Geometric Group Theory

Cornelia Druțu

University of Oxford

Part C course HT 2023

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Part C course HT 2023 1 / 12

D. Hilbert, talking about an ex-student: "You know, for a mathematician, he did not have enough imagination. But he has become a poet and now he is fine."

Lucien Szpiro: "The difference between mathematicians and physicists is that after physicists prove a big result they think it is fantastic, but after mathematicians prove a big result they think it is trivial."

Rank of a free group

Corollary

Consider two groups G and H, $G = \langle X \rangle$.

- Every homomorphism $\phi : G \to H$ is uniquely determined by $\phi|_X : X \to H$. In particular there are at most $|H|^{|X|}$ homomorphisms.
- **2** If moreover G = F(X) then there are exactly $|H|^{|X|}$ homomorphisms.

Proof.

- The map Hom(G, H) → Map(X, H), φ ↦ φ |_X is injective. NB. It is not in general onto.
- **②** For G = F(X) it is onto (by the universal property).

Rank of a free group

Proposition

 $F(X) \simeq F(Y) \iff |X| = |Y|$ (X and Y can have any cardinality).

Proof.

 \Leftarrow : Obvious. A bijection $f: X \to Y$ extends to an isomorphism.

$$\Rightarrow: \text{ If } |X| = \infty, \text{ then } |X| = |F(X)| = |F(Y)| = |Y|.$$

If $|X| < \infty$, then $|\text{Hom}(F(X), \mathbb{Z}_2)| = 2^{|X|}$. Now, $F(X) \simeq F(Y)$ implies that there exists an isomorphism $\phi : F(X) \to F(Y)$. This induces a bijection

$$\operatorname{Hom}(F(Y),\mathbb{Z}_2)\to\operatorname{Hom}(F(X),\mathbb{Z}_2)\quad f\mapsto f\circ\phi$$

Hence $2^{|X|} = 2^{|Y|}$. So Y must also be finite and |X| = |Y|.

Rank of a free group

Proposition

The rank of F(X) is |X|.

Proof.

Suppose that $F(X) = \langle Y \rangle$, |Y| < |X|. Then

$$2^{|X|} = |\operatorname{Hom}(F(X), \mathbb{Z}_2)| \le |\operatorname{Hom}(Y, \mathbb{Z}_2)| = 2^{|Y|}$$

Hence, $|X| \leq |Y|$ and we have a contradiction.

We begin with a loose formulation of some algorithmic problems (to be made more precise).

Word problem: Given a group $G = \langle X \rangle$, describe an algorithm or construct a Turing machine that would recognise when a word $w \in X^*$ satisfies w = 1 in G.

Example

G = F(X). Given $w \in X^*$, reduce w to $u \in F(X)$. If $u \neq w_{\emptyset}$ then $w \neq 1$ in G.

Conjugacy problem: Given $G = \langle X \rangle$, describe an algorithm that can recognise when $w, w' \in X^*$ are conjugate in G, i.e. there exists $g \in G$ such that $w = gw'g^{-1}$ in G.

Example: G = F(X). Let $w, w' \in X^*$ and let $u, v \in F(X)$ be such that $w \sim u, w' \sim v$. $u = a_1...a_n \in F(X)$ is cyclically reduced if all its cyclic permutations

 $a_1...a_n$, $a_2...a_na_1$, $a_3...a_na_1a_2$, ..., $a_na_1...a_{n-1}$

are reduced. Equivalently, if $u \neq axa^{-1}$ where $a \in X \sqcup X^{-1}$.

Proposition

- Every $u \in F(X)$ is conjugate to a cyclically reduced word.
- If u, v ∈ F(X) are cyclically reduced then they are conjugate if and only if they are cyclic permutations of each other.

Proof: (1): Take $r \sim gug^{-1}$, $g \in F(X)$, r of minimal length. Then $r \neq axa^{-1}$. (2): $(\Leftarrow) a_2...a_n a_1 = a_1^{-1}(a_1...a_n)a_1$.

Proposition

- Every $u \in F(X)$ is conjugate to a cyclically reduced word.
- If u, v ∈ F(X) are cyclically reduced then they are conjugate if and only if they are cyclic permutations of each other.

(⇒) Take *u* cyclically reduced. We will prove that if *v* is cyclically reduced and $v \sim gug^{-1}$ then *v* is a cyclic permutation of *u*. Argue by contradiction: let $g \in F(X)$ be of minimal length such that $v \sim gug^{-1}$ is not a cyclic permutation of *u*. So $u \sim g^{-1}vg$. First assume $g^{-1}vg$ is reduced. Then $u = g^{-1}vg$ in F(X), contradicting the assumption that *u* was cyclically reduced. So $g^{-1}vg$ is not reduced, i.e. if $g = a_1...a_n$ either $v = xa_1^{-1}$ or $v = a_1x$. In the first case, (the second case is similar) we have

$$g^{-1}vg = a_k^{-1}...a_2^{-1}a_1^{-1}xa_2...a_n$$

By the minimal length assumption on g, $a_1^{-1}x$ is a cyclic permutation of u. Hence, $v = xa_1^{-1}$ is a cyclic permutation of u. Contradiction.

Cornelia Druțu (University of Oxford)

9 / 12

Using the previous proposition it is easy to solve algorithmically the conjugacy problem in F(X):

- Given u, v ∈ F(X) find their conjugates u', v' ∈ F(X) that are cyclically reduced (whenever a is the first letter and a⁻¹ the last, delete both).
- Por u', v' ∈ F(X) cyclically reduced thus found check of they are cyclic permutations of each other.

The previous proposition solves the conjugacy problem for F(X) and also implies

Corollary

All non-trivial elements in F(X) have infinite order.

Proof.

For all non-trivial $w \in F(X)$, $w = gug^{-1}$, u cyclically reduced and non-trivial. And for all cyclically reduced non-trivial u, u^n is reduced and hence $\neq w_{\emptyset}$.

Corollary

If $g, h \in F(X)$ are such that $g^k = h^k$ for some k then g = h.

Proof.

If both g, h are cyclically reduced then this is obvious.

Assume that g is not cyclically reduced and $g = xg_1x^{-1}$ with g_1 cyclically reduced. Then $g_1^k = h_1^k$ where h_1 is the reduced word $\sim x^{-1}hx$.

 g_1 cyclically reduced $\Leftrightarrow g_1^k$ cyclically reduced

Since $h_1^k = g_1^k$ we must also have that h_1 is cyclically reduced. So $h_1 = g_1$. Hence h = g.