Geometric Group Theory

Cornelia Druțu

University of Oxford

Part C course HT 2023

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Part C course HT 2023 1 / 14

Given n, we want to construct "the largest infinite group" generated by n elements.

This must be a group with no prescribed relation ("free").

Take $X \neq \emptyset$. Its elements = letters/symbols. Take inverse letters/symbols $X^{-1} = \{a^{-1} \mid a \in X\}$. We call $\mathcal{A} = X \sqcup X^{-1}$ an alphabet. A word w in \mathcal{A} is a finite (possibly empty) string of letters in \mathcal{A}

$$a_{i_1}^{\epsilon_1}a_{i_2}^{\epsilon_2}\cdots a_{i_k}^{\epsilon_k},$$

where $a_i \in X, \epsilon_i = \pm 1$. The length of w is k.

We will use the notation 1 for the empty word (the word with no letters). We say it has length 0.

A word w is reduced if it contains no pair of consecutive letters of the form aa^{-1} or $a^{-1}a$.

The reduction of a word w is the deletion of all pairs of consecutive letters of the form aa^{-1} or $a^{-1}a$.

An insertion is the opposite operation: insert one or several pairs of consecutive letters of the form aa^{-1} or $a^{-1}a$.

Denote by X^* the set of words in the alphabet $\mathcal{A} = X \sqcup X^{-1}$, empty word included.

Denote by F(X) the set of reduced words in A, empty word included.

We define an equivalence relation on X^* by $w \sim w'$ if w' can be obtained from w by a finite sequence of reductions and insertions.

Proposition

 $\forall w \in X^*$, there exists a unique $u \in F(X)$ such that $w \sim u$.

Proof

Existence: By induction on the length.

$$w = a_1 a_2 \dots a_{n+1} \sim a_1 b_1 \dots b_k$$
 if $a_1 b_1 \neq x x^{-1}, x^{-1} x$
 $\sim b_2 \dots b_k$ otherwise

Uniqueness: We prove that if $u, v \in F(X)$, $u \neq v$, then we cannot have $u \sim v$.

Argue by contradiction and assume we can. So there exists a sequence of reductions and insertions

$$w_0 = u \sim w_1 \sim w_2 \sim \dots \sim w_{n-1} \sim w_n = v$$

Take a sequence with $\sum |w_i|$ minimal. As u and v are reduced, $w_0 \to w_1$ is an insertion and $w_{n-1} \to w_n$ is a reduction. Hence $|w_0| < |w_1|$ and $|w_{n-1}| > |w_n|$. So there exists some i such that $|w_{i-1}| < |w_i| > |w_{i+1}|$. Say,

$$w_{i-1} \to w_i$$
 is an insertion of aa^{-1} , $a \in \mathcal{A}$
 $w_i \to w_{i+1}$ is a deletion of bb^{-1} , $b \in \mathcal{A}$

Cornelia Druțu (University of Oxford)

$$w_{i-1} \to w_i$$
 is an insertion of aa^{-1} , $a \in \mathcal{A}$
 $w_i \to w_{i+1}$ is a deletion of bb^{-1} , $b \in \mathcal{A}$

- If aa^{-1} and bb^{-1} are the same letters in w_i , then we can suppress w_i and take $w_{i-1} = w_{i+1}$.

- If aa^{-1} and bb^{-1} are disjoint in w_i then we change the order: first delete bb^{-1} , then insert aa^{-1} .

- If aa^{-1} and bb^{-1} have one letter in common in w_i , for example:

$$w_{i-1} = [...xyz...]$$

 $w_i = [...xaa^{-1}yz...]$, $y = a$
 $w_{i+1} = [...xaz...]$

then we can take $w_{i-1} = w_{i+1}$. All three are decreasing $\sum |w_i|$, a contradiction.

Cornelia Druțu (University of Oxford)

Definition

The free group over X is the set F(X) endowed with the product * defined by: w * w' is the unique reduced word equivalent to the word ww'. The unit is the empty word.

Example

$$\bullet \ \ \, {\rm If}\ \#X=1\ {\rm then}\ F(X)\simeq \mathbb{Z}.$$

2 IF
$$\#X \ge 2$$
 then $F(X)$ not abelian.

Terminology: We say that a free non-abelian group is a group F(X) with $card(X) \ge 2$.

Examples of free groups in real life: the ping-pong lemma

Example

Take $r \in \mathbb{R}$, $r \geq 2$,

$$g_1=\left(egin{array}{cc} 1 & r \\ 0 & 1 \end{array}
ight)$$
 and $g_2=\left(egin{array}{cc} 1 & 0 \\ r & 1 \end{array}
ight).$

 $SL(2,\mathbb{R})$ acts by isometries on $\mathbb{H}^2=\{z\in\mathbb{C}:\mathit{Im}(z)>0\}$, via

$$g \cdot z = rac{az+b}{cz+d}, \qquad g = \left(egin{array}{cc} a & b \\ c & d \end{array}
ight) \in SL(2,\mathbb{R}).$$

Statement: We have that $\langle g_1, g_2 \rangle \leq SL(2, \mathbb{R})$ is isomorphic to $F(\{g_1, g_2\})$.

Why $\langle g_1, g_2 \rangle$ is free

Statement: We have that $\langle g_1, g_2 \rangle \leq SL(2, \mathbb{R})$ is isomorphic to $F(\{g_1, g_2\})$ Proof

$$g_1(z) = z + r, \ g_2(z) = \frac{z}{rz+1}.$$

$$I(z) = -\frac{1}{z} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} z, \ g_2 = I \circ g_1^{-1} \circ I^{-1}.$$

Cornelia Druțu (University of Oxford)

Why $\langle g_1,g_2 angle$ is free

 $\begin{array}{l} g_{1}(\mathbb{H}^{2} \setminus B_{1}^{-}) \subset B_{1}^{+}, \ g_{1}^{-1}(\mathbb{H}^{2} \setminus B_{1}^{+}) \subset B_{1}^{-}.\\ g_{2} \text{ does the same for } B_{2}^{-} = I(B_{1}^{+}), \ B_{2}^{+} = I(B_{1}^{-}).\\ \text{Let } w = a_{1}...a_{k}, \ a_{i} \in \{g_{1}^{\pm}, g_{2}^{\pm}\}, \ w \text{ non-trivial in } F(\{g_{1}^{\pm}, g_{2}^{\pm}\}).\\ \bullet \text{ Test } 1: \ \forall z \in \mathbb{H}^{2} \setminus \bigcup_{i=1}^{2} B_{i}^{\pm}, \ w(z) \in \bigcup_{i=1}^{2} B_{i}^{\pm}. \text{ And so } w(z) \neq z.\\ \bullet \text{ Test } 2: \ \text{Take } M = B_{1}^{-} \cup B_{1}^{+}, \ N = B_{2}^{-} \cup B_{2}^{\pm}. \text{ Then } M \cap N = \emptyset \text{ and } g_{1}^{n}(N) \subset M, \ g_{2}^{n}(M) \subset N. \text{ Then use a general ping-pong result (see Ex.3, Sheet 1). \end{array}$

Cornelia Druţu (University of Oxford)

Free groups are the largest

Proposition (Universal property of free groups)

Let X be a set and let G be a group. A map $\varphi : X \to G$ has a unique extension

$$\Phi:F(X)
ightarrow G$$

that is a group homomorphism.

Proof

- φ can be extended to a map on $X \cup X^{-1}$ by $\varphi(a^{-1}) = \varphi(a)^{-1}$.
- For every reduced word $w = a_1 \cdots a_n$ in F = F(X) define

$$\Phi(a_1\cdots a_n)=\varphi(a_1)\cdots\varphi(a_n).$$

• Set $\Phi(1_F) := 1_G$, the identity element of G.

Free groups are the largest

Uniqueness:

Let $\Psi : F(X) \to G$ be a homomorphism such that $\Psi(x) = \varphi(x)$ for every $x \in X$.

Then for every reduced word $w = a_1 \cdots a_n$ in F(X),

$$\Psi(w) = \Psi(a_1) \cdots \Psi(a_n) = \varphi(a_1) \cdots \varphi(a_n) = \Phi(w).$$

Terminology: If $\varphi(X) = Y$ is such that Φ is an injective homomorphism, $\Phi(F(X)) = H$, we say that $Y \subset G$ generates a free subgroup or that Y freely generates H.

Example

$$\{g_1,g_2\}$$
 freely generate $\langle g_1,g_2
angle \leq {\it SL}(2,\mathbb{R}).$

Free groups are the largest

Corollary

Every group $G = \langle X \rangle$, #X = n, is a quotient of a free group F(X).

Proof.

 $X \hookrightarrow G$ extends to $\Phi : F(X) \to G$. Since $X \subset Im(\Phi)$, we have that

 $G \leq Im(\Phi) \leq G$

and so Φ is onto.

Rank of a free group

Corollary

Consider two groups G and H, $G = \langle X \rangle$.

- Every homomorphism $\phi : G \to H$ is uniquely determined by $\phi|_X : X \to H$. In particular there are at most $|H|^{|X|}$ homomorphisms.
- **2** If moreover G = F(X) then there are exactly $|H|^{|X|}$ homomorphisms.

Proof.

- The map Hom(G, H) → Map(X, H), φ ↦ φ |_X is injective. NB. It is not in general onto.
- So For G = F(X) it is onto (by the universal property).