Geometric Group Theory

Cornelia Druţu

University of Oxford

Part C course HT 2023

Finitely generated, finitely presented groups

Isomorphism problem: Given $G = \langle X \rangle$ and $G' = \langle Y \rangle$, determine if $G \simeq G'$. For free groups, F(X), F(Y) this is settled.

We now define a general class of groups for which the three problems can be formulated, i.e. groups that are describable by finite data, i.e. finitely presented.

Suppose $G = \langle X \rangle$, $|X| < \infty$ (G finitely generated).

Remark

- G finitely generated \Rightarrow G countable.
- There exist uncountably many non-isomorphic f.g. groups.

Algorithmic problems for infinite groups

Proposition

Suppose $G = \langle X \rangle$ with $|X| < \infty$, and suppose also that $G = \langle Y \rangle$. Then there exists some finite $Y_0 \subset Y$ such that $G = \langle Y_0 \rangle$.

Proposition

- **1** If G finitely generated and $N \leq G$, then G/N is finitely generated.
- ② Finite generation is **not** inherited by subgroups (see Ex 2(iii) on Sheet 1: $F(\mathbb{N}) \leq F_2$).
- Finite generation is inherited by finite index subgroups (Ex.).
- Suppose we have a short exact sequence

$$1 o extstyle o extstyle o extstyle o extstyle o extstyle 1$$

and N, Q are finitely generated. Then G is finitely generated.

Presentations of groups

How to fully describe a group?

- Table of multiplication if *G* is finite;
- Free groups.

Answer in general case: by generators and relations.

Example

 \mathbb{Z}^2 is the group generated by two elements a,b satisfying the relation

$$ab = ba \Leftrightarrow [a, b] = 1.$$

We write $\mathbb{Z}^2 = \langle a, b \mid [a, b] = 1 \rangle$ or simply $\mathbb{Z}^2 = \langle a, b \mid [a, b] \rangle$.

Presentations of groups 2

In general, let $G=\langle S \rangle$. By Universal property, \exists an onto homomorphism

$$\pi_{\mathcal{S}}: \mathcal{F}(\mathcal{S}) \to \mathcal{G}$$

whence *G* isomorphic to $F(S)/\ker(\pi_S)$.

The elements of $ker(\pi_S)$ are called relators or relations for G and the generating set S.

We are interested in minimal subsets R of $\ker(\pi_S)$ such that $\ker(\pi_S)$ is normally generated by R.

 $N \triangleleft G$ is normally generated by $R \subset N$ or N normal closure of R, $N = \langle \langle R \rangle \rangle$, if one of the following equivalent properties is satisfied:

- N is the smallest normal subgroup of G containing R;
 - $N = \bigcap_{R \subset K < G} K$;
 - $N = \{r_1^{x_1} \cdots r_n^{x_n} \mid n \in \mathbb{N}, r_i \in R \cup R^{-1}, x_i \in G\} \cup \{1\}.$

Notation

$$a^b = bab^{-1}$$
, $A^B = \{a^b \mid a \in A, b \in B\}$. Then $N = \langle \langle R \rangle \rangle \Leftrightarrow N = \langle R^G \rangle$

Presentation of groups 3

```
Let R \subset \ker(\pi_S) be such that \ker(\pi_S) = \langle \langle R \rangle \rangle. We say that the elements r \in R are defining relators. The pair (S,R) defines a presentation of G. We write G = \langle S \mid r = 1, \ \forall r \in R \rangle or simply G = \langle S \mid R \rangle. Formally, it means G is isomorphic to F(S)/\langle \langle R \rangle \rangle. Equivalently:
```

- $\forall g \in G$, $g = s_1 \cdots s_n$, for some $n \in \mathbb{N}$ and $s \in S \cup S^{-1}$;
- $w \in F(S)$ satisfies $w =_G 1$ if and only if in F(S)

$$w = \prod_{i=1}^m r_i^{x_i}$$
, for some $m \in \mathbb{N}, r_i \in R, x_i \in F(S)$.

Examples of group presentations

- $\bullet \ \langle a_1, \ldots, a_n \mid [a_i, a_j], 1 \leqslant i, j \leqslant n \rangle$ is a finite presentation of \mathbb{Z}^n ;
- ② $\langle x,y \mid y^2,yxyx \rangle$ is a presentation of the infinite dihedral group D_{∞} ;
- **③** $\langle x_1, \ldots, x_{n-1} | x_i^2, [x_i, x_j]$ for $|j i| \ge 2, (x_i x_{i+1})^3 \rangle$ is a presentation of the permutation group S_n .

Generalization of the Universal Property

Proposition

Let $G = \langle S|R \rangle$. Let H be a group and $\psi : S \to H$ be a map s.t. $\psi(r) = 1$ for every $r \in R$.

Then ψ has an unique extension to a group homomorphism $\Phi: G \to H$.

Proof: Exercise.

We are interested in groups with finite presentation.

Remark

Finitely presented groups compose a countable family of finitely generated groups.

It is important to understand if being finitely presented is an intrinsic feature of the group, or if it depends on a "good choice" of generating set.

(Finite) presentations of groups

Proposition

If $G = \langle S|R \rangle$ is finitely presented and $\langle X|Q \rangle$ is an arbitrary presentation with |X| finite, then there exists some finite $Q_0 \subseteq Q$ such that $G = \langle X|Q_0 \rangle$.

Proof: We have an isomorphism

$$\phi: F(S)/\langle\langle R \rangle\rangle \to F(X)/\langle\langle Q \rangle\rangle$$

Write $\phi(s) = \sigma_s$. Then $\forall x \in X$,

$$x = w_x(\{\sigma_s : s \in S\})$$
 (with equality in $F(X)/\langle\langle Q \rangle\rangle$)

So $x = w_x(\sigma_S)u_x$, $u_x \in \langle\langle Q \rangle\rangle$, with the equality being in F(X). Let $r \in R$, and write $v_r = r(\{\sigma_s : s \in S\}) \in \langle\langle Q \rangle\rangle$.

Let $T_0 \subseteq \langle \langle Q \rangle \rangle$ be the finite set $\{u_x, v_r : x \in X, r \in R\}$.

(Finite) presentations of groups

Let $T_0 \subseteq \langle \langle Q \rangle \rangle$ be the finite set $\{u_x, v_r : x \in X, r \in R\}$.

Claim: $\langle\langle T_0 \rangle\rangle = \langle\langle Q \rangle\rangle$

Proof of claim: Define

$$f: F(S)/\langle\langle R \rangle\rangle \to F(X)/\langle\langle T_0 \rangle\rangle, \quad f(s) = \sigma_s$$

Then f is an onto homomorphism.

Also, given $\pi: F(X)/\langle\langle T_0 \rangle\rangle \to F(X)/\langle\langle Q \rangle\rangle$, $\pi \circ f = \phi$ is an isomorphism and hence f is injective.

This proves the claim. Whence $G = \langle X \mid T_0 \rangle$. But T_0 is not a subset of Q. Every $\rho \in T_0 \subseteq \langle \langle Q \rangle \rangle$ can be written as $\rho = \prod_{r \in F_\rho} r^{x_r}$ in F(X), where $F_\rho \subset Q$ finite. Take $Q_0 = \bigcup_{\rho \in T_0} F_\rho$ finite subset of Q. Then $\langle \langle T_0 \rangle \rangle \subseteq \langle \langle Q_0 \rangle \rangle \subseteq \langle \langle Q \rangle \rangle$, whence $\langle \langle Q_0 \rangle \rangle = \langle \langle Q \rangle \rangle$. It follows that $G = \langle X \mid Q_0 \rangle$.