical system observing Schrödinger’s

equation will be described by a state

|ψ(t)⟩ =
∑
n

cne
−iEnt|n⟩ , (10.23)

with cn constant coefficients.

In order to transition more smoothly to quantum field theory it is useful to also have

the Heisenberg picture in which the states are fixed and the operators evolve with time. Any
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state can be written formally as some fixed initial state acted on by a unitary time evolution

operator

|ψ(t)⟩ = U(t)|ψ(0)⟩ , (10.24)

where

U(t) = e−i
∫
Hdt . (10.25)

The Schrödinger picture expression for the matrix element of a time-independent operator,

A between two time-dependent states can be written in Heisenberg picture in terms of a time

dependent operator A(t) and time independent states as

⟨ψ2(t)|A|ψ1(t)⟩ = ⟨ψ2(0)|U †(t)AU(t)|ψ1(0)⟩

= ⟨ψ2|A(t)|ψ1⟩ ,
(10.26)

with

A(t) = U †(t)AU(t) . (10.27)

Such an operator satisfies the Heisenberg equation of motion:

dA(t)

dt
= i[H,A(t)] , (10.28)

which replaces the role of Schrödinger’s equation in this picture.

10.2 Quantum field theory

Quantum field theory is a particular example of a quantum mechanical system in which we

quantise a field (a function or tensor field defined on spacetime). Let us first consider a free

scalar field in flat space. This has action

S =

∫
dnx

[
− 1

2
ηµν∂µϕ∂νϕ−

1

2
m2ϕ2

]
≡

∫
dnxL . (10.29)

The equation of motion is the Klein–Gordon equation,

□ϕ−m2ϕ = 0 . (10.30)

To translate into a Hamiltonian picture one defines the conjugate momentum to be

π =
∂L

∂(∂0ϕ)
. (10.31)

For the free scalar field this is

π = ϕ̇ . (10.32)
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Of course since we are using time derivative we have assumed a particular inertial frame and

therefore the Hamiltonian procedure necessarily violates manifest Lorentz invariance. With

care however, the observables remain Lorentz invariant. The Hamiltoian is represented as

the integral of a Hamiltonian density over the spatial directions directions. The Hamiltonian

density is related to the Lagrangian by a Legendre transformation,

H(ϕ, π) = πϕ̇− L(ϕ, ∂µϕ)

=
1

2
π2 +

1

2
(∇ϕ)2 + m2

2
ϕ2 ,

(10.33)

with (∇ϕ)2 = δij∂iϕ∂jϕ. In comparison to the harmonic oscillator the field ϕ(x) plays the

role of the coordinate x and the momentum field π(x) plays the role of p. Instead of a state

being specified by two number (x, p) at some fixed time, the initial conditions are values of

the field over all of the spatial directions at a fixed time.

Note that ϕ(xµ) is not a wave function; it is a dynamical variable generalising the single

degree of freedom x in the case of the harmonic oscillator. We will use a Heisenberg picture

of time evolution where we promote ϕ to an operator.

First we need to solve the classical theory. The solutions of the Klein–Gordon equation

include the plane wave solution

ϕ(xµ) = ϕ0e
ipµxµ = ϕ0e

−ip0t+ip⃗·x⃗ , (10.34)

where the wave vector has components

pµ = (p0, p⃗) , (10.35)

and the frequency must satisfy

(p0)2 = p⃗ 2 +m2 , p0 > 0 . (10.36)

The latter condition is in order to consider the positive frequency modes only.

We can write down the most general solution by constructing a complete orthonormal

set of modes in terms of which any solution may be expressed. We need to first define an

inner product on the space of solutions. To inner product is an integral over a constant time

hypersurface Σt and is

(f, g) = i

∫
Σt

(f∗
←→
∂t g)d

n−1x , f∗
←→
∂t g = f∗∂tg − ∂tf∗g . (10.37)

By using Stoke’s theorem and the equation of motion one can check that this is independent

of the chosen hypersurface. Let us define

ψp = Npe
ipµxµ , (10.38)
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with p2 +m2 = 0. Then {ψp, ψ∗
p} form a basis of solutions and any field configuration can be

expanded as

ϕ(x) =

∫
d3p

(
apψp(x) + a∗pψ

∗
p(x)

)
, (10.39)

with ap and a∗p are complex constants. In order for the basis to be orthonormal we take

Np =
1√

2p0(2π)3/2
, . (10.40)

We quantise the theory by promoting ϕ and π to be operators and impose the standard

commutation relations:

[ϕ(t, x⃗), π(t, y⃗)] = iδ(3)(x⃗− y⃗) , [ϕ(t, x⃗), ϕ(t, y⃗)] = 0 , [π(t, x⃗), π(t, y⃗)] = 0 . (10.41)

This may then be translated into commutation relations for the a’s, with

[ap, a
†
q] = δ(p⃗− q⃗) , [ap, aq] = 0 , [a†p, a

†
q] = 0 . (10.42)

We may then define a vacuum state by

ap|0⟩ = 0 , ∀p . (10.43)

It may seem that the definition of the vacuum state depends on the initial choice of

inertial frame, however this is not the case. Consider a different inertial frame x̃µ related by a

Lorentz transformation x̃µ = Λµνxν . In this new frame the positive frequency mode functions

are

ψ̃p = Npe
ipµx̃µ , (10.44)

and the field expansion is

ϕ(x̃) =

∫
d3p

(
ãpψ̃p + ã†pψ̃

∗
p

)
, (10.45)

and in terms of these modes the new vacuum state satisfies ãp|0̃⟩ = 0,∀p. We need to show

that

ap|0⟩ = 0 ∀p ⇒ ãp|0⟩ ∀p . (10.46)

We have

ψ̃p =
1√

2p0(2π)3/2
eipµx̃

µ
=

( p̃0
p0

)1/2 1√
2p̃0(2π)3/2

eip̃µx
µ
=

( p̃0
p0

)1/2
ψp̃ . (10.47)

More over since we restrict to the orthochronous subgroup of the Lorentz group, i.e. Λ0
0 > 0

we have p0 > 0⇒ p̃0 > 0. Therefore we have

ap|0⟩ = 0 ∀p ⇒ ãp|0⟩ ∀p , (10.48)

and the converse follows by symmetry and the vacuum state is independent of the choice of

frame.
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10.3 QFT in curved spacetime

We now want to consider what changes when we try to quantise a field theory on curved

spacetime. We fix a background (M, g) and assume that it is globally hyperbolic. Recall

that this means that the spacetime admits a Cauchy surface and from initial conditions on

the Cauchy surface we can solve the equations of motion on all of spacetime. We perform

minimal coupling of the theory so that ηµν → gµν and ∂µ → ∇µ. The Klein–Gordon equation

becomes

∇2ϕ ≡ gµν∇µ∂νϕ = m2ϕ , (10.49)

while the inner product is modified to

(f1, f2) = i

∫
Σ
d3x
√
γnµ(f∗1∂µf2 − ∂µf1f∗2 ) , (10.50)

with Σ a spacelike hypersurface and nµ a unit normal vector and γ the determinant of the

induced metric. Let the background admit a Killing vector, K, then on functions we have

[K,∇2]f = 0 . (10.51)

Since ∇2 and iK are both self-adjoint and commuting they admit a complete set of common

eigenfunctions

∇2f = m2f , iKµ∂µf = ωf . (10.52)

If K is timelike we are entitled to call the eigenvalue the frequency. Indeed this is how it works

in Minkowski space where K = ∂t. If f is an eigenfunction with positive frequency ω then f∗

is an eigenfunction of negative frequency −ω. We can then without loss of generality expand

our fields in terms of positive and negative frequency eigenfunctions of the Laplacian in a

basis {ψi} of positive frequency modes and {ψ∗
i } of negative frequency modes. We expand

our field as

ϕ =
∑
i

(aiψi + a†iψ
∗
i ) , (10.53)

with

[ai, a
†
i′ ] = δij . (10.54)

Consider a sandwich spacetime (M, g) made up of three regions, region B bottom, region

C for centre and region T for top, and assume the Klein–Gordon equation holds throughout

spacetime. Region B is stationary and admits a timelike Killing vector KB, region C is not

stationary and all sorts of dynamical processes might take place so long as it remains globally

hyperbolic, and finally region T is once again stationary with a new timelike Killing vector
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KT . If we quantise in region B we pick a set of modes {fi, f∗i } that satisfy iKBfi = ωifi

with ωi > 0. On the other hand in region T we choose another set of modes {gi, g∗i } that

satisfy iKT gi = ω̃igi with ω̃i > 0. Note that even though the positive-frequency conditions

are imposed using the Killing vectors in specific regions the modes extend throughout the

whole of spacetime. In the two cases the respective expansion is then

ϕ(x) =
∑
i

(
aifi + a†if

∗
i

)
=

∑
i

(
bigi + b†ig

∗
i

)
, (10.55)

where the modes have been normalised with respect to the Klein–Gordon inner product so

that the commutation relations are

[ai, a
†
j ] = δij , [bi, b

†
j ] = δij . (10.56)

Since {fi} forms a basis we can also expand any function in terms of it, we have

gi =
∑
i

Aijfj +Bijf
∗
j . (10.57)

The coefficients Aij and Bij are called the Bogoliubov coefficients and the transformation

between the different bases is called a Bogoliubov transformation. Using the normalisation

conditions it can be shown that they satisfy∑
k

AikA
∗
jk −BikB∗

jk = δij ,∑
k

AikBjk −BikAjk = 0 .
(10.58)

Or in matrix notation

AA† −BB† = 1 , ABT = BAT . (10.59)

We can also relate the different operator coefficients to each other

bi =
∑
j

A∗
ijaj −B∗

ija
†
j . (10.60)

The procedure above defines a vacuum state associated with the modes {fi, f∗i } called

the in-vacuum as the states satisfy ai|0⟩in = 0 ∀i. In a stationary reference frame in region

B (i.e. an integral curve of KB this will appear empty. What about in region T? What

is the expected number of particles of the state |0⟩in with momentum i. It is given by the

expectation value

⟨Ni⟩ = in⟨0|b†ibi|0⟩in =
∑
j

BijB
∗
ij no summation over i . (10.61)

112



If this is non-zero there is pair production. Alternatively one can see this as the in-vacuum and

out-vacuum are different. Hence a changing spacetime geometry generically causes particle

production.

10.4 Unruh effect

Even though we have made an effort above to understand QFT in curved space we will

first consider a phenomenon that uses the above ideas but manifests in flat space. This is

the Unruh effect, which states that an accelerating observer in the Minkowski vacuum will

observe a thermal spectrum of particles.

The basic idea is very simple, observers with different notions of positive and negative

frequency modes will disagree on the particle content of a given state. A uniformly accelerated

observe in Minkowski moves along an orbit of a time-like Killing vector, however this is not

the usual time-translation Killing vector. We can therefore expand the field in terms of modes

appropriate for the accelerated observer and calculate the number operator in the ordinary

Minkowski vacuum. We will find that this leads to a thermal spectrum of particles.

To simplify things as much as possible let us consider a massless scalar field in two

dimensions. The wave equation is

□ϕ = 0 . (10.62)

Before trying to quantise the theory consider a uniformly accelerating observer, we have

seen this earlier in section 4.3, but let us review the details. In inertial coordinates the metric

can be written as

ds2 = −dt2 + dx2 . (10.63)

An observer moving at a uniform acceleration of magnitude α follows the trajectory

t(τ) =
1

α
sinh(ατ) , x(τ) =

1

α
cosh(ατ) , (10.64)

note that

x2 = t2 + α2 . (10.65)

We can choose new coordinates on two-dimensional Minkowski space that are adapted to

uniformly accelerated motion as

t =
1

a
eaξ sinh(aη) , x =

1

a
eaξ cosh(aη) , (x > |t|) . (10.66)

The new coordinates have ranges

−∞ < η, ξ <∞ , (10.67)
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and cover the wedge x > |t| Rindler space corresponds to the right wedge x > |t| foliated
by the worldlines of the accelerated observers and labelled by region I in figure 21. In these

Figure 21: Minkowski spacetime in Rindler coordinates. Region I is the region accessible to

an observer undergoing constant acceleration in the +x-direction. The coordinates (η, ξ) can

be used in region I or region IV, where they point in the opposite direction. The vector filed

∂η corresponds to the generator of Lorentz boosts and the horizons H± are Killing horizons

for this vector field, which represent the boundaries of the past and future as witnessed by

the Rindler observer.

coordinates the constant acceleration path is

η(τ) =
α

a
τ , ξ(τ) =

1

a
log

a

α
, (10.68)

and we see that the proper time is proportional to η and the spatial constant ξ is constant.

Then an observer with acceleration α = a moves along the path

η = τ , ξ = 0 . (10.69)

The metric in these coordinates takes the form

ds2 = e2aξ
(
− dη2 + dξ2

)
. (10.70)
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The null line t = x labelled by H+ is a future Cauchy horizon for any η = constant spacelike

hypersurface in region I. Similarly H− is a past Cauchy horizon.

The metric is independent of η and therefore ∂η is a Killing vector, however since this is

Minkowski spacetime there are more of course. Indeed if we express ∂η in the (t, x) coordinates

we have

∂η = a(x∂t + t∂x) . (10.71)

This is the Killing vector which generates a boost in the x-direction. It is clear that this Killing

vector naturally extends throughout the spacetime. This extends naturally throughout the

spacetime, in regions II and III it is spacelike while in region IV it is timelike but past-directed.

The horizons are Killing horizons for ∂η.

We can define coordinates (η, ξ) in region IV by flipping the signs in (10.66),

t = −1

a
eaξ sinh(aη) , x = −1

a
eaξ cosh(aη) , (x < |t|) . (10.72)

The sign guarantees that ∂η and ∂t point in opposite directions. Strictly speaking we cannot

use the (η, ξ) simultaneously in regions I and IV since the ranges are the same in each region,

we must explicitly indicate to which region the coordinate belongs to. We add labels to

distinguish so that the metric takes the same form in both regions.

Along the surface t = 0 the Killing vector ∂η is a hypersurface-orthogonal timelike Killing

vector except for the single point x = 0 where it vanishes. We can therefore use it to define

a set of positive and negative frequency modes on which we can build a Fock space for the

scalar-field Hilbert space. The massless Klein–Gordon equation in Rindler coordinates takes

the form

□ϕ = e−2aξ(−∂2η + ∂2ξ )ϕ = 0 . (10.73)

Therefore a normalised plane wave

gk =
1√
4πω

e−iωη+ikξ , ω = |k| , (10.74)

solves the equation and has positive frequency with respect to ∂η since

L∂ηgk = −iωgk . (10.75)

However this is only true in region I since we need our modes to be positive frequency

with respect to a future directed Killing vector, in region IV the relevant Killing vector is

∂−η = −∂η. To remove this problem of defining the modes we introduce two sets of modes
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one with support in region I and one with support in region IV:

g
(1)
k =

 1√
4πω

e−iωη+ikξ I

0 IV

g
(2)
k =

0 I
1√
4πω

eiωη+ikξ IV

(10.76)

with ω = |k| in each region. These then define the positive frequency with respect to the

relevant future directed timelike Killing vector. The two sets with their conjugates form a

complete set of modes for any solution to the wave equation throughout the spacetime. Both

sets are non-vanishing in regions II and III however this is obscured by the choice of (η, ξ)

coordinates. Denoting the associated annihilation and creation operators as b
(i)
k and b

(i)†
k , we

can write

ϕ =

∫
dk

(
b
(1)
k g

(1)
k + b

(1)†
k g

(1)∗
k + b

(2)
k g

(2)
k + b

(2)†
k g

(2)∗
k

)
. (10.77)

This gives an alternative expansion to the original Minkowski modes:

ϕ =

∫
dk

(
akfk + a†kf

∗
k

)
. (10.78)

The inner product of the Rindler modes gives

(g
(i)
k1
, g

(j)
k2

) = δijδ(k1 − k2) , (10.79)

and similarly for the conjugate modes. There are two sets of modes, Minkowski and Rindler,

that we can expand the solution of the Klein–Gordon equation in. Although the Hilbert

spaces are the same the Fock spaces are different, in particular the definition of the vacuum.

The Minkowski vacuum |0M ⟩ satisfies

ak|0M ⟩ = 0 , (10.80)

while the Rindler vacuum satisfies

b
(1)
k |0R⟩ = b

(2)
k |0R⟩ = 0 . (10.81)

We see that because an individual Rindler mode cannot be written in terms of positive

frequency Minkowski modes, the Rindler annihilation modes are a superposition of both the

Minkowski creation and annihilation operators.

A Rindler observer will be static with respect to orbits of the boost Killing vector ∂η.

Such an observer in region I will describe particles in terms of the Rindler modes g
(1)
k and will
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observer a state in the Rindler vacuum to be devoid of particles, a state b
(1)†
k |0R⟩ to contain

a single particle of frequency ω = |k| and so forth. Conversely a Rindler observer travelling

through the Minkowski vacuum state will detect a background of particles, even though to

the inertial observer the vacuum is completely empty.

We would like to know what kind of particles does the Rindler observer detect? We know

how to answer this, we need to compute the Bogolubov coefficients relating the Minkowski

modes to the Rindler modes, and then use this to compute the expectation values. Unruh

found a shortcut to this somewhat tedious computation. His idea was to find a set of modes

that share the same vacuum as the Minkowski modes but for which the overlap with the

Rindler modes is more direct. We start with the Rindler modes and extend them to all of

spacetime, and then express the extension in terms of the original Rindler modes.

We have

e−a(η−ξ) =

{
a(x− t) I

a(t− x) IV

ea(η+ξ) =

{
a(t+ x) I

−a(t+ x) IV

(10.82)

We can express the spacetime dependence of a mode g
(1)
k with k > 0 in terms of the

Minkowski coordinates in region I as

√
4πωg

(1)
k = aiω/a(x− t)iω/a . (10.83)

The analytic continuation of this throughout all of spacetime is then obvious, we just use this

final expression for all (t, x). We want to express the result in terms of the Rindler modes

everywhere and so we need to bring the g
(2)
k modes into the game. We have

√
4πωg

(2)
k = a−iω/a(−t− x)−iω/a . (10.84)

This doesn’t match the behaviour of our analytically extended mode, however if we take the

complex conjugate and reverse the wave number we find

√
4πωg

(2)∗
−k = aiω/aeπω/a(−t+ x)iω/a , (10.85)

and therefore
√
4πω

(
g
(1)
k + e−πω/ag

(2)∗
−k

)
= aiω/a(−t+ x)iω/a . (10.86)

An identical result holds for the k < 0 modes. The properly normalised mode is

h
(1)
k =

1√
2 sinh πω

a

(
eπω/(2a)g

(1)
k + e−πω/(2a)g

(2)∗
−k

)
. (10.87)
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This is the appropriate analytic extension of the g
(1)
k modes, the extension of the g

(2)
k modes

is

h
(2)
k =

1√
2 sinh πω

a

(
eπω/(2a)g

(2)
k + e−πω/(2a)g

(1)∗
−k

)
. (10.88)

One can check that these are correctly normalised. We can now expand in these modes as

ϕ =

∫
dk

(
c
(1)
k h

(1)
k + c

(1)†
k h

(1)∗
k + c

(2)
k h

(2)
k + c

(2)†
k h

(2)∗
k

)
. (10.89)

The modes h
(i)
k can be expressed purely in terms of positive frequency Minkowski modes fk

and therefore they share the same vacuum state |0M ⟩ so that

c
(i)
k |0M ⟩ = 0 . (10.90)

In the Minkowski vacuum an observer in region I will observe particles defined by the operators

b
(1)
k ; the expected number of such particle of frequency ω is

⟨0M |n(1)R (k)|0M ⟩ = ⟨0M |b(1)†k b
(1)
k |0M ⟩

=
1

2 sinh πω
a

⟨0M |e−πω/ac(1)−kc
(1)†
−k |0M ⟩

=
1

e2πω/a − 1
δ(0) .

(10.91)

Planck’s law describes the spectral density of electromagnetic radiation emitted by a black

body in thermal equilibrium at a give temperature T . It says that the spectral radiance of a

body for frequency ω at temperature T is given by

B(ω, T ) =
ℏω3

4π2c2
1

eℏω/(KBT ) − 1
. (10.92)

We conclude that an observer moving with uniform acceleration through the Minkowski

vacuum observes a thermal spectrum of particles. (There is more to saying this is a thermal

spectrum than just the above, one needs to check that there are no hidden correlations in

the observed particles, this has indeed been shown and therefore the radiation detected by a

Rindler observer is truly thermal.)

The temperature T = a
2π is what would be measured by an observer moving along the

path ξ = 0, which feels the acceleration a = α. Any other path with ξ = constant feels an

acceleration

α = ae−aξ , (10.93)

and thus should measure thermal radiation with a temperature T = α
2π . As ξ → ∞ the

temperature goes to 0, which is consistent with the fact that near ∞ the Rindler observer is

nearly inertial.
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The Unruh effect tells us that an accelerated observer will detect particles in the Minkowski

vacuum state. An inertial observer would say that the same state is completely empty, the

expectation value of the energy momentum tensor ⟨Tµν⟩ = 0. If there is no energy momentum

how can the Rindler observer detect particles? If the Rindler observer is to detect background

particles, they must carry a detector. This must be coupled to the particle being detected.

However if a detector is being maintained at constant acceleration, energy is not conserved.

From the point of view of the Minkowski observer the Rindler detector emits as well as absorbs

particles, once the coupling is introduced the possibility of emission is unavoidable. When

the detector registers a particle the inertial observer would say that it had emitted a particle

and felt a radiation-reaction force in response. Ultimately the energy needed to excite the

Rindler detector does not come from the background energy momentum tensor but from the

energy we put into the detector to keep it accelerating.

10.5 Hawking temperature

We may now use a very quick argument following the above to conclude that a black hole

has a temperature. Consider a static observer at radius r1 > RS outside the Schwarzschild

black hole. Such an observer moves along orbits of the time-like Killing vector K = ∂t. The

red-shift factor is given by

V =

√
1− 2GNM

r
, (10.94)

and the magnitude of the acceleration is given by

a =
GNM

r
√
r − 2GNM

. (10.95)

For observed close to the event horizon r1−2GNM ≪ 2GNM this acceleration becomes very

large compared to the scale set by the Schwarzschild radius

a1 ≫
1

2GNM
. (10.96)

Let us assume that the quantum state of some scalar field ϕ looks like the Minkowski vac-

uum as seen by a freely falling observer near the black hole. The static observer looks just

like a constant acceleration observer in flat spacetime and will detect Unruh radiation at a

temperature T1 = a2/(2π).

Now consider a static observer at infinity. The radiation will propagate to infinity with

an appropriate red-shift factor. We find

T∞ =
V1
V∞

a

2π
. (10.97)
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At infinity we have V∞ = 1 so the observed temperature is

T∞ = lim
r1→2GNM

V1a1
2π

=
κ

2π
. (10.98)

This is the Hawking effect and the radiation is known as Hawking radiation.

We can be more rigorous in the derivation of the Hawking temperature. Consider a

spacetime that corresponds to a spherically symmetric collapsing star which forms a black

hole, recall that the Penrose diagram is given in 5. This is a curved spacetime which is globally

hyperbolic, for instance I − is a Cauchy surface. Even though the Schwarzschild black hole

solution is a static spacetime the collapsing star is not, and involves complicated dynamics.

However the spacetime is approximately stationary in the far asymptotic past (near I +) and

the far asymptotic future (near I +). We can therefore perform second quantisation with

respect to stationary observers near I − which give us “in”-modes and the “in”-vacuum and

also a second quantisation associated with stationary observers at I + leading to the “out”-

vacuum. We have a sandwich spacetime and we can ask will observes in the far future see

particles in the in-vacuum.

The field expansion defining the in-vacuum can be constructed by specifying a complete

set of positive frequency modes on I −. For the quantisation in the far future I + is not a

Cauchy surface for the spacetime, one must take I + ∪ H+. We may therefore quantise the

field in the far future by specifying a complete set on it. There are three sets of modes:

fi : positive frequency on I −

gi : positive frequency on I + and zero on H+

hi : positive frequency on H+ and zero on I +

(10.99)

Strictly speaking there is no timelike Killing vector on H so the term positive frequency

is somewhat misleading, however the choice of modes hi does not affect the outcome of the

calculation. We can choose an arbitrary set and call them positive frequency modes and

attach them to annihilation operators in the field expansion, we only require that the set

{g, h} give a basis of modes. We can therefore expand

ϕ(x) =
∑
i

aifi(x) + h.c. =
∑
I

bIgI(x) +
∑
α

cαhα(x) + h.c. . (10.100)

The Bogoliubov coefficients in the expansion satisfy

gi =
∑
j

(
Aijfj +Bijf

∗
j

)
. (10.101)
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We now want to look at the analytic solutions of the Klein–Gordon equation in the

Schwarzschild black hole background. This is hard. Instead we can ask if we impose boundary

condition to the solution at I + and investigate what its corresponding form must be on I −.

This amounts to tracing back in time the solution from I + to I −.

The metric of the Schwarzschild black hole spacetime with coordinates (t, r∗, θ, ϕ) reads

ds2 =

(
1− 2M

r

)(
− dt2 + dr2∗

)
+ r2ds2(S2) . (10.102)

We will also use the light-cone coordinates u = t − r∗ and v = t + r∗. We can find the

Klein–Gordon equation for the field ϕ(t, r∗, θ, ϕ). Expanding in spherical harmonics

ϕ(t, r∗, θ, ϕ) = χl(t, r∗)Ylm(θ, ϕ) , (10.103)

we find [
∂2t − ∂2r∗ + Vl(r∗)

]
χl = 0 , (10.104)

where

Vl(r∗) =

(
1− 2M

r

)[
l(l + 1)

r2
+

2M

r3

]
. (10.105)

We set

χl(t, r∗) = e−iωtRlω(r∗) , (10.106)

so that

(∂2r∗ + ω2)Rωl = VlRωl . (10.107)

We can get some intuition by looking at the potential. Both near the horizon H+ (r∗ → −∞)

and near I ± (r∗ →∞) the potential tends to zero. It takes the for of a potential barrier. If

we consider how any solution to the above evolves in time, it will be partly transmitted and

partly reflected as it comes in from r∗ =∞.

Near I ± the solutions are just plane waves. We define outgoing and ingoing as those

which correspond to r∗ increasing or decreasing with time. We define the early modes

flmω+ =
1√
2πω

e−iωuYlm
r
, outgoing

flmω− =
1√
2πω

e−iωv Ylm
r
, ingoing

(10.108)

at I − and late modes

glmω+ =
1√
2πω

e−iωuYlm
r
, outgoing

glmω− =
1√
2πω

e−iωv Ylm
r
, ingoing

(10.109)
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at I +. We will be interested mainly in ingoing early modes and outgoing late modes, so we

will use the shorthand notation:

fω ∼ flmω− , gω ∼ glmω+ . (10.110)

We need to express gω in terms of fω′ and f∗ω′ on I −. First note that plane waves such

as gω are in fact completely delocalised since they have support everywhere on I +.

We want to trace the solution of the late modes back in time in terms of the early modes.

As the wave travels inwards from I + toward decreasing values of r∗, it will encounter the

potential barrier. One part of the wave, g
(r)
ω will be reflected and end up on I − with the

same frequency ω. This will correspond to a term of the form Aωω′ ∝ δ(ω − ω′) in the

expansion in (10.101). The remaining part g
(t)
ω will be transmitted through the barrier and

will enter the collapsing matter. In that region the precise geometry of spacetime is unknown.

However since we are interested in a packet peaked at late times and at some finite frequency

ω0 we know that the packet will be peaked at a very high frequency as it enters the collapsing

matter due to the gravitational blueshift. This allows us to assume that the packet will obey

the geometric optics approximation which means that gω takes the form A(x)eiS(x) where

A(x) is slowly varying compared to S. Substituting into the Klein–Gordon equation we find

∇µS∇µS = 0, which means that surfaces of constant phase are null. Given a wave we can

trace its surfaces of constant phase back in time by following null geodesics.

Consider tracing back the wave along a particular null geodesic γ which starts off at some

u = u0 at I + and hits I − at v = v0. Denote by γH a null generator of the horizon H+ which

has been extended into the past until it hits I − at some value of v. We may set this value

to v = 0 without loss of generality since the spacetime is invariant under shifts v → v + c.

We therefore have v0 < 0 for the geodesic γ. Let n be a connecting vector between the two

curves and fix its normalisation by requiring n · ξ = −1 with ξ the generator of the Killing

horizon H+. Near the horizon the Kruskal coordinate U = −e−κu is an affine distance along

n and we can use it to measure the distance between γ and γH . In order to find the form of

the wave at I − we need to understand how the affine distance along the connecting vector n

will change by the time γ reaches I −. At I − the cooridnate v is an affine parameter aong

the null geodesic integral curves of n. If U0 = 0 then the affine distance is zero at I −. Hence

we can expand the affine distance between γ and γH at I − in powers of U0: v = cU0+O(U2
0 )

for some constant c > 0. Using u = −κ−1 log(−U) = −κ−1 log(−cv) we can conclude that if
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a mode takes the form gω ∼ e−iωu on I+, the transmitted part g
(t)
ω on I − will take the form

g(t)ω ∼

{
eiω/κ log(−v) for v < 0

0 for v > 0
(10.111)

up to a constant phase. This is exactly analogous to the Rindler modes in the previous section

with κ↔ a. We have Aωω′ = e−πω/κBωω′ and therefore

⟨Nω⟩ ∝
1

eℏω/(kBT ) − 1
, (10.112)

where the Hawking temperature is given by

T =
ℏκ

2πkB
. (10.113)

Since the temperature is inversely proportional to the mass, the black hole hets up as it

evaporates.

10.6 Black hole evaporation

If a black hole has a temperature it must evaporate. This leads to a serious problem with

unitarity. We can compute the rate of mass loss due to the Hawking radiation. Stefan’s law

for the rate of energy loss by a blackbody:

dE

dt
∼ −αAT 4 , (10.114)

Plugging in E =M and A ∝M2 and T ∝M−1 we have

dM

dT
∝ − 1

M2
, (10.115)

and hence the black hole evaporates away completely in a time

τ ∼
G2
N

ℏc4
M3 , (10.116)

note that the calculation of Hawking radiation assumed no backreaction, M was taken to be

constant. This is good when dM
dt ≪M but fails in the final stages of evaporation.

Consider a black hole which forms from collapsing matter and then evaporates away

completely, leaving just thermal radiation. It should be possible to arrange that the collapsing

matter is in a definite quantum state |ψ⟩, the associated density matrix would be the one of

a pure state, ρ = |ψ⟩⟨ψ|. When the black hole is formed the Hilbert space naturally splits

into the tensor product of Hilbert spaces, one with support in the interior of the black hole

and the other with support on the exterior of the black hole: H = Hin ⊗ Hout. An outside
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Figure 22: The evolution of the modes.

observer does not have access to Hin so their description of the black hole state is necessarily

incomplete. They will describe the state outside the horizon as a reduced density matrix

obtained by tracing over Hin: ρout = trinρ.

Since it described by a non-trivial density matrix the outside state is mixed. This is

consistent with the fact that it contains thermal radiation, so there is no issue so far. The

external state is entangled with the interior and the reduced density matrix is just a way in

which the outside observer parametrises their ignorance of the interior. If we assume that the

black hole has completely evaporated nothing is left in the interior and the exterior reduced
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density matrix will describe the full state, which is therefore a mixed state. However evolution

from a pure state to a mixed state is forbidden by unitarity in quantum mechanics.

This is the black hole information paradox. It is important to emphasise the difference

between thermal radiation produced in ordinary processes which do not violate unitarity. If

we burn a printed copy of these lecture notes, thermal radiation is produced, however the

process is unitary and in principle one could reconstruct all the information contained in the

notes by studying the radiation and ashes. The early radiation is entangled with excitations

inside the burning body, however the excitations inside the burning body can still transmit

information to the radiation emitted later on which will thus contain non-trivial information.

On the other hand, throwing the notes into a black hole, the information appears to be really

lost once the black hole has fully evaporated because the final radiation is exactly thermal.

The internal excitations are shielded by the horizon and by causality cannot influence the

later outgoing radiation.

Nearly half a century after Hawking formulated the black hole information paradox it is

still and open and active area of research. Our analysis has been in a funny hybrid theory of

quantum field theory coupled to classical general relativity. General relativity predicts a sin-

gularity at the centre of a black hole, this is a regime where quantum effects will dramatically

alter our classical expectations. We need a quantum theory of gravity.
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