Geometric Group Theory

Cornelia Druțu

University of Oxford

Part C course HT 2023

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Part C course HT 2023 1 / 9

Henri Poincaré: "If nature were not beautiful, it would not be worth knowing, and if nature were not worth knowing, life would not be worth living."

Jean-le-Rond D'Alembert, to his students (quoted by Florian Cajori in "A history of mathematics"): "Allez en avant et la foi vous viendra."

"Keep going and faith will come later."

Corollary (unique root property)

If
$$g, h \in F(X)$$
 are such that $g^k = h^k$ for some k then $g = h$.

Question: Find a torsion-free group G for which there exist $g \neq h$ such that $g^k = h^k$ for some k.

Take
$$G = \langle g, h \mid g^k = h^k \rangle$$
.

It is an amalgamated product $G = A *_H B$, where $A = \langle g \rangle$, $B = \langle h \rangle$, and $H = \mathbb{Z} \simeq \langle g^k \rangle \simeq \langle h^k \rangle$.

Theorem

 $G = A *_H B$ acts on a tree T with fundamental domain an edge [P, Q] such that Stab(P) = A, Stab(Q) = B, Stab([P, Q]) = H.

Exercise: If every pair of distinct elements have an equal power then G = Tor G.

Example due to Olshanskii: There exist finitely generated, non-cyclic, torsion-free groups G where any two elements have equal powers, i.e., for any g, h there exist m, n such that $g^m = h^n$.

Cornelia Druțu (University of Oxford)

Geometric Group Theory

How do we recognise when two finite presentations give the same group?

There are two types of transformations.

- (T1) Given $\langle S|R \rangle$ and $r \in \langle \langle R \rangle \rangle$, change the presentation to $\langle S|R \cup \{r\} \rangle$ (or do the inverse operation).
- (T2) Given $\langle S|R\rangle$, a new symbol $a \notin S$ and $w \in F(S)$, change the presentation to $\langle S \cup \{a\}|R \cup \{a^{-1}w\}\rangle$ (or do the inverse operation).

Theorem

Two finite presentations define isomorphic groups if and only if they are related by a finite sequence of Tietze transformations.

Proof: (\Leftarrow) (T1) defines isomorphic groups because $\langle \langle R \rangle \rangle = \langle \langle R \cup \{r\} \rangle \rangle$.

Theorem

Two finite presentations define isomorphic groups if and only if they are related by a finite sequence of Tietze transformations.

Proof continued: For (T2), consider the homomorphisms

$$\iota: F(S) \hookrightarrow F(S \cup \{a\}) \quad \text{(injection)} \\ f: F(S \cup \{a\}) \twoheadrightarrow F(S) \quad f(a) = w \quad \text{(surjection)}$$

Note that $f \circ \iota = id_{F(S)}$. They induce homomorphisms

$$F(S) \xrightarrow{\overline{\iota}} F(S \cup \{a\}) / \langle \langle a^{-1}w \rangle \rangle \xrightarrow{\overline{f}} F(S)$$

with $\overline{f} \circ \overline{\iota} = \mathrm{id}_{F(S)}$. $\overline{\iota}$ is onto, and hence $\overline{\iota}$ and \overline{f} are isomorphisms. Since also $\overline{f}^{-1}(\langle\langle R \rangle\rangle) = \langle\langle R \cup \{a^{-1}w\}\rangle\rangle/\langle\langle a^{-1}w\rangle\rangle$ we have that \overline{f} induces the desired isomorphism.

Cornelia Druţu (University of Oxford)

Theorem

Two finite presentations define isomorphic groups if and only if they are related by a finite sequence of Tietze transformations.

Proof continued:

$$(\Rightarrow)$$
 Let $G_1 = \langle S_1 | R_1 \rangle$, $G_2 = \langle S_2 | R_2 \rangle$. WLOG $S_1 \cap S_2 = \emptyset$.

There exist inverse isomorphisms $\phi : G_1 \to G_2$, $\psi : G_2 \to G_1$. $\forall s \in S_1$, choose $w_s \in F(S_2)$ representing $\phi(s)$ in G_2 . $\forall t \in S_2$, choose $v_t \in F(S_1)$ representing $\psi(t)$ in G_1 .

Take the two subsets of $F(S_1 \cup S_2)$:

$$U_1 = \{s^{-1}w_s : s \in S_1\}$$
 $U_2 = \{t^{-1}v_t : t \in S_2\}$

Claim: There exist finitely many Tietze transformations from $\langle S_1 | R_1 \rangle$ to $\langle S_1 \cup S_2 | R_1 \cup R_2 \cup U_1 \cup U_2 \rangle$.

Geometric Group Theory

Claim: There exist finitely many Tietze transformations from $\langle S_1 | R_1 \rangle$ to $\langle S_1 \cup S_2 | R_1 \cup R_2 \cup U_1 \cup U_2 \rangle$.

Proof of claim: Use finitely many (T2) to get from $\langle S_1 | R_1 \rangle$ to $\langle S_1 \cup S_2 | R_1 \cup U_2 \rangle$. There exists an isomorphism

 $\rho: \langle S_1 \cup S_2 | R_1 \cup U_2 \rangle \rightarrow \langle S_1 | R_1 \rangle \quad \rho(s) = s, \forall s \in S_1 \quad \rho(t) = v_t, \forall t \in S_2$

Then $\phi \circ \rho : \langle S_1 \cup S_2 | R_1 \cup U_2 \rangle \rightarrow \langle S_2 | R_2 \rangle$ is an isomorphism such that $t \xrightarrow{\rho} v_t \xrightarrow{\phi} t$. Also, $\forall r \in R_2$

 $\phi \circ \rho(r) = r \equiv 1 \text{ in } \langle S_2 | R_2 \rangle \Rightarrow r \in \langle \langle R_1 \cup U_2 \rangle \rangle \Rightarrow R_2 \subseteq \langle \langle R_1 \cup U_2 \rangle \rangle$

Thus $\langle S_1 \cup S_2 | R_1 \cup U_2 \rangle$ is related to $\langle S_1 \cup S_2 | R_1 \cup R_2 \cup U_2 \rangle$ by a sequence of (T1) transformations. Also, $\forall s \in S_1$

$$\phi \circ \rho(s) = w_s(t_1...t_k) \quad \phi \circ \rho(w_s) = \phi \circ \rho(w_s(t_1...t_k)) = w_s(t_1...t_k)$$

Hence, $s^{-1}w_s \in \langle \langle R_1 \cup U_2 \rangle \rangle$, which implies that $U_1 \subseteq \langle \langle R_1 \cup U_2 \rangle \rangle$. So we can apply several (T1) to get $\langle S_1 \cup S_2 | R_1 \cup R_2 \cup U_1 \cup U_2 \rangle$.

Cornelia Druțu (University of Oxford)

7/9

Properties of finite presentability

Proposition

Let G be a group.

- G finitely presented does not imply that a subgroup is finitely presented or that a quotient is finitely presented.
- If H is a finite index subgroup of G then G is finitely presented if and only if H is.
- **③** If $N ext{ ≤ } G$ is finitely presented and G/N is finitely presented then G is finitely presented.

A proof can be found in the notes.

List of algorithmic problems of M. Dehn

Word problem: Given a finite presentation $G = \langle S | R \rangle$ design an algorithm recognising when $w \in F(S)$ satisfies $w = 1_G$ in G.

Conjugacy problem: Given a finite presentation $G = \langle S | R \rangle$ design an algorithm recognising when $u, v \in F(S)$ represent conjugate elements in G.

Remark

The conjugacy problem implies the word problem.

Isomorphism problem: Given finite presentations $G_i = \langle S_i | R_i \rangle$, i = 1, 2, determine if $G_1 \simeq G_2$.

Triviality problem (a particular case of the isomorphism problem): Given a finite presentation $G = \langle S|R \rangle$ determine if $G \simeq \{1\}$.

Novikov, Boone, Rabin ['56]: All of the above are unsolvable.

Fridman ['60]: There exists a group with solvable word problem, but unsolvable conjugacy problem.

Cornelia Druțu (University of Oxford)

Geometric Group Theory