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Index of Notation

(𝐷𝑘(𝔤))𝑘≥0 the derived series of a Lie algebra 𝔤.

N.𝑋 for any subset 𝑋 of an abelian group 𝐴 (e.g. a vector space) this denotes the set of all sums of the
form∑𝑦∈𝑌 𝑛𝑦.𝑦where𝑌 is a finite subset of𝑋 and 𝑛𝑦 ∈ N.

𝔤𝔩𝑉 the Lie algebra of all endomorphisms of a vector space𝑉 equipped with the commutator bracket.

𝐼⊴𝔤 𝐼 is an ideal in 𝔤, that is, 𝐼 is a linear subspace and for all 𝑥 ∈ 𝔤 and 𝑎 ∈ 𝐼, we have [𝑎, 𝑥] ∈ 𝐼

𝜅 = 𝜅𝔤 the Killing form, an invariant symmetric bilinear form on a Lie algebra 𝔤 given by:

𝜅(𝑥, 𝑦) = tr𝔤(ad(𝑥)ad(𝑦)).

(𝐶𝑘(𝔤))𝑘≥0 the lower central series of a Lie algebra 𝔤.

[., .] an alternating bilinear map satisfying the Jacobi identity, known as a Lie bracket.

Mat𝑛,𝑚(k) the space of 𝑛 ×𝑚matrices with entries in a field k.

Mat𝑛(k) the space of 𝑛 × 𝑛matrices with entries in a field k.

N the natural numbers.

𝑁𝔤(𝔞) the normalizer of a subalgebra 𝔞 in a Lie algebra 𝔤.

rad(𝐵) the radical of a symmetric bilinear form 𝐵, consisting of all 𝑣 ∈ 𝑉 which satisfy 𝐵(𝑣, 𝑤) = 0 for all
𝑤 ∈ 𝑉.

rad(𝔤) the maximal solvable ideal in a Lie algebra 𝔤.

(𝑉,Φ) an abstract root system.

𝔰𝔩(𝑉) the Lie subalgebra {𝛼 ∈ 𝔤𝔩𝑉 ∶ tr(𝛼) = 0} of traceless endomorphisms of 𝑉, known as the special
linear Lie algebra associated to𝑉.

⟨𝑋⟩𝐹 if𝑋 is a subspace of a k-vector spaces𝑉 and 𝐹 ≤ k is a subfield of k, then the 𝐹-linear span of𝑋 in
𝑉, i.e. the intersection of all 𝐹-subspaces of𝑉 containing𝑋 is denoted by either ⟨𝑋⟩𝐹 or span𝐹(𝑋).
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Modifications

General: The contentofChapters 5 and6 rebalancedbyputting thematerial onCartan subalgebras togetherwith the
Cartan criteria. Most of the symbols used now should have hyperlinks that link to when the term was first defined
in the notes (but there is still an index of notation at the start for paper copies).

Background material: Added a fewmore details about the examples discussed in lecture 1, but this is just for
curiosity (none of the material in the background section is examinable).

(i) Chapter 1: Clarified the definition of a k-algebra to tidy up the unital and non-unital cases: the current version
gives a definition of a k-algebra structure on a k-vector space𝐴with or without a unit. In the case where𝐴
has a unit, then the definition becomes equivalent to the existence of a homomorphismof rings k → 𝐴whose
image lies in the centre of𝐴.

(ii) Chapter 2: a fewmoredetails havebeenaddedon things likedual representations. All of thesebasic properties
work exactly the sameway for Lie algebras as they did for groups once you figure out how the Lie algebra acts,
so in lectures I didnot review thismaterial in great detail, but itmaybeuseful tohave itwrittendowncarefully
for reference purposes.

(iii) Chapter 3 explains that the same idea one uses for finite groups – composition series – can be used to show
howan arbitrary (finite-dimensional) Lie algebra can be built up fromatomic or “almost simple” Lie algebras.
The proofs of Jordan-Holder etc. in §3.1 are (still) non-examinable, but they are neater than in the previous
version of the notes.1

(iv) Chapter 4 has been reordered to cover first the “structural results” on solvable and nilpotent Lie algebras and
then the representation theory of both. Some typographical error have been corrected. Two key results of this
chapter are Lie’s theorem and the theorem that if (𝑉, 𝜌) is a 𝔤-representation such that 𝜌(𝑥) is nilpotent for
all 𝑥 ∈ 𝔤 then the image 𝜌(𝔤) of 𝔤 is nilpotent subalgebra of 𝔤𝔩𝑉 – in the terminology of these notes, if (𝑉, 𝜌) is
a nilpotent representation then 𝜌(𝔤) is a nilpotent Lie algebra. The chapter ends with a (fairly coarse) classi-
fication of the representations of a nilpotent Lie algebra: they decompose into “generalised weight spaces” in
the sameway that a vector space decomposes into a direct sum of generalised eigenspaces. The old version of
the notes had a mistake in the proof of Proposition 5.3.19. The updated notes replace Proposition 5.3.19 with
Lemma4.3.10, aswas done in the lectures, but deduces themain result in slightly neaterway to theway itwas
done in lectures.

(v) Chapter 5: Now starts with the Cartan decomposition. (The proof that 𝔥 = 𝔤0 some how seems to have been
cut from the previous online notes, but it is now part of Lemma 5.1.2). Section 5.2 discusses trace forms, and
has a few more remarks which may help to connect it more clearly to Part A Linear Algebra. The proof of
Cartan’s criterion for solvability is also a little cleaner than the proof given in lectures.

(vi) Chapter 6 discusses the solvable radical, semisimple Lie algebras and the Cartan criterion for semisimplicity.
The criterion is then used to show semisimple Lie algebras are a direct sum of simple Lie algebras, as done
in lectures. The Jordan decomposition is a pretty easy consequence of the fact that a semisimple Lie algebra
is a direct sum of non-abelian almost simple Lie algebras, as this shows any derivation is inner. The proof of
Weyl theorem is nowmodelled as closely as possible on the startegy of proof ofMaschkhe’s theorem for finite
groups. (There should also be video lectures for these two topics online now – check theMoodle site).

(vii) Chapter 7 analyses the Cartan decomposition in the semisimple case. It has slightly cleaner proofs than the
previous set of notes. Thematerial on abstract root systems is also slightly cleaner and shorter.

1And neater than in most textbooks, which, for reasons that I can only assume are historical, pointlessly fixate on phrasing the result as the
existence of a permutation of the composition factors on one composition series giving you the composition factors of a second composition
series. While it is true such a permutation exists, the content of the theorem is that, for a given simple object 𝑆, the number of composition
factors in a composition series which are isomorphic to 𝑆 is independent of the composition series.

iv



*Background

In this section I use some material, like multivariable analysis, which is not necessary for the main body of the course, but if
you know it, or are happy to rely on notions from Prelims multivariable calculus for which you have not been given a rigorous
definition, it will help to put the material of this course in a broader context. For those worried about such things, fear not, it
is non-examinable.

From group actions to group representations

Inmathematics, group actions give a way of encoding the symmetries of a space or physical system. Formally these
are defined as follows: an action of a group𝐺 on a space2𝑋 is amap 𝑎 ∶ 𝐺×𝑋 → 𝑋, written (𝑔.𝑥) ↦ 𝑎(𝑔, 𝑥) ormore
commonly (𝑔, 𝑥) ↦ 𝑔.𝑥which satisfies the properties

1. 𝑒.𝑥 = 𝑥, for all 𝑥 ∈ 𝑋, where 𝑒 ∈ 𝐺 is the identity;

2. (𝑔1𝑔2).𝑥 = 𝑔1.(𝑔2.𝑥) for all 𝑔1, 𝑔2 ∈ 𝐺 and 𝑥 ∈ 𝑋.

Natural examples of group actions are that of the general linear group GL𝑛(R) on R𝑛, or the action of the group of
rigid motions SO3 on 𝑆2, the unit sphere {𝑥 ∈ R3 ∶ ||𝑥|| = 1} in R3.

Whenever a group acts on a space𝑋, there is a resulting linear action (a representation) on the vector space of
functions on𝑋. Indeed if Fun(𝑋) denotes the vector space of real-valued functions on𝑋, then the formula

𝑔(𝑓)(𝑥) = 𝑓(𝑔−1.𝑥), ∀𝑔 ∈ 𝐺, 𝑓 ∈ Fun(𝑋), 𝑥 ∈ 𝑋,

defines a representation of𝐺 on Fun(𝑋). (The inverse is necessary for Fun(𝑋) is to be a left, rather than right, rep-
resentation.) If𝑋 and𝐺 have more structure. e.g. that of a topological space or smooth manifold, then this action
may also preserve the subspaces of say continuous, or differentiable functions.

Infinitesimal symmetries

Lie algebras arise as the “infinitesimal version” of group actions, which loosely speakingmeans they arewhatwe get
by trying to differentiate group actions.

Example. Take for example the natural action of the circle 𝑆1 by rotations on the plane R2. This action can be
written explicitly usingmatrices:

𝑔(𝑡) = 􏿶
cos(𝑡) −sin(𝑡)
sin(𝑡) cos(𝑡) 􏿹

where we have smoothly parametrized the circle 𝑆1 using the trigonometric functions. Note that for this
parametrization, 𝑔(𝑡)−1 = 𝑔(−𝑡). The induced action on Fun(R2) restricts to an action on 𝒞∞(R2) the space of
smooth (i.e. infinitely differentiable) functions onR2. Usingour parametrization, itmakes sense todifferentiate this

action at the identity element (i.e. at 𝑡 = 0) to get an operation 𝜈∶ 𝒞∞(R2) → 𝒞∞(R2), where if 𝑧 = 􏿶
𝑥
𝑦 􏿹 ∈ R2,

then 𝜈 is given by
2I’m being deliberately vague here about what a “space” is, 𝑋 could just be a set, but it could also have a more geometric nature, such as a

topological space or submanifold of R𝑛.
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𝜈(𝑓) = 𝑑
𝑑𝑡
􏿴𝑓(𝑔(−𝑡).𝑧)􏿷

|𝑡=0
= −𝐷𝑓𝑧 ∘ 𝑔′(0).(𝑧)

= − 􏿴 𝜕𝑥𝑓 𝜕𝑦𝑓 􏿷 􏿶
−sin(𝑡) −cos(𝑡)
cos(𝑡) −sin(𝑡) 􏿹

|𝑡=0
􏿶
𝑥
𝑦 􏿹

= (𝑦𝜕𝑥 − 𝑥𝜕𝑦)(𝑓).

The operator we obtained in this example, 𝜈 = 𝑦𝜕𝑥 − 𝑥𝜕𝑦 is a𝒞∞(R2)- linear combination of 𝜕𝑥 and 𝜕𝑦. Opera-
tors of this form encode “infinitesimal symmetries”. The next definition formalises its key properties. We will work
with the space R𝑛 for the rest of this section, but everything we say also applies,mutatis mutandis to the context of
smoothmanifolds.

Definition. For any positive integer 𝑛, an R-linear operator 𝜈∶ 𝒞∞(R𝑛) → 𝒞∞(R𝑛) is said to be a derivation if,
for any 𝑓1, 𝑓2 ∈ 𝒞∞(R𝑛) it satisfies

𝜈(𝑓1.𝑓2) = 𝜈(𝑓1).𝑓2 + 𝑓1.𝜈(𝑓2). (0.0.1)

The next Lemma (which follows readily from a version of Taylor’s theorem for functions on R𝑛 for example)
shows that the previous, somewhat formal, definition, actually results in a class of objects with a very concrete de-
scription. When working in R𝑛 we will denote the partial derivative of 𝑓 in the direction of the 𝑖-th standard basis
vector by 𝜕𝑖𝑓 (in preference to the notation 𝜕𝑓/𝜕𝑥𝑖 youmay have seenmore often).

Lemma. If 𝜈∶ 𝒞∞(R𝑛) → 𝒞∞(R𝑛) is a derivation, and 𝑎𝑗 = 𝜈(𝑥𝑗) ∈ 𝒞∞(R𝑛), then 𝜈 = ∑𝑛
𝑗=1 𝑎𝑗𝜕𝑗, that is, for all

𝑓 ∈ 𝒞∞(R𝑛)we have

𝜈(𝑓) =
𝑛
􏾜
𝑗=1
𝑎𝑗𝜕𝑗(𝑓).

Thus to give a derivation is the same as to give an 𝑛-tuple of functions (𝑎1, … , 𝑎𝑛), or in other words a smooth
function 𝑎 ∶ R𝑛 → R𝑛.

Definition. A vector field on 𝑋 = R𝑛 is a (smooth) function 𝜈∶ R𝑛 → R𝑛. To any vector field 𝜈 = (𝑎𝑖)𝑛𝑖=1 one
can associate the derivation 𝜃𝜈 = ∑𝑛

𝑗=1 𝑎𝑗𝜕𝑗 which one can think of as giving the infinitesimal direction of a flow
(e.g. of a fluid, or an electric field say). Thus the space of vector fields ΘR𝑛 on R𝑛 acts on 𝒞∞(R𝑛), and thus in-
herits a nonassociative product [., .] where 𝜃[𝜈1,𝜈2] = [𝜃𝜈1 , 𝜃𝜈2 ]. Explicitly, if 𝜈1 = (𝑎𝑖)𝑛𝑖=1, 𝜈2 = (𝑏𝑗)𝑛𝑗=1 then
[𝜈1, 𝜈2] = 􏿴𝜃𝜈1 (𝑏𝑖) − 𝜃𝜈2 (𝑎𝑖)􏿷

𝑛

𝑖=1
. Such fields can be made to act on functions 𝑓 ∶ 𝑋 → R by differentiation. If

𝜈 = (𝑎1, 𝑎2, … , 𝑎𝑛) in standard coordinates (here 𝑎𝑖 ∶ R𝑛 → R), then set 𝜈(𝑓) = ∑𝑛
𝑖=1 𝑎𝑖𝜕𝑖(𝑓). By the previous

Lemma, this yields a bijection between vector fields and derivations on𝒞∞(R𝑛).

Heuristically, we think of the infinitesimal version of a group action as the collection of derivations on smooth
functions obtained by “differentiating the group action at the identity element”. (For the circle the collection of
vector fields we get are just the scalar multiples of the vector field 𝜈, but for actions of larger group this will yield a
larger space of derivations).

Note that if we compose two derivations 𝜈1 ∘ 𝜈2 we again get an operator on functions, but it is not given by a
vector field, since it involves second order differential operators. However, it is easy to check using the symmetry of
mixed partial derivatives that if 𝜈1, 𝜈2 are derivations, then [𝜈1, 𝜈2] = 𝜈1 ∘ 𝜈2 − 𝜈2 ∘ 𝜈1 is again a derivation. Thus the
spaceΘ𝑋 of vector fields on𝑋 is equippedwith a natural product3 [., .]which is called a Lie bracket. The derivatives
of a group action give subalgebras of the algebraΘ𝑋 : the fact that the commutator product preserves them is a sort
of infinitesimal remnant of the groupmultiplication4.

Example. Consider the action of SO3(R) on R3. This is the group of orientation-preserving linear isometries of
R3. It is well-known that any element of 𝑔 ∈ SO3(R) is a rotation by some angle, say𝜃, about an axis 𝐿 through the
origin. Then there is a continuous path 𝛾 in SO3(R) from the identity to 𝑔which, for 𝑡 ∈ [0, 1] is the rotation by 𝑡.𝜃
about that axis.

3This is in the weakest sense, in that it is a bilinear mapΘ𝑋 ×Θ𝑋 → Θ𝑋 . It is not even associative – the axiom it does satisfy is discussed
shortly.

4To be a bit more precise, it comes from the conjugation action of the group on itself.
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This path is smooth and extends to 𝑡 in an open interval containing 𝑡 = 0, so it makes sense to associate to it the
derivation 𝑓 ↦ 𝑑

𝑑𝑡 (𝑓(𝛾(−𝑡)(𝑥)). Picking an orthonormal basis {𝑒1, 𝑒2, 𝑒3}which is positively oriented, with 𝑒3 lying
along the axis of rotation of 𝑔 and 𝑒1 and 𝑒2 on the plane perpendicular to 𝑒3, then a calculation almost identical to
the one above in the case of the circle shows that 𝜈 is a scalar multiple of 𝑥2𝜕1 − 𝑥1𝜕2, where the scalar depends on
the angle 𝜃.

But since, for each 𝑔 ∈ SO3(R), the derivation 𝜈𝑔we obtain in this way, is determined up to scaling by the axis of
rotation, and if we conjugate 𝑔 by an element of ℎ ∈ SO3(R), then ℎ𝑔ℎ−1 is a rotation by the same angle around the
axis ℎ(𝐿) and ℎ𝛾(𝑡)ℎ−1 is a path from the identity to ℎ𝑔ℎ−1. Applying the chain rule as for the case of a circle, noting
that a linearmap is its own derivative, it follows that the derivation obtained from using the rotation ℎ𝑔ℎ−1 in place
of 𝑔 is obtained from that for 𝑔 simply by applying ℎ. It follows from this that the linear span of all such derivations
is in fact a 3-dimensional vector space 𝔤 = ⟨{𝑥𝜕𝑦 − 𝑦𝜕𝑥, 𝑦𝜕𝑧 − 𝑧𝜕𝑦, 𝑧𝜕𝑥 − 𝑥𝜕𝑧}⟩R , and moreover it is then not hard
to check that 𝔤 is closed under the bracket operations [⋅, ⋅]. (This also gives a non-trivial example of a 3-dimensional
Lie algebra).

vii



Chapter 1

Lie algebras: Definition and basic notions

1.1 Definitions and Examples

The definition of a Lie algebra is an abstraction of the example of the product on vector fields given. It is purely
algebraic, so it makes sense over any field k. We begin, however, with an evenmore basic definition:

Definition 1.1.1. Let 𝑅 be a commutative ring1. An 𝑅-algebra is a pair (𝐴, ∗) consisting of an 𝑅-module 𝐴 and an
𝑅-bilinear map ∗ ∶ 𝐴 ×𝐴 → 𝐴, that is, for all 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ 𝐴 and 𝑟 ∈ 𝑅, the operation ∗ satisfies:

(𝑟.𝑎1 + 𝑎2) ∗ 𝑏1 = 𝑟.(𝑎1 ∗ 𝑏1) + (𝑎2 ∗ 𝑏1),
𝑎1 ∗ (𝑟.𝑏1 + 𝑏2) = 𝑟.(𝑎1 ∗ 𝑏1) + (𝑎1 ∗ 𝑏2).

We say that (𝐴, ∗) is unital (or has a unit) if there is an element 1𝐴 ∈ 𝐴 such that 1𝐴 ∗ 𝑎 = 𝑎 ∗ 1𝐴 = 𝑎 for all 𝑎 ∈ 𝐴.
Note that if it exits, the multiplicative unit is unique. We say that (𝐴, ∗) is associative if 𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐 for all
𝑎, 𝑏, 𝑐 ∈ 𝐴. When𝐴 is associative, wewill normally suppress the operation ∗ and so, for any 𝑎, 𝑏 ∈ 𝐴, write 𝑎𝑏 rather
than 𝑎 ∗ 𝑏 for the value of the bilinear map on the pair (𝑎, 𝑏).

Note that an associative Z-algebra (i.e. letting 𝑅 = Z the integers) is just a ring. In this course we will usually
assume that𝑅 is a field, which wewill denote by k.
Definition 1.1.2. A Lie algebra over a field k is a k-algebra (𝔤, [., .]𝔤)which satisfies the following axioms:

1. [., .]𝔤 is alternating, i.e. [𝑥, 𝑥]𝔤 = 0 for all 𝑥 ∈ 𝔤.

2. The Lie bracket satisfies the Jacobi Identity: that is, for all 𝑥, 𝑦, 𝑧 ∈ 𝔤we have:

[𝑥, [𝑦, 𝑧]𝔤]𝔤 + [𝑦, [𝑧, 𝑥]𝔤]𝔤 + [𝑧, [𝑥, 𝑦]𝔤]𝔤 = 0.
Remark 1.1.3. 1. Note that by considering the bracket [𝑥 + 𝑦, 𝑥 + 𝑦]𝔤 it is easy to see that the alternating con-

dition implies that for all 𝑥, 𝑦 ∈ 𝐿we have [𝑥, 𝑦]𝔤 = −[𝑦, 𝑥]𝔤, that is [., .]𝔤 is skew-symmetric. If char(k) ≠ 2,
the alternating condition is equivalent to skew-symmetry.

2. If 𝔤 is a Lie algebra, then the alternating property implies that 𝔤 cannot have a unit. It is also almost never the
case that an associative product will satisfy the conditions to be a Lie bracket. Thus, viewed a Lie algebra is
(usually) a non-commutative, non-associative, and non-unital algebra.2

3. We will normally write [., .] for the Lie bracket on any Lie algebra and decorate it only for emphasis or where
there is the potential for confusion.

Definition 1.1.4. Let (𝔤1, [., .]1) and (𝔤2, [., .]2) be Lie algebras. A k-linearmap𝜙∶ 𝔤1 → 𝔤2 is said to be a homomor-
phism of Lie algebras if it respects the Lie brackets. That is:

𝜙([𝑎, 𝑏]1) = [𝜙(𝑎), 𝜙(𝑏)]2 ∀𝑎, 𝑏 ∈ 𝔤1.

An isomorphism of Lie algebras is a bijective homomorphism, since, just as for group homomorphisms and linear
maps, the (set-theoretic) inverse of a Lie algebra homomorphism is automatically itself a Lie algebra homomor-
phism.

1All commutative rings in this course will have a multiplicative identity.
2This makes them sound awful. However, as we will see this is not the way to think about them!
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Example 1.1.5. i) If dimk(𝔤) = 1, then the alternating condition forces the Lie bracket to vanish. Thus, up to
isomorphism, there is a unique 1-dimensional Lie algebra over k, that is, any 1-dimensional Lie algebra 𝔤 is
isomorphic to k equipped with the zero Lie bracket.

ii) If 𝔞 is any vector space then setting the Lie bracket [., .] to be zero, i.e. setting [𝑎, 𝑏] = 0 for all 𝑎, 𝑏 ∈ 𝔞, we get
a (not very interesting) Lie algebra. Such Lie algebras are called abelian Lie algebras.

iii) If𝐴 is an (associative)k-algebra, then𝐴 canbegiven the structure of ak-Lie algebra,where if𝑎, 𝑏 ∈ 𝐴 thenwe
set [𝑎, 𝑏] = 𝑎.𝑏 − 𝑏.𝑎, the commutator of 𝑎 and 𝑏. The commutator bracket is clearly alternating, and checking
the Jacobi identity is a fundamental calculation. Indeed we have

[𝑥, [𝑦, 𝑧]] = 𝑥(𝑦𝑧 − 𝑧𝑦) − (𝑦𝑧 − 𝑧𝑦)𝑥 = 𝑥𝑦𝑧 − 𝑥𝑧𝑦 − 𝑦𝑧𝑥 + 𝑧𝑦𝑥
= (𝑥𝑦𝑧 − 𝑦𝑧𝑥) + (𝑧𝑦𝑥 − 𝑦𝑧𝑥)

where,in the final expression, we have paired termswhich can be obtained fromeach other by cycling 𝑥, 𝑦 and
𝑧. Since the terms in these pairs have opposite signs, it is then clear that adding the three expressions obtained
by cycling 𝑥, 𝑦 and 𝑧 gives zero. We will write 𝔤𝐴 for the Lie algebra (𝐴, [., .]) obtained from an associative
algebra in this way.

iv) For amoredown-to-earth example, recall that the space of𝑛-by-𝑛matricesMat𝑛(k)with entries inkbecomes
an associative algebra under matrix multiplication. We therefore obtain a Lie algebra, which we will denote
by 𝔤𝔩𝑛(k), by equippingMat𝑛(k)with the commutator bracket

[𝑋, 𝑌] = 𝑋.𝑌 − 𝑌.𝑋.

If the field k is clear from context we will just write 𝔤𝔩𝑛. Slightly more abstractly, if 𝑉 is a k-vector space,
then we will write 𝔤𝔩𝑉 for the Lie algebra obtained from the associative algebra Endk(𝑉) = Homk(𝑉,𝑉) by
equipping it with the commutator bracket.3

v) If dim(𝑉) = 1 then 𝔤𝔩𝑉 = 𝔤𝔩1 = k: the action of scalars gives an injective map k → End(𝑉) for any nonzero
vector space𝑉which is an isomorphism if dim(𝑉) = 1. Wewill thereforewrite𝔤𝔩1 forkviewedas aLie algebra
with zero Lie bracket.

vi) If 𝔤 is a Lie algebra and 𝔰 ≤ 𝔤 is a k-subspace of 𝔤 on which the restriction of the Lie bracket takes values in 𝔰,
so that it induces a bilinear operation [., .]𝔰 ∶ 𝔰 × 𝔰 → 𝔰, then (𝔰, [., .]𝔰) is clearly a Lie algebra, and we say 𝔰 is
a (Lie) subalgebra of 𝔤. If 𝔰 is a Lie subalgebra of 𝔤 then the inclusion map 𝑖 ∶ 𝔰 → 𝔤 is a homomorphism of Lie
algebras.

Let 𝔰𝔩𝑛 ≔ {𝑋 ∈ 𝔤𝔩𝑛 ∶ tr(𝑋) = 0} be the space of 𝑛 × 𝑛 matrices with trace zero. It is easy to check that
𝔰𝔩𝑛 is a Lie subalgebra of 𝔤𝔩𝑛 (even though it is not a subalgebra of the associative algebra Mat𝑛(k) provided
𝑛 > 1). Similarlywe define 𝔰𝔩𝑉 to be the Lie subalgebra of 𝔤𝔩𝑉 constisting of endomorphisms of trace 0. These
are called special linear Lie algebras. More generally we say any Lie subalgebra of 𝔤𝔩𝑉 for a vector space𝑉 is a
linear Lie algebra.

vii) If 𝔤 is a k-Lie algebra and 𝑥 ∈ 𝔤, then the map𝜙𝑥 ∶ 𝔤𝔩1(k) → 𝔤 given by𝜙𝑥(𝑡) = 𝑡.𝑥 is a Lie algebra homomor-
phism, because the alternating propertymeans that a Lie bracket vanishes on any 1-dimensional subspace of
a Lie algebra. This gives a bijection between Lie algebra homomorphisms𝜙∶ 𝔤𝔩1(k) → 𝔤 and the elements of
𝔤where if 𝑥 ∈ 𝔤we let 𝑥 ↦ 𝜙𝑥 ∶ 𝔤𝔩1(k) → 𝔤 as above, while given𝜙∶ 𝔤𝔩1(k) → 𝔤we associate to it𝜙(1) ∈ 𝔤.

viii) If 𝔤1, 𝔤2 are Lie algebras, then we may form their direct sum 𝔤1 ⊕ 𝔤2, which is the direct sum of 𝔤1 and 𝔤2 as a
vector space, with Lie bracket given by [(𝑥1, 𝑥2), (𝑦1, 𝑦2)] = ([𝑥1, 𝑦1], [𝑥2, 𝑦2]) for all 𝑥1, 𝑦1 ∈ 𝔤1, 𝑥2, 𝑦2 ∈ 𝔤2.
Wemay define the direct sum of 𝑘 ≥ 2 Lie algebras in the sameway.

ix) If 𝔞 is an abelian Lie algebra then if we chose a basis {𝑒1, … , 𝑒𝑘} of 𝔞, then we obtain an isomorphism
𝜃∶ 𝔤𝔩1(k)⊕𝑘 → 𝔞where 𝜃(𝑡1, … , 𝑡𝑘) = ∑𝑘

𝑖=1 𝑡𝑖𝑒𝑖. Indeed the Lie bracket on both 𝔞 and 𝔤𝔩1(k)⊕𝑘 is zero, hence
we need only check that 𝜃 is an isomorphism of vector spaces, which is clear by construction.

The following definition should be understood as the infinitesimal analogue of an automorphism of a k-algebra.
3If it is not clear from context which field k the vector space𝑉 is over, we will write 𝔤𝔩k(𝑉).
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Definition 1.1.6. Generalising the exampleof vectorfields in theprevious chapter, if𝐴 is ak-algebra and𝛿∶ 𝐴 → 𝐴
is a k-linear map, then we say 𝛿 is a k-derivation if it satisfies the Leibniz rule, that is, if:

𝛿(𝑎.𝑏) = 𝛿(𝑎).𝑏 + 𝑎.𝛿(𝑏), ∀𝑎, 𝑏 ∈ 𝐴.

It is easy to see by a direct calculation that if Derk(𝐴)denotes the k-vector space of k-derivations on𝐴, thenDerk(𝐴)
is stable under taking commutators, that is, if

[𝛿1, 𝛿2] = 𝛿1 ∘ 𝛿2 − 𝛿2 ∘ 𝛿1.

then [𝛿1, 𝛿2] ∈ Derk(𝐴). Indeed

(𝛿1 ∘ 𝛿2 − 𝛿2 ∘ 𝛿1)(𝑎.𝑏) = 𝛿1 (𝛿2(𝑎).𝑏 + 𝑎.𝛿2(𝑏)) − 𝛿2 (𝛿1(𝑎).𝑏 + 𝑎𝛿2(𝑏))
= 𝛿1𝛿2(𝑎).𝑏 + 𝛿2(𝑎).𝛿1(𝑏) + 𝛿1(𝑎).𝛿2(𝑏) + 𝑎.𝛿2(𝛿1(𝑏))
− 𝛿2𝛿1(𝑎).𝑏 − 𝛿1(𝑎).𝛿2(𝑏) − 𝛿2(𝑎).𝛿1(𝑏) − 𝑎.𝛿2𝛿1(𝑏))

= [𝛿1, 𝛿2](𝑎).𝑏 + 𝑎.[𝛿1, 𝛿2](𝑏).

Example 1.1.7. i) If𝐴 is an associative k-algebra, then if 𝑎 ∈ 𝐴 the operation of taking commutator with 𝑎 is a
derivation. That is, if 𝛿𝑎 ∶ 𝐴 → 𝐴 is given by 𝛿𝑎(𝑏) = [𝑎, 𝑏] for any 𝑏 ∈ 𝐴, then 𝛿𝑎 ∈ Derk(𝐴). Indeed

𝛿𝑎(𝑏).𝑐 + 𝑏.𝛿𝑎(𝑐) = (𝑎𝑏 − 𝑏𝑎)𝑐 + 𝑏(𝑎𝑐 − 𝑐𝑎) = 𝑎.(𝑏𝑐) − (𝑏𝑐).𝑎 = 𝛿𝑎(𝑏.𝑐)

The map Δ∶ 𝔤𝐴 → Derk(𝐴) given by Δ(𝑎) = 𝛿𝑎 is a homomorphism of Lie algebras, that is, Δ([𝑎, 𝑏]) =
[𝛿𝑎, 𝛿𝑏]. In fact slightly more is true: if 𝜕 ∈ Derk(𝐴) and 𝑏 ∈ 𝐴 then [𝜕, 𝛿𝑏] = 𝛿𝜕(𝑏). (Applying this to 𝜕 = 𝛿𝑎
gives the compatibility with commutators). Indeed for all 𝑐 ∈ 𝔤we have

[𝜕, 𝛿𝑏](𝑐) = 𝜕(𝑏𝑐 − 𝑐𝑏) − (𝑏𝜕(𝑐) − 𝜕(𝑐).𝑏) = 𝜕(𝑏).𝑐 − 𝑐.𝜕(𝑏) = 𝛿𝜕(𝑏)(𝑐).

ii) Given a Lie algebra 𝔤we let Derk(𝔤) = {𝜙 ∈ 𝔤𝔩𝔤 ∶ 𝜙([𝑥, 𝑦]) = [𝜙(𝑥), 𝑦] + [𝑥, 𝜙(𝑦)]}. It is a Lie subalgebra of 𝔤𝔩𝔤
(indeed the proof above that Derk(𝐴) is a Lie algebra only requires the product on𝐴 to be bilinear).

iii) One way of interpreting the Jacobi identity is that, assuming the alternating property, it is equivalent to the
condition that, for any 𝑥 ∈ 𝔤, the operation ad(𝑥) ∈ 𝔤𝔩𝔤 given by ad(𝑥)(𝑦) = [𝑥, 𝑦] lies in Derk(𝔤). Indeed

ad(𝑥)([𝑦, 𝑧]) = [ad(𝑥)(𝑦), 𝑧] + [𝑦, ad(𝑥)(𝑧)]
⟺ [𝑥, [𝑦, 𝑧]] = [[𝑥, 𝑦], 𝑧] + [𝑦, [𝑥, 𝑧]]
⟺ [𝑥, [𝑦, 𝑧]] − [𝑦, [𝑥, 𝑧]] − [[𝑥, 𝑦], 𝑧] = 0
⟺ [𝑥, [𝑦, 𝑧]] + [𝑦, [𝑧, 𝑥]] + [𝑧, [𝑥, 𝑦]] = 0

where the equivalence between the third and fourth equalities follows from the alternating property of a Lie
bracket.

iv) The Jacobi identity is also equivalent, again assuming the alternating property, to the fact that ad ∶ 𝔤 → 𝔤𝔩𝔤 is
a homomorphism of Lie algebras: Indeed, for all 𝑥, 𝑦, 𝑧 ∈ 𝔤we have

[ad(𝑥), ad(𝑦)](𝑧) = [𝑥, [𝑦, 𝑧]] − [𝑦, [𝑥, 𝑧]]
= [𝑥, [𝑦, 𝑧]] + [𝑦, [𝑧, 𝑥]]
= −[𝑧, [𝑥, 𝑦]]
= ad([𝑥, 𝑦])(𝑧).

where the second and fourth equality uses the alternating property, and the third the Jacobi identity.

v) If (𝐴, ∗) is any k-algebra then𝐴op is the k-algebrawith product ∗op, where 𝑎 ∗op 𝑏 = 𝑏 ∗ 𝑎. If𝐴 is commutative,
then 𝐴op is isomorphic to 𝐴. In the case of a Lie algebra 𝔤 then 𝔤op is the Lie algebra (𝔤, −[., .]). In fact 𝔤 is
canonically isomorphic to 𝔤op: if we let𝑚∶ 𝔤 → 𝔤op be themap𝑚(𝑥) = −𝑥, then

𝑚([𝑥, 𝑦]) = −[𝑥, 𝑦] = [𝑦, 𝑥] = [𝑥, 𝑦]op = [−𝑥, −𝑦]op = [𝑚(𝑥), 𝑚(𝑦)], 𝑥, 𝑦 ∈ 𝔤.

hence𝑚∶ 𝔤 → 𝔤op is an isomorphism from 𝔤 to 𝔤op.
*Remark 1.1.8. Combining 𝑖𝑖𝑖) and 𝑖𝑣) in the above examplewe see that the adjoint representation 𝑥 ↦ ad(𝑥) is in
fact a Lie algebra homomorphism from 𝔤 to Derk(𝔤). This is, in a sense, where the Jacobi identity comes from: very
roughly, the conjugation action of𝐺 on itself yields a group homomorphism𝐺 → 𝔤𝔩𝔤 (since conjugation preserves
the identity 𝑒 ∈ 𝐺) whose image lies in Aut(𝔤). The adjoint representation of 𝔤 is then the derivative of this action
yields the adjoint representation ad which hence should have image in Derk(𝔤).
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1.2 Ideals and isomorphism theorems

As onemight expect if a Lie algebra is suppose to be an “infinitesimal” version of a Lie group,most notions for groups
have analogues in the context of Lie algebras. It might be worth noting, however, that the linear structure of a Lie
algebra comes from the basic properties of the derivative: it is the Lie bracket which reflects the “infinitesimal” ver-
sions of properties of a group. The existence of both the linear structure and the Lie bracket means that many of the
notions we consider for a Lie algebra also have natural analogues for a ring (which is an algebra object equipped
with an addition and an (associative) multiplication.

Definition 1.2.1. An ideal in a Lie algebra (𝔤, [., .]𝔤) is a subspace 𝔞 such that for all 𝑥 ∈ 𝔤 and 𝑎 ∈ 𝔞 we have
[𝑎, 𝑥]𝔤 ∈ 𝔞. It is easy to check that if𝜙∶ 𝔤1 → 𝔤2 is a homomorphism, then

ker(𝜙) = {𝑎 ∈ 𝔤1 ∶ 𝜙(𝑎) = 0}
is an ideal of 𝔤1. We will write 𝐼⊴𝔤 to indicate that 𝐼 is an ideal in 𝔤.

Remark 1.2.2. Notice that because a Lie bracket is alternating, the condition that, for all 𝑥 ∈ 𝔤 and 𝑎 ∈ 𝔞 one has
[𝑎, 𝑥] ∈ 𝔞, is equivalent to the condition that [𝑥, 𝑎] ∈ 𝔞 for all 𝑥 ∈ 𝔤, 𝑎 ∈ 𝔞. Thus, similarly to commutative rings, the
notions of a left, right or two-sided ideal in a Lie algebra are all the same.

Just as for rings, in fact any ideal is the kernel of a Lie algebra homomorphism:

Theorem 1.2.3. (The first isomorphism theorem:) Let 𝔞 be an ideal in a Lie algebra 𝔤, and let 𝑞 ∶ 𝔤 → 𝔤/𝔞 be the quotient
map of vector spaces. Then there is a unique Lie bracket on 𝔤/𝔞with respect to which 𝑞 is a homomorphism of Lie algebras, that
is, for all 𝑥, 𝑦 ∈ 𝔤

[𝑞(𝑥), 𝑞(𝑦)] = 𝑞([𝑥, 𝑦]), i.e. [𝑥 + 𝔞, 𝑦 + 𝔞] = [𝑥, 𝑦] + 𝔞.
Moreover, if 𝜙∶ 𝔤 → 𝔨 is a Lie algebra homomorphism such that 𝜙(𝔞) = 0, then 𝜙 induces a homomorphism 𝜙̄ ∶ 𝔤/𝔞 → 𝔨
such that 𝜙̄ ∘ 𝑞 = 𝜙, so thatker(𝜙̄) = ker(𝜙)/𝔞. In particular, ifwe set𝔞 = ker(𝜙) thenwe see that𝜙 induces an isomorphism
𝜙̄ ∶ 𝔤/ker(𝜙) → im(𝜙).

Proof. The proof is almost identical to the proof in the case of rings. The key point is to see that the coset [𝑥, 𝑦] + 𝔞
is independent of the choice of representative for the cosets 𝑥 + 𝔞, 𝑦 + 𝔞, and the condition that 𝔞 is an ideal ensures
this.

Definition 1.2.4. If 𝑉,𝑊 are subspaces of a Lie algebra 𝔤, then write [𝑉,𝑊] for the linear span of the elements
{[𝑣, 𝑤] ∶ 𝑣 ∈ 𝑉,𝑤 ∈ 𝑊}. Notice that if 𝐼, 𝐽 are ideals in 𝔤 then so is [𝐼, 𝐽]. Indeed to check this, note that by part 8) of
Example 1.1.5, if 𝑧 ∈ 𝔤, 𝑥 ∈ 𝐼, 𝑦 ∈ 𝐽 then we have

[𝑧, [𝑥, 𝑦]] = ad(𝑧)([𝑥, 𝑦]) = [ad(𝑧)(𝑥), 𝑦] + [𝑥, ad(𝑧)(𝑦)] ∈ [𝐼, 𝐽]

since ad(𝑧)(𝑥) = [𝑧, 𝑥] ∈ 𝐼 if 𝑥 ∈ 𝔤, and similarly ad(𝑧)(𝑦) = [𝑧, 𝑦] ∈ 𝐽.

Remark 1.2.5. If 𝐼 and 𝐽 are ideals in a Lie algebra 𝔤 then it is easy to check that their intersection 𝐼 ∩ 𝐽 is again an
ideal in 𝔤, andwehave [𝐼, 𝐽] ⊆ 𝐼 ∩ 𝐽. (Thus [𝐼, 𝐽] is the Lie algebra analogue of the product of ideals in a commutative
ring.) Similarly, it is easy to see that the linear sum 𝐼 + 𝐽 of 𝐼 and 𝐽 is also an ideal4.

Definition 1.2.6. Let 𝔤 be a Lie algebra and let 𝔞 ≤ 𝔤 be a subalgebra. The normalizer of 𝔞 in 𝔤 is

𝑁𝔤(𝔞) ≔ {𝑥 ∈ 𝔤 ∶ ad(𝑥)(𝔞) ⊆ 𝔞} = {𝑥 ∈ 𝔤 ∶ ad(𝑎)(𝑥) ∈ 𝔞, ∀𝑎 ∈ 𝔞}.

This is a subalgebra of 𝔤, as one can check using the formulation of the Jacobi identity given in Definition 1.2.4. It is
the largest subalgebra of 𝔤within which 𝔞 is an ideal.

Definition 1.2.7. If a nontrivial Lie algebra has no nontrivial ideals we say that it is almost simple. It it is in addition
not abelian, i.e. the Lie bracket is not identically zero, then we say that it is simple.

Just as for groups and rings, one can deduce the usual stable of isomorphism theorems from the first isomor-
phism theorem.

4Note however that the linear sum of two subalgebras is not necessarily a subalgebra.
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Theorem 1.2.8. i) If 𝔥 is a subalgebra of 𝔤 and 𝐼 is an ideal in 𝔤 then 𝔥+ 𝐼 is a subalgebra of 𝔤 (containing 𝐼 as an ideal)
𝔥 ∩ 𝐼 is an ideal in 𝔥, and

(𝔥 + 𝐼)/𝐼 ≅ 𝔥/(𝔥 ∩ 𝐼).

ii) If 𝐽 ⊆ 𝐼 ⊆ 𝔤 are ideals of 𝔤 then we have:
(𝔤/𝐽)⁄(𝐼/𝐽) ≅ 𝔤/𝐼.

Proof. The proofs are identical to the corresponding results for groups. We give a proof of 𝑖𝑖) as an example. Since
𝐽 ⊆ 𝐼 the quotient map 𝔤 ∶ 𝔤 → 𝔤/𝐼, which has kernel 𝐼, induces a map 𝑞̄ ∶ 𝔤/𝐽 → 𝔤/𝐼. The kernel of this map is by
definition {𝑥 + 𝐽 ∶ 𝑥 + 𝐼 = 𝐼}, that is, 𝐼/𝐽. The result follows.
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Chapter 2

Representations of Lie algebras

Just as for finite groups (or indeed groups in general) one way of studying Lie algebras is to try and understand how
they can act on other (usuallymore concrete) objects. For Lie algebras, since they are already vector spaces over k, it
is natural to study their action on linear spaces, or in other words, “representations”.

2.1 Definition and examples

Definition 2.1.1. A representation of a Lie algebra 𝔤 is a vector space𝑉 equipped with a linear action of 𝔤, that is, a
homomorphism of Lie algebras 𝜌∶ 𝔤 → 𝔤𝔩𝑉 . In other words, 𝜌 is a linear map such that

𝜌([𝑥, 𝑦]) = 𝜌(𝑥) ∘ 𝜌(𝑦) − 𝜌(𝑦) ∘ 𝜌(𝑥)
where ∘denotes compositionof linearmaps. Wealso refer to a representationof𝔤 as a𝔤-representationor𝔤-module.
A representation is faithful if ker(𝜌) = 0. When there is no danger of confusion we will normally suppress 𝜌 in our
notation, and write 𝑥(𝑣) rather than 𝜌(𝑥)(𝑣), for 𝑥 ∈ 𝔤, 𝑣 ∈ 𝑉.

If (𝑉, 𝜌) and (𝑊, 𝜎) are 𝔤-representations, we say that 𝜙∶ 𝑉 → 𝑊 is a 𝔤-homomorphism (or homomorphism
of 𝔤-representations) if 𝜙 ∘ 𝜌(𝑥) = 𝜎(𝑥) ∘ 𝜙 for all 𝑥 ∈ 𝔤. We will write Rep(𝔤) for the collection1 of representations
of 𝔤.

We will study representation of various classes of Lie algebras in this course, but the following give some basic
examples.

Example 2.1.2. i) If𝑉 is a k-vector space, then the identitymap 𝔤𝔩𝑉 → 𝔤𝔩𝑉 gives a representation of 𝔤𝔩𝑉 on𝑉,
which is known as the vector representation. Clearly any subalgebra 𝔤 of 𝔤𝔩𝑉 also inherits𝑉 as a representation,
where then the actionmap 𝜌 is just the inclusionmap.

ii) Let 𝔞 be an abelian Lie algebra. If (𝑉, 𝜌) is a representation of 𝔞, then the image 𝜌(𝔞) of 𝔞 is a commutative
subalgebra of Endk(𝑉): if 𝑎, 𝑏 ∈ 𝔞 then 0 = 𝜌([𝑎, 𝑏]) = 𝜌(𝑎)𝜌(𝑏) − 𝜌(𝑏)𝜌(𝑎), so that

𝜌(𝑎)𝜌(𝑏) = 𝜌(𝑏)𝜌(𝑎), ∀𝑎, 𝑏 ∈ 𝔞.

iii) Given an arbitrary Lie algebra 𝔤, there is a natural representation ad of 𝔤 on 𝔤 itself known as the adjoint repre-
sentation. The homomorphism ad ∶ 𝔤 → 𝔤𝔩𝔤 from 𝔤 to 𝔤𝔩𝔤 is given by

ad(𝑥)(𝑦) = [𝑥, 𝑦], ∀𝑥, 𝑦 ∈ 𝔤.
Indeed, as noted in iv) of Example 1.1.7, the fact that this map is a homomorphism of Lie algebras is just a
rephrasing2 of the Jacobi identity. Note that while the vector representation is clearly faithful, in general the
adjoint representation is not. Indeed the kernel is known as the centre of 𝔤:

𝔷(𝔤) = {𝑥 ∈ 𝔤 ∶ [𝑥, 𝑦] = 0, ∀𝑦 ∈ 𝔤}.
Note that if 𝑥 ∈ 𝔷(𝔤) then for any representation 𝜌∶ 𝔤 → 𝔤𝔩(𝑉) the endomorphism 𝜌(𝑥) commutes with all
the elements 𝜌(𝑦) ∈ End(𝑉) for all 𝑦 ∈ 𝔤.

1If you take the Category Theory course, Rep(𝔤) is a category whose objects are representations of 𝔤 and whose morphisms are 𝔤-
homomorphisms. The term “collection” is used because of set-theoretic subtleties which we can essentially ignore in this course.

2It’s also (for some people) a useful way of remembering what the Jacobi identity says.
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iv) If 𝔤 is any Lie algebra, the pair (k, 0) consisting of the vector space k together with the zeromap 0∶ 𝔤 → 𝔤𝔩1 is
a 𝔤-representation. This representation is called the trivial representation. It is the Lie algebra analogue of the
trivial representation for a group (which send every group element to the identity map 1𝑉 ∈ GL(𝑉)).

v) If (𝑉, 𝜌) is a 𝔤-representation, then the sum of all subrepresentations of 𝑉 isomorphic to (k, 0) is a natural
subrepresentation

𝑉𝔤 = {𝑣 ∈ 𝑉 ∶ 𝜌(𝑥)(𝑣) = 0, ∀𝑥 ∈ 𝔤}
known as the 𝔤-invariants in𝑉.

vi) If (𝑉, 𝜌) is a representation of a Lie algebra 𝔤 and𝜃∶ 𝔥 → 𝔤 is a homomorphismof Lie algebras, thenwedefine
the pull-back of (𝑉, 𝜌) to the representation of 𝔥 given by (𝑉, 𝜌 ∘ 𝜃). Themost common example of a pull-back
is restriction, when 𝔥 is a subalgebra of 𝔤 (and thus 𝜃 is the inclusionmap from 𝔥 to 𝔤).

The following definitions are useful when studying the the structure of Lie algebra representations:

Definition 2.1.3. A representation is said to be irreducible if it has no proper non-zero subrepresentations, and it is
said to be completely reducible if it is isomorphic to a direct sum of irreducible representations. A representation 𝑉
is said to be indecomposable if, whenever we have𝑉 = 𝑈1 ⊕𝑈2 with𝑈1, 𝑈2 subrepresentations, either𝑈1 = 𝑉 or
𝑈2 = 𝑉 (and𝑈2 = 0,𝑈1 = 0 respectively).

It is easy to show (by induction on dimension) that any finite-dimensional representation is a direct sum of
indecomposable subrepresentations.

Example 2.1.4. In this example, we classify the representations of the simplest Lie algebra 𝔤𝔩1: a representation
(𝑉, 𝜌) of 𝔤𝔩1 is given by a Lie algebra homomorphism 𝜌∶ 𝔤𝔩1 → 𝔤𝔩𝑉 . But we saw in vii) of Example 1.1.5, that there
is a natural bijection between such homomorphisms and elements 𝑥 ∈ 𝔤𝔩𝑉 given by 𝜌 ↦ 𝜌(1). Through this cor-
respondence the problem of classifying 𝔤𝔩1-representations up to isomorphism becomes the problem of classifying
vector spaces equipped with an endomorphism up to conjugacy.

Ifwe assumek is algebraically closed this classificationof linear endomorphisms is givenby the Jordan canonical
form. It is a useful exercise to translate statements about linear maps into statements about representations of 𝔤𝔩1.
For example, the irreducible representations of 𝔤𝔩1 are the one-dimensional ones, and correspond to eigenvectors of
𝜌(1). What do the indecomposable representations correspond to?

Example 2.1.5. Now suppose that 𝔤 is any finite-dimensional Lie algebra and that (𝐿, 𝜆) is a one-dimensional rep-
resentation of 𝔤. The canonical identifications 𝔤𝔩𝐿 ≅ 𝑘 = 𝔤𝔩1(k) given in v) of Example 1.1.5 identifies 𝜆 with a
homomorphism [𝜆] ∶ 𝔤 → 𝔤𝔩1. But since k = 𝔤𝔩1 has the zero Lie bracket, this is just an element of 𝔤∗which vanishes
on 𝐷(𝔤), that is, an element of 𝐷(𝔤)0 ≅ (𝔤/𝐷(𝔤))∗. The homomorphism [𝜆] clearly identifies (𝐿, 𝜆) up to isomor-
phism, and given any 𝜇 ∈ 𝐷(𝔤)0, we obtain (k, 𝜇) a canonical representative of this isomorphism class, which we
will denote by k𝜇. In particular, if 𝜆 = 0 ∈ 𝐷(𝔤)0 then k0 is the trivial representation of 𝔤.

2.2 Subrepresentations, quotients, duals, and composition series

There are anumber of standardwaysof constructingnewrepresentations fromold, all ofwhichhave their analogues
in the context of group representations. We begin with some definitions.

Definition 2.2.1. Let 𝑉 be a k-vector space and𝑈 ≤ 𝑉 a subspace. Write 𝑖 ∶ 𝑈 → 𝑉 for the inclusion map and
𝑝∶ 𝑉 → 𝑉/𝑈 for the quotient map. Let

𝔟𝑈 = {𝑥 ∈ 𝔤𝔩𝑉 ∶ 𝑥(𝑈) ⊆ 𝑈} = {𝑥 ∈ 𝔤𝔩𝑉 ∶ 𝑝 ∘ 𝑥 ∘ 𝑖 = 0}.

Thewehave linearmaps 𝑖∗ ∶ 𝔟𝑈 → End(𝑈)and𝑝∗ ∶ 𝔟𝑈 → End(𝑉/𝑈)givenby 𝑖∗(𝑥) = 𝑥 ∘ 𝑖, and𝑝∗ ∶ 𝔟𝑈 → End(𝑉/𝑈)
is given by 𝑝∗(𝑥)(𝑣 +𝑈) = 𝑝(𝑥(𝑣)) = 𝑥(𝑣) +𝑈 for any 𝑥 ∈ 𝔟𝑈 , 𝑣 ∈ 𝑉.

Lemma 2.2.2. If 𝜌∶ 𝔤 → 𝔤𝔩𝑉 is a 𝔤-representation and 𝜌(𝔤) ⊆ 𝔟𝑈 for some subspace𝑈 ≤ 𝑉, then𝑈 and𝑉/𝑈 become
𝔤-representations with action maps 𝑖∗ ∘ 𝜌 and 𝑝∗ ∘ 𝜌 respectively.

Proof. It is clear that𝔟𝑈 is anassociative subalgebraofEndk(𝑉)andboth 𝑖∗ and𝑝∗ arehomomorphismsofassociative
algebras, hence they are also homomorphisms of the associated Lie algebras. The Lemma follows immediately.

It will be useful later to have the following definition:
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Definition 2.2.3. Let𝑉 be a vector space, and letℱ = (𝐹𝑖)𝑘𝑖=0 be a flag in𝑉, that is

ℱ = (𝑉 = 𝐹0 ⊃ 𝐹1 ⊃ 𝐹2 ⊃ … ⊃ 𝐹𝑘 = 0)

is a nested sequence of subspaces with dim(𝐹𝑖+1) < dim(𝐹𝑖) for 1 ≤ 𝑖 ≤ 𝑘. Ifℱ 1 andℱ 2 are flags in𝑉 then we say
thatℱ 2 is a refinement ofℱ 1 if every subspace inℱ 1 occurs inℱ 2. If dim(𝐹𝑖) = 𝑖 for all 𝑖 (so that dim(𝑉) = 𝑘)
thenℱ is called a complete flag (as it cannot be refined any further). It is clear (since any linearly independent set
can be extended to a basis) that any flag can be refined to a complete flag.

We let 𝔟ℱ = ⋂1≤𝑖≤𝑘−1 𝔟𝐹𝑖 = {𝑥 ∈ 𝔤𝔩𝑉 ∶ 𝑥(𝐹𝑖) ⊆ 𝐹𝑖}. This is an associative subalgebra of End(𝑉), and hence
a Lie subalgebra. If (𝑉, 𝜌) is a 𝔤-representation, the elements of the flag are subrepresentations of 𝑉 if and only if
𝜌(𝔤) ⊆ 𝔟ℱ .

Definition 2.2.4. If𝑉 is a k-vector space and 𝑎 ∈ 𝔤𝔩𝑉 , then 𝑎 induces a linearmap 𝑎⊺ ∶ 𝑉∗ → 𝑉∗ whichwe call the
adjoint (or transpose) of 𝑎, given by 𝑎⊺(𝑓)(𝑣) = (𝑓 ∘ 𝑎)(𝑣). However, if 𝑎, 𝑏 ∈ 𝔤𝔩𝑉 , 𝑣 ∈ 𝑉,

(𝑎𝑏)⊺(𝑓)(𝑣) = (𝑓 ∘ (𝑎𝑏))(𝑣) = ((𝑓 ∘ 𝑎) ∘ 𝑏)(𝑣) = 𝑏⊺(𝑓 ∘ 𝑎)(𝑣) = 𝑏⊺ ∘ 𝑎⊺(𝑓)(𝑣),

so that 𝑎 ↦ 𝑎⊺ is an algebra anti-homomorphism fromEndk(𝑉) to Endk(𝑉∗)op (see 1.1.5 (v))), so that it is also a Lie
algebra homomorphism 𝔤𝔩𝑉 → 𝔤𝔩𝑉∗

op. But, again by 1.1.5 (v)) the map 𝑥 ↦ −𝑥 is an isomorphism from 𝔤 → 𝔤op
for any Lie algebra, it follows that 𝑥 ↦ −𝑥⊺ is an isomorphism of Lie algebras from 𝔤𝔩𝑉 to 𝔤𝔩𝑉∗ . For 𝑥 ∈ 𝔤𝔩𝑉 , we will
write 𝑥∗ = −𝑥⊺. Moreover, if (𝑉, 𝜌) is a 𝔤-representation, then wemay define 𝜌∗(𝑥) = (𝜌(𝑥))∗, so that 𝜌∗ ∶ 𝔤 → 𝔤𝔩𝑉∗
is a Lie algebra homomorphism and hence (𝑉∗, 𝜌∗) is a 𝔤-representation, the dual representation to (𝑉, 𝜌).

Recall that the annihilator of a subspace𝑈 ≤ 𝑉 is the subspace of𝑉∗ given by

𝑈0 = {𝑓 ∈ 𝑉∗ ∶ 𝑓(𝑢) = 0, ∀𝑢 ∈ 𝑈}.

By considering a basis of 𝑉 and the corresponding dual basis of 𝑉∗, it is easy to see that dim(𝑈) + dim(𝑈0) =
dim(𝑉), and the correspondence𝑈 ↦ 𝑈0 is order-reversing for containment, that is, if𝑈1 ≤ 𝑈2 then𝑈0

2 ≤ 𝑈0
1 .

Lemma 2.2.5. If (𝑉, 𝜌) is a 𝔤-representation with dual representation (𝑉∗, 𝜌∗), then the map𝑈 ↦ 𝑈0 gives an order-
reversing correspondence between the subrepresentations of 𝑉 and 𝑉∗ respectively. Since 𝑉 is finite-dimensional, (𝑉∗)∗ is
canonically isomorphic to𝑉, and via that canonical identification, this correspondence is an involution, that is, (𝑈0)0 = 𝑈.

Proof. Weneed only check that if𝑈 is a subrepresentation of𝑉 then𝑈0 is a subrepresentation of𝑉∗. But notice that
the adjoint of the inclusionmap 𝑖⊺ ∶ 𝑉∗ → 𝑈∗ has kernel𝑈0, and the adjoint of the quotientmap 𝑝⊺ ∶ (𝑉/𝑈)∗ → 𝑉∗

has image𝑈0. Moreover 𝑝⊺ is clearly injective, and 𝑖⊺ is surjective since any functional on𝑈 extends to one on 𝑉
(as you can easily see using e.g. dual bases).

Now 𝔟𝑈0 = {𝑦 ∈ 𝔤𝔩𝑉∗ ∶ 𝜄⊺ ∘ 𝑦 ∘ 𝑝⊺ = 0}. But if 𝑥 ∈ 𝔤𝔩𝑉 then

𝑖⊺ ∘ (𝑥∗) ∘ 𝑝⊺ = −(𝑖⊺ ∘ 𝑥⊺ ∘ 𝑝⊺) = −(𝑝 ∘ 𝑥 ∘ 𝑖)⊺.

Hence 𝑥∗ ∈ 𝔟𝑈0 if and only if 𝑝 ∘ 𝑥 ∘ 𝑖 = 0, that is, if and only if 𝑥 ∈ 𝔟𝑈 . It follows that if 𝜌(𝔤) ⊆ 𝔟𝑈(𝑉) if and only if
𝜌∗(𝔤) ⊆ 𝔟𝑈0 (𝑉∗) as required.

Definition 2.2.6. If (𝑉, 𝜌) is a finite-dimensional 𝔤-representation, then we say that a flag𝒞 = (𝑉 = 𝐹0 > 𝐹1 >
… > 𝐹𝑑 = {0}) in 𝑉 is a composition series for 𝑉 if each 𝐹𝑖 is a subrepresentation of 𝑉 and 𝐹𝑖/𝐹𝑖+1 is an irreducible
representation of 𝔤.

The Jordan-Hölder theoremforfinite-dimensional representationsof𝔤 shows that the isomorphismclassesof the
irreducible 𝔤-representations 𝐹𝑘/𝐹𝑘+1 are independent of the choice of composition series, as is the number of times
a given simple occurs. (SeeAppendix II for aproof.) If𝑆 is a simple𝔤-representation and (𝑉, 𝜌) any𝔤-representation,
wewrite [𝑆 ∶ 𝑉] for the number of composition factors in a composition series for𝑉 which are isomorphic to𝑆. The
next definition will be crucial later in the course, when hopefully it will appear more natural.

Definition 2.2.7. Let 𝔤 be a Lie algebra and suppose that (𝑉, 𝜌) is a 𝔤-representation. We define a symmetric bilin-
ear form 𝑡𝑉 ∶ 𝔤 × 𝔤 → k by setting 𝑡𝑉(𝑥, 𝑦) = tr𝑉(𝜌(𝑥) ∘ 𝜌(𝑦)). Clearly 𝑡𝑉 depends only on the isomorphism class of
𝑉, that is, if𝑉1 ≅ 𝑉2 as 𝔤-representations then 𝑡𝑉1 = 𝑡𝑉2 .
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Lemma 2.2.8. Let (𝑉, 𝜌) be a finite-dimensional representation of 𝔤 and let 𝑥, 𝑦 ∈ 𝔤. Then

𝑡𝑉(𝑥, 𝑦) = 􏾜
𝑆 irreducible

[𝑆 ∶ 𝑉]𝑡𝑆(𝑥, 𝑦)

Proof. Picking a composition series𝒞 = (𝑉 = 𝐹0 > 𝐹1 > … > 𝐹𝑑 = {0}), the image 𝜌(𝔤) of 𝔤 in 𝔤𝔩𝑉 is contained in
𝔟𝒞 and since 𝔟𝒞 is an associative algebra, if 𝜌(𝑥), 𝜌(𝑦) ∈ 𝔟𝒞 then 𝜌(𝑥)𝜌(𝑦) ∈ 𝔟𝒞 . Thus the Lemma follows if we can
show that for all 𝛼 ∈ 𝔟𝒞

tr𝑉(𝛼) =
𝑑−1
􏾜
𝑘=0

tr𝑊𝑘 (𝛼̄𝑘)

where 𝛼̄𝑘 is the linear map induced by 𝛼 on𝑊𝑘 = 𝐹𝑘/𝐹𝑘+1 (where𝑊𝑑−1 = 𝐹𝑑−1/𝐹𝑑 = 𝐹𝑑−1). But this is easy to
check by picking a basis𝐵 for𝑉 compatible with the composition series (in the sense that, for each 𝑘, 0 ≤ 𝑘 ≤ 𝑑, the
intersection 𝐵∩ 𝐹𝑘 is a basis for 𝐹𝑘).

Lemma 2.2.9. Suppose that 𝑉 is a 𝔤-representation and that {𝑆𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑘} are its composition factors. Then𝑉∗ has
composition factors {𝑆∗𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑘} and moreover [𝑆𝑖 ∶ 𝑉] = [𝑆∗𝑖 ∶ 𝑉∗].

Proof. Let 𝒞 = (𝑉 = 𝐹0 > 𝐹1 > … > 𝐹𝑑 = {0}), and suppose that 𝐹𝑖/𝐹𝑖+1 ≅ 𝑆𝜋(𝑖) so that [𝑆𝑖 ∶ 𝑉] = |𝜋−1(𝑖)|.
Then𝑉∗ has a filtration by subrepresentations given by the annihilators𝒞 ∗ = (𝑉∗ = 𝐹0𝑑 > 𝐹0𝑑−1 > … > 𝐹00 = {0}).
Now 𝐹0𝑖+1 ≅ (𝑉/𝐹𝑖+1)∗ via the transpose of the quotient map 𝑞𝑖+1 ∶ 𝑉 → 𝑉/𝐹𝑖+1, and 𝐹∗𝑖 ≅ 𝑉∗/𝐹0𝑖 via the transpose
of the inclusion 𝑝𝑖 ∶ 𝐹𝑖 → 𝑉. It follows that (𝐹𝑖/𝐹𝑖+1)∗ ≅ 𝐹0𝑖+1/𝐹0𝑖 , and hence 𝐹0𝑖+1/𝐹0𝑖 ≅ 𝑆∗𝑝(𝑖) is simple, so that𝒞 ∗ is a
composition series for𝑉∗, with composition factors 𝑆∗𝑖 with the simple 𝑆∗𝑖 havingmultiplicity [𝑆∗𝑖 ∶ 𝑉∗] = |𝜋−1(𝑖)| =
[𝑆𝑖 ∶ 𝑉] as required.

Definition 2.2.10. If 𝑉 is a 𝔤-representation, we let 𝑉𝑠 = ∑𝑆≤𝑉 𝑆 the socle of 𝑉, be the sum of all irreducible
subrepresentations of𝑉. This is a semisimple subrepresentation of𝑉 and hence it can be written as the direct sum
of irreducible subrepresentations of 𝑉. It is maximal among semisimple subrepresentations of 𝑉 in the partical
order given by containment.

2.2.1 Direct sums and Hom-spaces

Now suppose that𝑉 = 𝑉1 ⊕𝑉2 is a k-vector space. For 𝑗 = 1, 2, we have natural inclusion maps 𝜄𝑗 ∶ 𝑉𝑗 → 𝑉 and
projectionmaps 𝑝𝑗 ∶ 𝑉 → 𝑉𝑗 (with kernel𝑉3−𝑗). We claim, for any vector space𝑈, we have natural isomorphisms

𝑖) Hom(𝑉,𝑈) ≅ Hom(𝑉1, 𝑈) ⊕Hom(𝑉2, 𝑈)
𝑖𝑖) Hom(𝑈,𝑉) ≅ Hom(𝑈,𝑉1) ⊕Hom(𝑈,𝑉2).

(2.2.1)

In the case of 𝑖), the map simply takes the restriction of 𝜙 ∈ Hom(𝑉,𝑈) to𝑉1 and𝑉2 respectively. In terms of
our inclusion and projection maps, for 𝑟 = 1, 2we have𝜙|𝑉𝑟 = 𝜙 ∘ 𝜄𝑟. To see that this map is an isomorphism, note
that any 𝑣 ∈ 𝑉 can be written uniquely as 𝑣 = 𝑣1 + 𝑣2 with 𝑣1 ∈ 𝑉1 and 𝑣2 ∈ 𝑉2. Indeed 𝑣𝑟 = 𝜄𝑟 ∘ 𝑝𝑟(𝑣), hence
𝜙(𝑣) = 𝜙(𝜄1 ∘ 𝑝1(𝑣) + 𝜄2 ∘ 𝑝2(𝑣)) = ∑

2
𝑟=1(𝜙 ∘ 𝜄𝑟) ∘ 𝑝𝑟(𝑣). In other words, the inverse to 𝜙 ↦ (𝜙 ∘ 𝜄𝑟)𝑟=1,2 is the map

(𝜓𝑟)𝑟=1,2 ↦∑2
𝑟=1 𝜓𝑟𝑝𝑟.

In the case of 𝑖𝑖), themorphism simply takes, for𝜙 ∈ Hom(𝑈,𝑉), the components of𝜙(𝑢) in𝑉1 and𝑉2 respec-
tively, that is𝜙 ↦ (𝑝𝑠 ∘ 𝜙)𝑠=1;2. Clearly the inverse of this map is given by (𝜂𝑠)𝑠=1,2 ↦∑𝑠=1,2 𝜄𝑠 ∘ 𝜂𝑠.

Now consider End(𝑉) = Hom(𝑉, 𝑉)where𝑉 = 𝑉1 ⊕𝑉2. Wemay use 𝑖) and 𝑖𝑖) (twice) to obtain

Hom(𝑉, 𝑉) ≅
2

􏾘
𝑟=1

Hom(𝑉𝑟, 𝑉) ≅
2

􏾘
𝑟=1

⎛
⎜⎜⎜⎜⎜⎜⎝

2
􏾘
𝑠=1

Hom(𝑉𝑟, 𝑉𝑠)

⎞
⎟⎟⎟⎟⎟⎟⎠ =

2
􏾘
𝑟,𝑠=1

Hom(𝑉𝑟, 𝑉𝑠)

by 𝜙 ↦ (𝜙𝑠𝑟)where 𝜙𝑠𝑟 = 𝑝𝑠 ∘ 𝜙 ∘ 𝜄𝑟 ∈ Hom(𝑉𝑟, 𝑉𝑠). This decomposition is just that of a matrix into block subma-
trices, so it can be useful to arrange it in that form:

9



End(𝑉) = 𝔤𝔩𝑉 ∋ 𝜙 ↦ 􏿶
𝜙11 𝜙12
𝜙21 𝜙22

􏿹 ∈ 􏿶
Homk(𝑉1, 𝑉1) = 𝔤𝔩𝑉1 Homk(𝑉2, 𝑉1)

Homk(𝑉1, 𝑉2) Homk(𝑉2, 𝑉2) = 𝔤𝔩𝑉2
􏿹 (2.2.2)

This shows that 𝔤𝔩𝑉1 ⊕ 𝔤𝔩𝑉2 is naturally isomorphic to a subalgebra of 𝔤𝔩𝑉 = 𝔤𝔩𝑉1⊕𝑉2 , and hence 𝑉1 ⊕ 𝑉2 is
a representation of 𝔤𝔩𝑉1 ⊕ 𝔤𝔩𝑉2 . More interestingly, the summands Hom(𝑉1, 𝑉2) and Hom(𝑉2, 𝑉1) are clearly all
preserved by the action of 𝔤𝔩𝑉1 ⊕ 𝔤𝔩𝑉2 , so that in particular, Hom(𝑉1, 𝑉2) is a representation of 𝔤𝔩𝑉1 ⊕ 𝔤𝔩𝑉2 , where if
𝑥 = (𝑥1, 𝑥2) ∈ 𝔤𝔩𝑉1 ⊕ 𝔤𝔩𝑉2 and𝜙 ∈ Hom(𝑉1, 𝑉2), then 𝑥(𝜙) = 𝑥2 ∘ 𝜙 − 𝜙 ∘ 𝑥1.

It follows that if (𝑉1, 𝜌1) and (𝑉2, 𝜌2) are 𝔤-representations, then Hom(𝑉1, 𝑉2) is a 𝔤-representation, via

𝔤 Δ // 𝔤 ⊕ 𝔤
𝜌1⊕𝜌2// 𝔤𝔩𝑉1 ⊕ 𝔤𝔩𝑉2 // 𝔤𝔩(Hom(𝑉1, 𝑉2))

where Δ∶ 𝔤 → 𝔤 ⊕ 𝔤 is the diagonal map Δ(𝑥) = (𝑥, 𝑥). Explicitly, if 𝑥 ∈ 𝔤 and 𝜙 ∈ Hom(𝑉,𝑊) then 𝑥(𝜙) =
𝜌2(𝑥) ∘ 𝜙 − 𝜙 ∘ 𝜌1(𝑥).

Remark2.2.11. Note that theprevious exampleactually includes the exampleofdual spaces: if𝑉 is ak-vector space
then𝑉∗ = Hom(𝑉, k) becomes a 𝔤𝔩𝑉 ⊕ 𝔤𝔩1-representation, and then simply using the inclusion 𝔤𝔩𝑉 → 𝔤𝔩𝑉 ⊕ 𝔤𝔩1 we
see that 𝑉∗ becomes a 𝔤𝔩𝑉-representation, and indeed we obtain the same action: for any 𝑓 ∈ 𝑉∗ and 𝑥 ∈ 𝔤𝔩𝑉 we
have 𝑥(𝑓) ≔ (𝑥, 0)(𝑓) = 0 ∘ 𝑓 − 𝑓 ∘ 𝑥 = −𝑥⊺(𝑓).

Remark 2.2.12. For any direct sum decomposition𝑉 = ⨁𝑘
𝑟=1 𝑉𝑟, have natural inclusion maps 𝜄𝑉𝑟 ∶ 𝑉𝑟 → 𝑉 and

projection maps 𝑝𝑉𝑟 ∶ 𝑉 → 𝑉𝑟, where ker(𝑝𝑟) = ⨁𝑠≠𝑟 𝑉𝑠. It is easy to see that 1𝑉 = ∑𝑘
𝑟=1 𝜄𝑉𝑟 ∘ 𝑝𝑉𝑟 and 𝑝𝑉𝑠 ∘ 𝜄𝑉𝑟 =

𝛿𝑟𝑠1𝑉𝑟 . The above discussion then generalises readily to the case where we have k-vector spaces𝑉 =⨁𝑘
𝑟=1 𝑉𝑟 and

𝑊 =⨁𝑙
𝑠=1𝑊𝑠. By considering, for any𝜙 ∈ Hom(𝑉,𝑊) the identity𝜙 = 1𝑊 ∘ 𝜙 ∘ 1𝑉 , we see that

𝜙 ↦ (𝑝𝑊𝑠 ∘ 𝜙 ∘ 𝑖𝑉𝑟 )𝑟,𝑠 and (𝜙𝑠𝑟)𝑟,𝑠 ↦􏾜
𝑟,𝑠
𝜄𝑊𝑠 ∘ 𝜙𝑠𝑟 ∘ 𝑝𝑉𝑖

are mutually inverse and give isomorphisms between Hom(𝑉,𝑊) and⨁𝑟,𝑠 Hom(𝑉𝑟,𝑊𝑠) which again is just the
decomposition of Hom(𝑉,𝑊) into “block matrices” corresponding to the direct sum decompositions of 𝑉 and𝑊
respectively.

2.3 Tensor products

First we note a general Lemma:

Lemma 2.3.1. Let 𝔤1, 𝔤2 be Lie algebras over k and let 𝔤 = 𝔤1 ⊕ 𝔤2 be their direct sum (so each of 𝔤1, 𝔤2 is an ideal in 𝔤). If
(𝑈, 𝜌) is a representation of 𝔤, and we set𝜌𝑖 = 𝜌|𝔤𝑖 , then each𝜌𝑖 is a representation of 𝔤𝑖 for 𝑖 = 1, 2, and [𝜌1(𝑥), 𝜌2(𝑦)] = 0
for any 𝑥 ∈ 𝔤1, 𝑦 ∈ 𝔤2. Conversely, if 𝜌𝑖 ∶ 𝔤𝑖 → 𝔤𝔩𝑈 are Lie algebra homomorphisms for 𝑖 = 1, 2 and [𝜌1(𝑥), 𝜌2(𝑦)] = 0 for
all 𝑥 ∈ 𝔤1, 𝑦 ∈ 𝔤2, then 𝜌(𝑥, 𝑦) = 𝜌1(𝑥) + 𝜌2(𝑦) is a Lie algebra homomorphism from 𝔤 to 𝔤𝔩𝑈 .

Proof. Given a representation (𝑈, 𝜌) of 𝔤, the asserted properties of𝜌1, 𝜌2 are immediate. For the converse, note that
if (𝑥1.𝑥2), (𝑦1, 𝑦2) ∈ 𝔤, where 𝑥1.𝑦1 ∈ 𝔤1 and 𝑥2, 𝑦2 ∈ 𝔤2, then

[𝜌(𝑥1, 𝑥2), 𝜌(𝑦1, 𝑦2)] = [𝜌1(𝑥1) + 𝜌2(𝑥2), 𝜌1(𝑦1) + 𝜌2(𝑦2)]
= [𝜌1(𝑥1), 𝜌1(𝑦1)] + [𝜌1(𝑥1), 𝜌2(𝑦2)] − [𝜌1(𝑦1), 𝜌2(𝑥2)] + [𝜌2(𝑥2), 𝜌2(𝑦2)]
= [𝜌1(𝑥1), 𝜌1(𝑦1)] + [𝜌2(𝑥2), 𝜌2(𝑦2)]
= 𝜌((𝑥1, 𝑥2), (𝑦1, 𝑦2))

so that 𝜌 is a homomorphism as required.

Now 𝔤𝔩𝑉 and 𝔤𝔩𝑊 are naturally subalgebras of 𝔤𝔩𝑉⊗𝑊 , via the embeddings 𝑖𝑉 and 𝑖𝑊 respectively, where 𝑖𝑉(𝛼) =
𝛼 ⊗ 1𝑊 and 𝑖𝑊(𝛽) = 1𝑉 ⊗ 𝛽 respectively. Since for any 𝛼 ∈ 𝔤𝔩𝑉 , 𝛽 ∈ 𝔤𝔩𝑊 we have

𝑖𝑊(𝛽) ∘ 𝑖𝑉(𝛼) = (1𝑉 ⊗ 𝛽) ∘ (𝛼 ⊗ 1𝑊) = 𝛼 ⊗ 𝛽 = (𝛼 ⊗ 1𝑊) ∘ (1𝑉 ⊗ 𝛽) = 𝑖𝑉(𝛼) ∘ 𝑖𝑊(𝛽)

it follows by Lemma 2.3.1 that 𝑑∶ 𝔤𝔩𝑉 ⊕ 𝔤𝔩𝑊 → 𝔤𝔩𝑉⊗𝑊 given by

𝑑(𝑥, 𝑦) = 𝑖𝑉(𝑥) + 𝑖𝑊(𝑦) = 𝑥 ⊗ 1𝑊 + 1𝑉 ⊗ 𝑦
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is a Lie algebra homomorphism, and hence𝑉 ⊗𝑊 is naturally a 𝔤𝔩𝑉 ⊕ 𝔤𝔩𝑊-representation. It follows immediately
that if (𝑉, 𝜌) is a representation of 𝔤1 and (𝑊, 𝜎) is a representation of 𝔤2 then𝑉 ⊗𝑊 is a representation of 𝔤1 ⊕ 𝔤2
via 𝑑 ∘ (𝜌 ⊕ 𝜎) and if 𝔤1 = 𝔤2 = 𝔤 then𝑉 ⊗𝑊 is a representation of 𝔤 via 𝑑 ∘ Δ, whereΔ(𝑥) = (𝑥, 𝑥) ∈ 𝔤 ⊕ 𝔤. More
explicitly, if (𝑉, 𝜌) and (𝑊, 𝜎) are 𝔤-representations then𝑉 ⊗𝑊 is a 𝔤-representation with

𝑥(𝑣 ⊗ 𝑤) = 𝜌(𝑥) ⊗ 𝑤+ 𝑣 ⊗ 𝜎(𝑤), ∀𝑣 ∈ 𝑉,𝑤 ∈ 𝑊. (2.3.1)

2.3.1 Tensoringwith one-dimensional representations

If (𝑉, 𝜌) is any 𝔤-representation, then by Example I.9, we have an isomorphism of vector spaces𝑉 ⊗ k𝜆 → 𝑉 given
by themap 𝑣 ⊗𝜆 ↦ 𝜆.𝑣. Via thismap, one can think of the 𝔤-representation𝑉 ⊗ k𝜆 as the same vector space𝑉 but
now equipped with a new action 𝜌𝜆 of 𝔤, where 𝜌𝜆(𝑥) = 𝜌(𝑥) + 𝜆(𝑥).𝐼𝑉 (where we write 𝐼𝑉 for the identity map.)
Note that, in particular, if 𝜆, 𝜇 ∈ 𝐷(𝔤)0 then this shows that k𝜆 ⊗ k𝜇 ≅ k𝜆+𝜇.

2.3.2 Homomorphisms, 𝔤-homomorphism, and tensor products

The properties asserted of the maps described in this section are proved in detail in Appendix I.2.

Examining the formula (2.3.1) for the action on a tensor product of representations given abovewe see that, just
as for group representations, if𝑉 and𝑊 are 𝔤-representations, then the isomorphism 𝜎∶ 𝑉 ⊗𝑊 → 𝑊 ⊗𝑉 given
by 𝜎(𝑣 ⊗ 𝑤) = 𝑤 ⊗ 𝑣, (𝑣 ∈ 𝑉,𝑤 ∈ 𝑊) is compatible with the action of 𝔤 and hence induces an isomorphism of
𝔤-representations. In the case𝑉 = 𝑊, 𝜎 becomes an involution on𝑉 ⊗𝑉 commuting with the 𝔤-action. In other
words, 𝑆2, the symmetric group on two letters acts on 𝑉 ⊗𝑉 and the isotypic decomposition of 𝑉 ⊗𝑉 under this
action, (equivalently the (+1)- and (−1)-eigenspaces of 𝜎) shows that𝑉 ⊗𝑉 is the direct sum of the subrepresenta-
tions of symmetric tensors and skew-symmetric tensors, that is𝑉 ⊗𝑉 = Sym2(𝑉) ⊕ Alt2(𝑉)where

Sym2(𝑉) = spank 􏿼
1
2(𝑣1 ⊗ 𝑣2 + 𝑣2 ⊗ 𝑣1) ∶ 𝑣1, 𝑣2 ∈ 𝑉􏿿 ,

Alt2(𝑉) = spank 􏿼
1
2(𝑣1 ⊗ 𝑣2 − 𝑣2 ⊗ 𝑣1) ∶ 𝑣1, 𝑣2 ∈ 𝑉􏿿 .

Let𝑉 and𝑊 be k-vector spaces. There is a natural linear map𝜃∶ 𝑉∗ ⊗𝑊 → Hom(𝑉,𝑊), given by𝜃(𝑓 ⊗𝑤) =
𝑓.𝑤 where (𝑓.𝑤)(𝑣) = 𝑓(𝑣).𝑤 for all 𝑣 ∈ 𝑉, 𝑓 ∈ 𝑉∗ and 𝑤 ∈ 𝑊. This map is injective, and its image is precisely
the space of finite-rank linear maps3 from𝑉 to𝑊. In particular, if dim(𝑉) < ∞ then we have End(𝑉) ≅ 𝑉∗ ⊗ 𝑉.
Similarly, there is a natural map𝑚∶ 𝑉∗ ⊗𝑊∗ → (𝑉 ⊗𝑊)∗, where

𝑚(𝑓 ⊗ 𝑔)(𝑣 ⊗ 𝑤) = 𝑓(𝑣).𝑔(𝑤), ∀𝑣 ∈ 𝑉,𝑤 ∈ 𝑊, 𝑓 ∈ 𝑉∗, 𝑔 ∈ 𝑊∗.

The map𝑚 is also injective and hence, by considering dimensions, it is an isomorphism when𝑉 and𝑊 are finite-
dimensional. This tensor product description of End(𝑉) = Hom(𝑉, 𝑉) gives a natural description of the tracemap:
Notice that we have a natural bilinear map 𝑉∗ × 𝑉 → k given by (𝑓, 𝑣) ↦ 𝑓(𝑣). By the universal property of the
tensor product, this induces a linear map 𝜄 ∶ 𝑉∗ ⊗ 𝑉 → k. Under the identification with Hom(𝑉,𝑉) this map is
identified with the trace of a linear map.

Remark 2.3.2. It is worth noticing that this gives a coordinate-free way of defining the trace, and also some expla-
nation for why one needs some finiteness condition in order for the trace to be defined.

Remark 2.3.3. If 𝔤 is a Lie algebra and𝑉 and𝑊 are 𝔤-representations, then it is also easy to check from the defi-
nitions that the natural map 𝜃∶ 𝑉∗ ⊗𝑊 → Hom(𝑉,𝑊) defined in Lemma I.13 is also a map of 𝔤-representations,
as is the contraction map 𝜄 ∶ 𝑉∗ ⊗𝑉 → k, where we view k as the trivial representation of 𝔤. For example, for 𝜄we
have:

𝜄(𝑥(𝑓 ⊗ 𝑣)) = 𝜄􏿴𝑥(𝑓) ⊗ 𝑣 + 𝑓 ⊗ 𝑥(𝑣)􏿷 = −𝑓(𝑥(𝑣)) + 𝑓(𝑥(𝑣)) = 0, ∀𝑥 ∈ 𝔤, 𝑣 ∈ 𝑉, 𝑓 ∈ 𝑉∗.
Thus all themaps between tensor products of vector spaces discuss in Appendix I.2 yieldmaps of 𝔤-representations.

The following example will be very useful in a number of places later in the course.
3That is, the linear maps from𝑉 to𝑊 which have finite-dimensional image.
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Example 2.3.4. If 𝔤 is a Lie algebra and (𝑉, 𝜌) is a 𝔤-representation, then 𝜌 induces a natural bilinear map 𝑎𝜌 ∶ 𝔤 ×
𝑉 → 𝑉, namely (𝑥, 𝑣) ↦ 𝜌(𝑥)(𝑣). By the universal property of tensor products this yields a linearmap ̃𝑎𝜌 ∶ 𝔤 ⊗𝑉 →
𝑉. We claim thismap is a homomorphismof 𝔤 representations (where 𝔤 is viewed as the adjoint representation). To
see this, first notice that the bilinear map 𝑎𝜌 ∶ 𝔤 × 𝑉 → 𝑉 is equal to 𝑎𝑉 ∘ (𝜌 × 1𝑉)where 𝑎𝑉 ∶ 𝔤𝔩𝑉 ×𝑉 → 𝑉 is the
natural action of 𝔤𝔩𝑉 on𝑉, (𝜙, 𝑣) ↦ 𝜙(𝑣). Thus it suffices to check the claim for 𝔤𝔩𝑉 and its vector representation𝑉.
Let ̃𝑎𝑉 ∶ 𝔤𝔩𝑉 ⊗𝑉 → 𝑉 be the linearmap inducedby𝑎𝑉 . Then if𝑥, 𝑦 ∈ 𝔤𝔩𝑉 and𝑣 ∈ 𝑉wehave𝑥( ̃𝑎𝑉(𝑦⊗𝑣)) = 𝑥(𝑦(𝑣)),
while

̃𝑎𝑉(𝑥(𝑦 ⊗ 𝑣)) = [𝑥, 𝑦] ⊗ 𝑣 + 𝑦 ⊗ 𝑥(𝑣) = (𝑥𝑦 − 𝑦𝑥)(𝑣) + 𝑦𝑥(𝑣) = 𝑥𝑦(𝑣) = 𝑥( ̃𝑎𝑉(𝑦 ⊗ 𝑣)) (2.3.2)

hence as 𝑦was arbitrary we have ̃𝑎𝑉 ∘ 𝑥 = 𝑥 ∘ ̃𝑎𝑉 for all 𝑥 ∈ 𝔤𝔩𝑉 so that ̃𝑎𝑉 ∈ Hom𝔤𝔩𝑉 (𝔤𝔩𝑉 ⊗𝑉,𝑉) as required.

Remark2.3.5. In fact one canalsodeduce that ̃𝑎𝜌 is a homomorphismof𝔤-representationsbyobserving that under
the identification 𝔤𝔩𝑉 ≅ 𝑉∗ ⊗𝑉 themap ̃𝑎𝜌 corresponds to the linear map 𝜄13 ∶ 𝑉∗ ⊗𝑉 ⊗𝑉 → 𝑉, that is, the linear
mapwhich is the identity on the 2nd tensor factor and is the contractionmap 𝜄 on the first and third factors:4 so that
𝜄(𝑓1 ⊗ 𝑣2 ⊗ 𝑣3) = 𝑓1(𝑣3).𝑣2 where 𝑣2, 𝑣3 ∈ 𝑉, 𝑓1 ∈ 𝑉∗. Since 𝜄 is a homomorphism of 𝔤-representations, it follows
̃𝑎𝜌 is also.

4Here, as usual, we are also identifying k ⊗ 𝑉 with 𝑉 equipped with the scalar multiplication map, 𝑠 ∶ k × 𝑉 → 𝑉, that is 𝑠(𝜆, 𝑣) = 𝜆.𝑣.
(Recall that a tensor product𝑉 ⊗𝑊 is a vector space and a bilinear map𝑉 ×𝑊 → 𝑉 ⊗𝑊.)
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Chapter 3

Classifying Lie algebras

The goal of this course is to study the structure of Lie algebras, and attempt to classify them. The most ambitious
“classification” resultwouldbe to give adescriptionof all finite-dimensional Lie algebrasup to isomorphism. In very
low dimensions this is actually possible: For dimension 1 clearly there is a unique (up to isomorphism) Lie algebra
since the alternating condition demands that the bracket is zero. In dimension two, one can again have an abelian
Lie algebra, but there is another possibility: if 𝔤 has a basis {𝑒, 𝑓} then we may set [𝑒, 𝑓] = 𝑓, and this completely
determines the Lie algebra structure. All two-dimensional Lie algebras which are not abelian are isomorphic to this
one (check this). It is also possible to classify three-dimensional Lie algebras, but it becomes rapidly intractable to
do this in general as the dimension increases.

This reveals an essential tension in seeking any kind of classification result for mathematical objects: a classifi-
cation result should describe all such objects (or at least those in a natural, and likely reasonably “large” class) up
to some notion of equivalence. Clearly, using a stricter notion of equivalence will mean any classification theorem
you can prove will provide finer information about the objects you are studying, but this must be balanced against
the intrinsic complexity of the objects whichmaymake such a classification (even for quite small classes) extremely
complicated. Hence it is likely reasonable to accept a somewhat crude notion of equivalence in order to be have any
chance of obtaining a classification theoremwhich has a relatively simple statement.

3.1 Classification by composition factors

Our approachwill follow the strategy oftenused infinite groups: In that context, the famous Jordan-Hölder theorem
shows that any finite group can be given by gluing together finite simple groups, in the sense that we may find an
decreasing chain of subgroups

𝐺 = 𝐺0 ▷𝐺1 ▷…𝐺𝑛−1 ▷𝐺𝑛 = {𝑒},
where, for each 𝑖, (1 ≤ 𝑖 ≤ 𝑛), the subgroup𝐺𝑖 is a normal in𝐺𝑖−1 and𝑆𝑖 = 𝐺𝑖−1/𝐺𝑖 is simple. That such afiltration of
𝐺 exists is easy to prove by induction. The non-trivial part of the theorem is that, for any fixed finite simple group𝐻,
the number of𝑆𝑖which are isomorphic to𝐻 is independent of the choice filtration. This is usually phrased as saying
that the multiplicity with which a composition factor 𝑆𝑖 occurs in the sequence {𝐺𝑖−1/𝐺𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛} is well-defined.

One can thus give a somewhat crude classification of finite groups, where one considers two finite groups to
be equivalent if they have the same composition factors, by giving a classification of finite simple groups. But even
the question of classifying finite simple groups is not at all obviously tractable, and answering it was one of the
spectacular mathematical achievements of the second half of the twentieth century.

For Lie algebras, we can attempt something similar. In fact, it turns out that, at least in characteristic zero, we
obtain a farmore complete answer about the structure of an arbitrary finite-dimensional Lie algebra than one could
hope to obtain in a Part C course on finite group theory. One aspect of this finer information will reveal a sharp
distinction between 𝔤𝔩1 and the non-abelian Lie algebras which have no proper ideals, which is one reason for the
following definition:

Definition 3.1.1. A non-zero Lie algebra 𝔤 is said to be almost simple1 if it has no proper ideals. If 𝔤 is almost simple
and dim(𝔤) > 1 thenwe say that 𝔤 is simple. Equivalently, an almost simple Lie algebra is simple if it is non-abelian.
Thus the only almost simple Lie algebra which is not simple is 𝔤𝔩1.

1This is not standard terminology, but it is convenient to use here.
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The Jordan-Hölder theorem for Lie algebras shows that the almost simple Lie algebras that occur as composition
factors of a composition series are in fact independent of the choice of composition series. As we will see later, Car-
tan’s criteria will give stronger results (though only inwhenworking over fields of characteristic zero), so this result
is only included for completeness. (Only the statements are examinable.)

Definition 3.1.2. A composition series for a finite dimensional Lie algbera 𝔤 is a chain

𝒞 = (𝔤 = 𝔤0 ▷ 𝔤1 ▷…▷ 𝔤𝑟 = 0)

of subalgebras such that, for 1 ≤ 𝑖 ≤ 𝑟, the subalgebra 𝔤𝑖 is an ideal in 𝔤𝑖−1 and the quotient 𝔤𝑖/𝔤𝑖−1 is almost simple.
The quotients 𝔤𝑖/𝔤𝑖−1 are called the composition factors of the composition series. (Note that the 𝔤𝑖 are not necessarily
ideals in 𝔤.)

It is straight-forward to check by induction on dim(𝔤) that any finite-dimensional Lie algebra has a composition
series: given a Lie algebra 𝔤, pick a proper ideal 𝔞 whose dimension is maximal among proper ideals. Then by the
maximality of 𝔞 the quotient 𝔤/𝔞 has no non-trivial proper ideals and hence is almost simple. But dim(𝔞) < dim(𝔤),
hence by induction 𝔞 has a composition series, say (𝔞𝑖)𝑑𝑖=1, where 𝔞 = 𝔞1 > 𝔞1 > … > 𝔞𝑑 = 0. But then if we set
𝔤 = 𝔤0 and 𝔤𝑖 = 𝔞𝑖 for 𝑖 ≥ 1, it follows easily that (𝔤𝑖) is a composition series for 𝔤.

Definition3.1.3. If 𝔰 is analmost simple Lie algebra and𝒞 = (𝔤𝑖)𝑟𝑖=0 is a composition series for afinite-dimensional
Lie algebra 𝔤, define the multiplicity of 𝔰 in𝒞 to be

[𝔰, 𝒞 ] = #􏿺𝑖 ∈ {1, … 𝑟} ∶ 𝔰 ≅ 𝔤𝑖−1/𝔤𝑖􏿽

The following Lemma shows that a composition series for a Lie algebra 𝔤 induces one on any ideal or quotient of
𝔤.

Proposition 3.1.4. Suppose that 𝔤 has a composition series𝒞 = (𝔤 = 𝔤0 ▷ 𝔤1 ▷…▷ 𝔤𝑛 = 0) and let 𝔞 be an ideal of 𝔤.
Then𝒞 induces a composition series𝒞𝔞 for 𝔞, and a composition series𝒞𝔤/𝑎𝑔 for the quotient 𝔤/𝔞. Moreover, for any almost
simple Lie algebra 𝔰we have [𝔰 ∶ 𝒞 ] = [𝔰 ∶ 𝒞𝔞] + [𝔰 ∶ 𝒞𝔤/𝔞].

Proof. Consider the sequence (𝔞𝑖)𝑛𝑖=0 where 𝔞𝑖 = 𝔞 ∩ 𝔤𝑖. Note that its terms, while nested, need not be strictly de-
creasing. Since𝔞 is an ideal in𝔤, the intersection𝔞𝑖 = 𝔞∩𝔤𝑖 is an ideal in𝔤𝑖 and, by the second isomorphism theorem,
its image under the quotient map 𝑝𝑖+1 ∶ 𝔤𝑖 → 𝔤𝑖/𝔤𝑖+1 is

𝔞𝑖/𝔞𝑖+1 ≅ (𝔞𝑖 + 𝔤𝑖+1)/𝔤𝑖+1 = 𝑝𝑖+1(𝔞𝑖) (3.1.1)

Similarly, we may consider the sequence (𝑞(𝔤𝑖))𝑛𝑖=0, where 𝑞 ∶ 𝔤 → 𝔤/𝔞 is the quotient map, then 𝑞(𝔤𝑖+1) is an ideal
in 𝑞(𝔤𝑖), and by the second isomorphism theorem 𝑞(𝔤𝑖) ≅ 𝔤𝑖/𝔤𝑖 ∩ 𝔞 = 𝔤𝑖/𝔞𝑖. Under this identification, 𝑞(𝔤𝑖+1) is
isomorphic to (𝔤𝑖+1 + 𝔞𝑖)/𝔞𝑖, and hence

𝑞(𝔤𝑖)/𝑞(𝔤𝑖+1) ≅ (𝔤𝑖/𝔞𝑖)⁄(𝔤𝑖+1 + 𝔞𝑖)/𝔞𝑖 ≅ 𝔤𝑖/(𝔤𝑖+1 + 𝔞𝑖). (3.1.2)

Thus since 𝔤𝑖/𝔤𝑖+1 is almost simple, and 𝔤𝑖+1 ⊆ 𝔤𝑖+1 + 𝔞𝑖 ⊆ 𝔤𝑖, we must either have 𝔤𝑖+1 + 𝔞𝑖 = 𝔤𝑖, in which case
Equations (3.1.1) and (3.1.2) show that 𝑞(𝔤𝑖) = 𝑞(𝔤𝑖+1) and 𝔞𝑖/𝔞𝑖+1 ≅ 𝔤𝑖/𝔤𝑖+1, or 𝔤𝑖+1 + 𝔞𝑖 = 𝔤𝑖+1, in which case
𝔞𝑖 = 𝔞𝑖+1 and 𝑞(𝔤𝑖)/𝑞(𝔤𝑖+1) ≅ 𝔤𝑖/𝔤𝑖+1.

Thus removing repetitions from the sequences (𝔞𝑖) and (𝑞(𝔤𝑖)) yields composition series 𝒞𝔞 and 𝒞𝔤/𝔞 for 𝔞 and
𝔤/𝔞 respectively, and the composition factors of𝒞 correspond to a composition factor of precisely one of𝒞𝔞 or𝒞𝔤/𝔞.

The previous proposition gives one natural way to prove the Jordan-Hölder theorem:

Corollary 3.1.5. (Jordan-Hölder theorem for Lie algberas): Let 𝔤 be any (finite-dimensional) Lie algebra 𝔤 and let𝒞 be a
composition series for 𝔤. If 𝔰 is an almost simple Lie algebra, then the multiplicity with which 𝔰 occurs as a composition factor
of𝒞 is independent of𝒞 and hence equals [𝔰 ∶ 𝑉.

Proof. We use induction on the minimal length 𝑛(𝔤) of a composition series for 𝔤. If 𝑛(𝔤) = 1 then𝑉 is irreducible
and (𝔤 > 0) is its unique composition series. If 𝑛 = 𝑛(𝔤) > 1 then take a composition seriesℳ = (𝔪𝑖)𝑛𝑖=0 of 𝔤with
length 𝑛 and set 𝔥 = 𝔪1. Since (𝔪𝑖+1)𝑛−1𝑖=0 is a composition series for 𝔥, we have 𝑛(𝔥) ≤ 𝑛 − 1. Now if𝒞 = (𝔤𝑖)𝑑𝑖=0 is
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any composition series for 𝔤, by Proposition II.10, it induces composition series𝒞𝔥 and𝒞𝔤/𝔥 of 𝔥 and 𝔤/𝔥 respectively.
Thus if 𝔰 is almost simple, by the final sentence of Proposition 3.1.4 we have

[𝔰 ∶ 𝒞 ] = [𝔰 ∶ 𝒞𝔥] + [𝑆 ∶ 𝒞𝔤/𝔥] = [𝔰 ∶ 𝔥] + [𝔰 ∶ 𝔤/𝔥]

where the second equality follows by induction since 𝑛(𝔤/𝔥) = 1 and 𝑛(𝔥) ≤ 𝑛 − 1. Thus [𝔰 ∶ 𝒞 ] = [𝔰 ∶ 𝔤] is
independent of𝒞 .

As noted above, it will turn out that in characteristic zero, the simple Lie algebras will all occur at “the top”
of the composition series of a finite-dimensional Lie algebra, as a direct sum. The almost simple Lie algebra 𝔤𝔩1,
however, can be glued to itself in non-trivial ways. Thus our study of the structure of Lie algebras therefore begins
by examining Lie algebras which have only one isomorphism class of composition factor, namely 𝔤𝔩1. Before we do
that, however, it seems useful to introduce the formalism of exact sequences:

3.2 Exact sequences of Lie algebras

Definition 3.2.1. We say that the sequence of Lie algebras and Lie algebra homomorphisms

𝔤1
𝑖 // 𝔤

𝑞 // 𝔤2
is exact at 𝔤 if im(𝑖) = ker(𝑞). A sequence of maps

0 // 𝔤1
𝑖 // 𝔤

𝑞 // 𝔤2 // 0
is called a short exact sequence if it is exact at each of 𝔤1, 𝔤 and 𝔤2, so that 𝑖 is injective, 𝑞 is surjective and im(𝑖) = ker(𝑞).
In this case, we say that 𝔤 is an extension of 𝔤2 by 𝔤1. The existence of a composition series for a finite-dimensional Lie
algebra shows that any such Lie algebra is constructed through successive extensions by almost simple Lie algebras.

Two kinds of extensions of Lie algebras will arise naturally in this course:

3.2.1 Split extensions

Definition 3.2.2. An extension of Lie algebras

0 // 𝔤1
𝑖 // 𝔤

𝑞 // 𝔤2 // 0
is said to be split if there is a homomorphism of Lie algebras 𝑠 ∶ 𝔤2 → 𝔤 such that 𝑞 ∘ 𝑠 = id𝔤2 .

Notice that in this case the image 𝑠(𝔤2) of the splitting map 𝑠 is a subalgebra of 𝔤which is isomorphic to 𝔤2 and
is complementary to 𝑖(𝔤1), in the sense that 𝔤 = 𝑖(𝔤1) ⊕ 𝑠(𝔤2) as vector spaces. Indeed the homomorphism 𝑠 is
determined by 𝑠(𝔤2) its image, because it is the inverse of 𝑞|𝑠(𝔤), the restriction of 𝑞 to that image. Moreover, since
𝑖(𝔤1) is an ideal of 𝔤, the adjoint action of 𝔤 preserves 𝑖(𝔤1), and so it restricts to give an action of 𝑠(𝔤2) on 𝑖(𝔤1). This
completely describes the Lie bracket on 𝔤: For any 𝑥, 𝑦 ∈ 𝔤, there are unique 𝑥1, 𝑦1 ∈ 𝔤1 and 𝑥2, 𝑦2 ∈ 𝔤2 such that
𝑥 = 𝑖(𝑥1) + 𝑠(𝑥2), 𝑦 = 𝑖(𝑦1) + 𝑠(𝑦2). Then

[𝑥, 𝑦] = [𝑖(𝑥1) + 𝑠(𝑥2), 𝑖(𝑦1) + 𝑠(𝑦2)]
= 𝑖([𝑥1, 𝑥2]) + ad(𝑠(𝑥2))(𝑖(𝑦1)) − ad(𝑠(𝑦2))(𝑖(𝑥1)) + 𝑠([𝑥2, 𝑦2]).

This motivates the following definition:

Definition3.2.3. Suppose that𝔤, 𝔥areLie algebras, andwehave ahomomorphism𝜙∶ 𝔤 → Derk(𝔥), the Lie algebra
of derivations2 on 𝔥. Then it is straight-forward to check that we can form a new Lie algebra 𝔥 ⋊ 𝔤, the semi-direct
product3 of 𝔤 and 𝔥 by𝜙which as a vector space is just 𝔤 ⊕ 𝔥, and where the Lie bracket is given by:

[(𝑥1, 𝑦1), (𝑥2, 𝑦2)] = ([𝑥1, 𝑥2] + 𝜙(𝑦1)(𝑥2) − 𝜙(𝑦2)(𝑥1), [𝑦1, 𝑦2]),

where 𝑥1, 𝑥2 ∈ 𝔥, 𝑦1, 𝑦2 ∈ 𝔤. The Lie algebra 𝔥, viewed as the subspace {(𝑥, 0) ∶ 𝑥 ∈ 𝔥} of 𝔥 ⋊ 𝔤, is clearly an ideal of
𝔥 ⋊ 𝔤. Since it does not intersect 𝔥, the quotient map 𝑞 ∶ 𝔥 ⋊ 𝔤 → (𝔥 ⋊ 𝔤)/𝔥 induces an isomorphism 𝔤 → (𝔥 ⋊ 𝔤)/𝔥,
hence 𝔥 ⋊ 𝔤 is a split extension of 𝔤 by 𝔥. It is not difficult to check that any split extension is of this form.

2Recall that the derivations of a Lie algebra are the linear maps 𝛼∶ 𝔥 → 𝔥 such that 𝛼([𝑥, 𝑦]) = [𝛼(𝑥), 𝑦] + [𝑥, 𝛼(𝑦)].
3This is the Lie algebra analogue of the semidirect product of groups, where you build a group𝐻⋊𝐺 via amap from𝐺 to the automorphisms

(rather than derivations) of𝐻.
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Remark 3.2.4. In general, theremay bemanyways to split an exact sequence of Lie algebras (see Problem Sheet 1).

Example 3.2.5. Let 𝔰2 be the 2-dimensional Lie algebra with basis {𝑥, 𝑦} and Lie bracket given by [𝑥, 𝑦] = 𝑦. Then
k.𝑦 is an ideal in 𝔰2, and 𝔰2/k.𝑦 is 1-dimensional, hence we have a short exact sequence:

0 // 𝔤𝔩1
𝑖 // 𝔰2

𝑞 // 𝔤𝔩1 // 0
where 𝑖(𝜆) = 𝜆.𝑦 and 𝑞(𝑎𝑥 + 𝑏𝑦) = 𝑎, for all 𝑎, 𝑏, 𝜆 ∈ k. Now the map 𝑠(𝜆) = 𝜆.𝑥 is a Lie algebra homomorphism,
hence the extension is split. Note that Derk(𝔞) = 𝔤𝔩𝔞 for an Abelian Lie algebra 𝔞, and so Derk(𝔤𝔩1) = 𝔤𝔩𝔤𝔩1 = 𝔤𝔩1,
and themap from 𝔤𝔩1 to Derk(𝔤𝔩1) describing 𝔰2 as a semi-direct product corresponds to the identitymap under this
identification.

Remark 3.2.6. A short exact sequence of the form

0 // 𝔤1
𝑖 // 𝔤

𝑞 // 𝔤𝔩1 // 0
is automatically split. Indeed if we pick any 𝑥 ∈ 𝔤 with 𝑞(𝑥) = 1 ∈ 𝔤𝔩1(k) then setting 𝑠(𝜆) = 𝜆.𝑥 it is immediate
that 𝑞 ∘ 𝑠 = id. But since a Lie bracket is alternating, it always vanishes on any line, and hence 𝑠 is a Lie algebra
homomorphism. It follows that 𝔤 is a semidirect product 𝔤1 ⋊ 𝔤𝔩1(k).

Remark 3.2.7. There is a close analogywith the notion of a short exact sequence of groups which you have seen in
a previous course: here one has a sequence

1 // 𝐺1
𝑖 // 𝐺

𝑞 // 𝐺2 // 1
where we write 1 for the trivial group (rather than 0 for the trivial Lie algebra). Exactness at𝐺means that im(𝑖) =
ker(𝑞), and similarly at 𝐺1 and 𝐺2, so that 𝑖 is injective and 𝑞 is surjective. In Part A Groups you show that this
sequence is split, that is, there exists a splittingmap 𝑠 ∶ 𝐺2 → 𝐺 such that 𝑞 ∘ 𝑠 = id𝐺2 , if and only if𝐺 ≅ 𝐺1 ⋊𝐺2.

3.2.2 Central extensions

Another type of extension which plays an important role in our study of Lie algebras is a central extension. In this
case, the Lie algebra 𝔤1 in the sequence of Definition 3.2.1 is assumed to be central in 𝔤, that is 𝔤1 ⊆ 𝔷(𝔤), and hence
in particular 𝔤1 is Abelian. Picking a linear splitting 𝑠 ∶ 𝔤2 → 𝔤, we can write any 𝑥, 𝑦 ∈ 𝔤 uniquely in the form
𝑥 = 𝑖(𝑥1) + 𝑠(𝑥2), 𝑦 = 𝑖(𝑥2) + 𝑠(𝑦2), respectively. Thus, as 𝑖(𝔤1) is central, the Lie bracket on 𝔤 is given by

[𝑥, 𝑦] = [𝑖(𝑥1) + 𝑠(𝑥2), 𝑖(𝑥2) + 𝑠(𝑦2)] = [𝑠(𝑥2), 𝑠(𝑦2)] = 𝑖(𝛼(𝑥2, 𝑦2)) + 𝑠([𝑥2, 𝑦2])

where 𝛼(𝑥, 𝑦) = ([𝑥, 𝑦])1, that is, 𝑖(𝛼(𝑥2, 𝑦2)) is the component of [𝑠(𝑥2), 𝑠(𝑦2)] in 𝑖(𝔤1).

Definition 3.2.8. Let 𝔤 be a finite-dimensional Lie algebra and let 𝔷 be a vector space. A 2-cocycle on 𝔤 taking values
in the vector space 𝔷 is a map 𝛼∶ 𝔤 × 𝔤 → 𝔷 satisfying the conditions:

𝑖) 𝛼(𝑥, 𝑥) = 0, ∀𝑥 ∈ 𝔤 (i.e. 𝛼 is alternating)
𝑖𝑖) 𝛼(𝑥, [𝑦, 𝑧]) + 𝛼(𝑦, [𝑧, 𝑥]) + 𝛼(𝑧, [𝑥, 𝑦]) = 0, ∀𝑥, 𝑦, 𝑧 ∈ 𝔤.

Given such a cocycle, one can define a Lie algebra structure on the vector space 𝔷 ⊕ 𝔤 by setting

[(𝑧1, 𝑥1), (𝑧2, 𝑥2)] = (𝛼(𝑥1, 𝑥2), [𝑥1, 𝑥2]).

The resulting Lie algebra is a central extension of 𝔤. Picking a vector-space basis of 𝔷, say {𝑒1, … , 𝑒𝑘}, andwriting𝛼 in
terms of its components with respect to this basis, that is,𝛼(𝑥, 𝑦) = ∑𝑘

𝑗=1 𝛼𝑗(𝑥, 𝑦).𝑒𝑗 one can immediately reduce the
study of general 2-cocycles to the study of k-valued 2-cocycles.

Example 3.2.9. It is straight-forward to understand central extensions of a Lie algebra 𝔤 by 𝔤𝔩1 in low dimensions.
If 𝔤 is 1-dimensional, then the fact that 𝛼 is alternating forces it to vanish, and hence the only central extension of
𝔤𝔩1 by 𝔤𝔩1 is the abelian Lie algebra 𝔤𝔩1

⊕2.

If dim(𝔤) = 2, then if 𝔤 is abelian then condition (𝑖𝑖) is automatically satisfied, and there is a unique non-zero
alternating bilinear form up to isomorphism: if 𝔤 has basis {𝑥, 𝑦}, then 𝛼(𝑥, 𝑦) = 1 = −𝛼(𝑦, 𝑥), defines a central
extension of 𝔤. This is the smallest non-abelian nilpotent Lie algebra, known as the Heisenberg Lie algebra. It can be
realised as the strictly upper triangular matrices 𝔫3 ⊆ 𝔤𝔩3(k).

Remark 3.2.10. Split and central extensions are in a loose sense complementary to each other: An extension of 𝔤2
by 𝔤1 which is both central and split is just the direct sum 𝔤1 ⊕ 𝔤2, where 𝔤1 ≅ 𝔤𝔩1

⊕𝑘 and 𝑘 = dimk(𝔤1).
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Chapter 4

Gluing 𝔤𝔩1: Solvable and nilpotent Lie
algebras

Conventions: From this point onwards in these notes, we will assume that all Lie algebras and all representations are finite-
dimensional over the field k, unless the contrary is explicitly stated, and from §4.3 onwards, k will be algebraically closed of
characteristic zero.

Wenow begin to study particular classes of Lie algebras. The first class we study, solvable Lie algebras, in terms
of the discussion on classification of Lie algebras in the previous section, can be given as the class of Lie algebras
which can be built using only 𝔤𝔩1, the simplest Lie algebra1 which possesses only the structure of the base field k and
the trivial Lie bracket.

4.1 Solvable Lie algebras

Definition 4.1.1. ALie algebra 𝔤 is solvable if its only composition factor is 𝔤𝔩1(k). This is equivalent to the condition
that 𝔤 has a nested sequence of subalgebras

𝔤 = 𝔤0 ⊋ 𝔤1 ⊋ … ⊋ 𝔤𝑑 = {0},

where 𝔤𝑘+1 is an ideal in 𝔤𝑘 and 𝔤𝑘/𝔤𝑘+1 is abelian for each 𝑘 (0 ≤ 𝑘 ≤ 𝑑− 1). Indeed if such a sequence of subalgebras
exists, any refinement of it to a composition series will have 𝔤𝔩1(k) as its only composition factor, and conversely, a
composition series with 𝔤𝔩1(k) as its only composition factor is an example of such a sequence of subalgebras.

If 𝔤 = 𝔤0 ⊃ 𝔤1 ⊃ … ⊃ 𝔤𝑛 = {0} is a composition series for 𝔤with 𝔤𝑘/𝔤𝑘+1 ≅ 𝔤𝔩1 for each 𝑘 ∈ {0, 1, … , 𝑛 − 1}, so
that dim(𝔤) = 𝑛, then we have 𝔤𝑛−1 ≅ 𝔤𝔩1, and, for each 𝑘 ∈ {0, 1, … , 𝑛 − 1}, we have a short exact sequence

0 // 𝔤𝑘+1
𝜄𝑘+1 // 𝔤𝑘

𝑞𝑘 // 𝔤𝔩1 // 0
where 𝜄𝑘+1 is the inclusionmap and 𝑞𝑘 the quotientmap. Thus 𝔤𝑘−1 is an extension of 𝔤𝔩1 by 𝔤𝑘. By Remark 3.2.7, this
short exact sequence must split, and so 𝔤𝑘 is a semidirect product of 𝔤𝑘−1 by 𝔤𝔩1(k), and so solvable Lie algebras are
precisely the Lie algebras one obtains from the zero Lie algebra by taking iterated semidirect products with 𝔤𝔩1(k).

Example 4.1.2. Example 3.2.5 shows that 𝔰2, the 2-dimensional non-abelian Lie algebra, is solvable.

Definition 4.1.3. We can rephrase the condition that a Lie algebra 𝔤 is solvable in terms of a decreasing sequence
of ideals in 𝔤: The derived subalgebra2 𝐷(𝔤) of 𝔤 is defined to be [𝔤, 𝔤] (an ideal in 𝔤 since 𝔤 is). Inductively we define
𝐷𝑘(𝔤) = 𝐷(𝐷𝑘−1(𝔤)) = [𝐷𝑘−1(𝔤), 𝐷𝑘−1(𝔤)] for each 𝑘 ≥ 1. The sequence of ideals (𝐷𝑘(𝔤))𝑘≥0 is called the derived
series of 𝔤. Note that, since 𝔤 is an ideal in 𝔤, it follows by induction on 𝑘 that𝐷𝑘(𝔤) = [𝐷𝑘−1(𝔤), 𝐷𝑘−1(𝔤)] is an ideal
in 𝔤.

Lemma 4.1.4. Let 𝔤 be a Lie algebra. Then𝐷(𝔤) is the smallest ideal in 𝔤 such that 𝔤/𝐷(𝔤)is abelian. In particular, 𝔤 is
solvable precisely when the derived series (𝐷𝑘(𝔤))𝑘≥1 satisfies𝐷𝑘(𝔤) = 0 for sufficiently large 𝑘.

1Hence starting with nothing...
2Oddly, it is not known as the derived ideal, even though it is indeed an ideal.
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Proof. For the first claim, suppose that 𝐼 is an ideal for which 𝔤/𝐼 is abelian. Then, for all 𝑥, 𝑦 ∈ 𝔤, we must have
[𝑥, 𝑦] ∈ 𝐼, and hence𝐷(𝔤) ⊆ 𝐼. Since this also shows 𝔤/𝐷(𝔤) is abelian, the claim follows.

Next note that we have a short exact sequence
0 // 𝐷(𝔤) // 𝔤 // 𝔤/𝐷𝔤 // 0

that is, 𝔤 is an extension of the abelian Lie algebra 𝔤/𝐷(𝔤)by𝐷(𝔤). It follows that if𝐷𝑘(𝔤) = {0} for some 𝑘, then 𝔤has
a filtration by ideals for which the subquotients are abelian, so it is certainly solvable. Conversely, if 𝔤 is solvable, so
that we have a nested sequence of subalgebras 𝔤 = 𝔤0 ⊃ 𝔤1 ⊃ … ⊃ 𝔤𝑛 = {0}, where 𝔤𝑖+1 is an ideal in 𝔤𝑖 and 𝔤𝑖/𝔤𝑖+1
is abelian. But then𝐷(𝔤𝑖) = [𝔤𝑖, 𝔤𝑖] ⊆ 𝔤𝑖+1, and so since 𝔤 = 𝔤0, by induction it follows that𝐷𝑘(𝔤) ⊆ 𝔤𝑘, and hence
for 𝑘 ≥ 𝑛we have𝐷𝑘(𝔤) = 0.

Remark 4.1.5. Because the terms of the derived series are ideals in 𝔤, it follows that if 𝔤 is solvable, then there is a
filtration of 𝔤whose terms are ideals in 𝔤 not just subalgebras each of which is an ideal in the previous term of the
filtration. In particular, if 𝔤 is solvable, it follows 𝔤has annon-trivial abelian ideal, since the last non-zero termof the
derived series must be such an ideal. This also shows that solvable Lie algebras can be viewed as those Lie algebras
which can be obtained from the trivial Lie algebra by successive extensions by abelian Lie algebras.

Remark 4.1.6. If 𝔤 is an arbitrary finite dimensional Lie algebra, then the derived series (𝐷𝑘(𝔤))𝑘≥0 is a decreasing
sequence of ideals in 𝔤, hence it must stabilize, i.e. there is a unique integer 𝑁 such that 𝐷𝑁(𝔤) = 𝐷𝑚(𝔤) for all
𝑚 ≥ 𝑁, while 𝐷𝑁−1(𝔤) ⊋ 𝐷𝑁(𝔤). We will denote this final term of the derived series by 𝐷∞(𝔤). It is a perfect Lie
algebra, that is,𝐷∞(𝔤) = 𝐷(𝐷∞(𝔤)).

Recall the notion of a flagℱ = (𝑉 = 𝐹0 > …𝐹𝑑 = {0}) fromDefinition 2.2.3

Lemma 4.1.7. Let𝑉 be a finite dimensional vector space and letℱ = (𝑉 = 𝐹0 ⊃ 𝐹1 ⊃ … ⊃ 𝐹𝑑 = {0}) be a flag in𝑉,
and set 𝐹𝑛 = {0} if 𝑛 ≥ 𝑑. Let, for any 𝑟 ∈ Z≥0,

𝔟𝑟ℱ = {𝑥 ∈ 𝔤𝔩𝑉 ∶ 𝑥(𝐹𝑖) ⊆ 𝐹𝑖+𝑟, ∀ 𝑖, 0 ≤ 𝑖 ≤ 𝑑}.

(i) If 𝑘, 𝑙 ≥ 0, then [𝔟𝑘ℱ , 𝔟𝑙ℱ ] ⊆ 𝔟𝑘+𝑙ℱ .

(ii) Ifℱ is a complete flag, and 𝔟ℱ = 𝔟0ℱ , then𝐷(𝔟ℱ ) ⊆ 𝔟1ℱ and moreover 𝔟ℱ is solvable.

Proof. First note that 𝔟𝑟ℱ ⊆ 𝔟𝑠ℱ if 𝑟 ≥ 𝑠, and that if 𝑥 ∈ 𝔟𝑘ℱ , 𝑦 ∈ 𝔟𝑙ℱ , then clearly 𝑥 ∘ 𝑦 and 𝑦 ∘ 𝑥 lie in 𝔟𝑘+𝑙ℱ . It
follows that the 𝔟𝑟ℱ form a descending sequence of associative subalgebras of Endk(𝑉), where the 𝔟𝑟ℱ for 𝑟 > 0 are
two-sided ideals in 𝔟ℱ = 𝔟0ℱ , since 𝔟𝑟ℱ .𝔟𝑠ℱ ⊆ 𝔟𝑟+𝑠ℱ . But this immediately implies (i), that is, [𝔟𝑟ℱ , 𝔟𝑠ℱ ] ⊆ 𝔟𝑟+𝑠ℱ .

Ifℱ is a complete flag, and 𝑥, 𝑦 ∈ 𝔟ℱ , then for any 𝑖, (1 ≤ 𝑖 ≤ 𝑑), 𝑥 and 𝑦 induce linear maps on 𝐹𝑖/𝐹𝑖+1, and,
sinceℱ is complete, dim(𝐹𝑖/𝐹𝑖+1) = 1, so that 𝔤𝔩𝐹𝑖/𝐹𝑖+1 is abelian, and thus the map induced by [𝑥, 𝑦] on 𝐹𝑖/𝐹𝑖+1 is
zero. But this exactly says that [𝑥, 𝑦] ∈ 𝔟1ℱ , and hence𝐷(𝔟ℱ ) ⊆ 𝔟1ℱ . But then𝐷𝑘(𝔟ℱ ) ⊆ 𝐷𝑘−1(𝔟1ℱ ), and using (i)
and induction𝐷𝑘−1(𝔟1ℱ ) ⊆ 𝔟2

𝑘−1
ℱ , which is {0} if 2𝑘−1 ≥ 𝑑 = dim(𝑉), and hence 𝔟ℱ is solvable.

We will see shortly that, in characteristic zero, any solvable linear Lie algebra 𝔤 ⊂ 𝔤𝔩𝑉 , where 𝑉 is finite di-
mensional, is a subalgebra of 𝔟ℱ for some complete flag ℱ . We next note some basic properties of solvable Lie
algebras. We establish them using the characterization of solvability in terms of the derived series, but it is also
straight-forward to show them using composition series.3

Lemma 4.1.8. Let 𝔤 be a Lie algebra,𝜙∶ 𝔤 → 𝔥 a homomorphism of Lie algebras.

(i) We have 𝜙(𝐷𝑘𝔤) = 𝐷𝑘(𝜙(𝔤)). In particular 𝜙(𝔤) is solvable if 𝔤 is, thus any quotient of a solvable Lie algebra is
solvable.

(ii) If 𝔤 is solvable then so are all subalgebras of 𝔤.
3If one uses composition series to prove this Lemma, note that if 𝒞 = (𝔤𝑘)𝑑𝑘=0 is a composition series with all composition factors 𝔤𝑘/𝔤𝑘+1

isomorphic to 𝔤𝔩1. Now if 𝔞 ⊆ 𝔤 is a subalgebra, then 𝔞 ∩ 𝔤𝑘 ⊇ 𝔞 ∩ 𝔤𝑘+1 and for dimension reasons, this containment is either an equality, or the
quotient is isomorphic to 𝔤𝔩1, so that 𝔞 is solvable. Note that if 𝔤 is an arbitrary Lie algebra and 𝔥 is a subalgebra, the composition factors of 𝔥 do
not have to be composition factors of 𝔤.
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(iii) If im(𝜙) and ker(𝜙) are solvable then so is 𝔤. Thus if 𝐼 is an ideal and 𝐼 and 𝔤/𝐼 are solvable, so is 𝔤.

Proof. It is immediate from the definitions that 𝜙(𝐷(𝔤)) = 𝐷(𝜙(𝔤)), and hence by induction we have 𝜙(𝐷𝑘(𝔤)) =
𝐷𝑘(𝜙(𝔤)), from which (i) follows immediately. If 𝔥 ⊆ 𝔤 is a subalgebra, then clearly 𝐷(𝔥) ⊆ 𝐷(𝔤), and again by
induction we see that𝐷𝑘(𝔥) ⊆ 𝐷𝑘(𝔤), which certainly implies that if 𝔤 is solvable, then 𝔥 is solvable.

Finally, for (iii), the second sentence follows from the first applied to the quotient map 𝑞 ∶ 𝔤 → 𝔤/𝐼. To establish
the first sentence, note that if im(𝜙) is solvable, then for some𝑁wehave𝐷𝑁 im(𝜙) = {0}, so that by part (i) we have
𝐷𝑁(𝔤) ⊂ ker(𝜙), hence applying (ii) we see that 𝐷𝑁(𝔤) is solvable since ker(𝜙) is. But since the derived series of
𝐷𝑁(𝔤) is a tail of that of 𝔤, it follows 𝔤 is solvable.

4.2 Nilpotent Lie algebras

In this section we continue our study of Lie algebras which are built from 𝔤𝔩1, but now by using central extensions
rather than arbitrary extensions.

Definition 4.2.1. A Lie algebra 𝔤 is said to be nilpotent if it can be obtained from 0, the trivial Lie algebra, by iterated
central extensions. If 𝔤 can be obtained by precisely 𝑘 iterated extentions, we say 𝔤 is 𝑘-step nilpotent. Thus, for
example, a Lie algebra is 1-step nilpotent if and only if it is abelian.

Tomake this more concrete, suppose that 𝔤 is a nilpotent Lie algebra. Then, for some 𝑘 ≥ 0 there are Abelian Lie
algebras (𝔠𝑖)𝑘𝑖=0 and, for each 𝑖 ≥ 1 a short exact sequence

0 // 𝔠𝑖
𝑝𝑖 // 𝔤𝑖

𝑞𝑖 // 𝔤𝑖−1 // 0
where 𝔤0 = 𝔠0 and 𝔠𝑖 ⊆ 𝔷(𝔤𝑖), that is, 𝔤𝑖 is a central extension of 𝔤𝑖−1 by 𝔠𝑖. and 𝔤 = 𝔤𝑘. It follows that 𝑞𝑘 ∶ 𝔤 = 𝔤𝑘 →
𝔤𝑘−1, and if we set𝑄𝑖 = 𝑞𝑖+1 ∘ 𝑞𝑖+1 ∘ … ∘ 𝑞𝑘, then𝑄𝑖 ∶ 𝔤 → 𝔤𝑖 exhibits 𝔤𝑖 as a quotient of 𝔤. Set 𝔮𝑖 = ker(𝑄𝑖), so that
if we set 𝔮0 = 𝔤, then (𝔮𝑖)𝑘𝑖=0 gives a descending sequence of ideals in 𝔤, and 𝔮𝑖/𝔮𝑖−1 ≅ 𝔠𝑖 is central in 𝔤/𝔮𝑖−1. The
sequence of central extensions constructing 𝔤 can thus be reconstructed from the sequence of ideals (𝔮𝑖)𝑘𝑖=0.

Definition 4.2.2. For 𝔤 a Lie algebra, let𝐶0(𝔤) = 𝔤, and𝐶𝑖(𝔤) = [𝔤, 𝐶𝑖−1(𝔤)] for 𝑖 ≥ 1. This sequence of ideals of 𝔤
is called the lower central series of 𝔤.

Remark 4.2.3. Notice that𝐶1(𝔤) = [𝔤, 𝔤] is the derived subalgebra4 of 𝔤 and, as we have seen, this is also denoted5
𝐷(𝔤) and sometimes 𝔤′.

Proposition 4.2.4. Suppose that 𝔤 is nilpotent and (𝔮𝑖)𝑘𝑖=0 the sequence of ideals associated to a realization of 𝔤 as an
iterated sequence of central extensions. Then

(i) For each 𝑖 ≥ 0we have𝐶𝑖(𝔤) ⊆ 𝔮𝑖 and hence𝐶𝑘(𝔤) = 0.

(ii) Conversely, if 𝔤 is such that, for some𝑁 ≥ 0we have𝐶𝑁(𝔤) = 0, then 𝔤 is at most𝑁-step nilpotent.

Proof. Suppose 𝔤 is any Lie algebra, and 𝔟 ⊆ 𝔞 are ideals in 𝔤. If 𝔞/𝔟 is central in 𝔤/𝔟, then for any 𝑥 ∈ 𝔤 and 𝑦 ∈ 𝔞
wemust have [𝑥, 𝑦] ∈ 𝔟 and hence [𝔤, 𝔞] ⊆ 𝔟. Since 𝔞/[𝔤, 𝔞] is certainly central in 𝔤/[𝔤, 𝔞] it follows that [𝔤, 𝔞] is the
smallest ideal of 𝔤 contained in 𝔞 for which 𝔞 becomes central in the quotient algebra.

Applying this observation to 𝐶𝑖(𝔤) inductively yields (i). For (ii), the converse, observe that the previous para-
graph also shows that

0 // 𝐶𝑘(𝔤)/𝐶𝑘+1(𝔤) // 𝔤/𝐶𝑘+1(𝔤) // 𝔤/𝐶𝑘(𝔤) // 0

shows that 𝔤/𝐶𝑖+1(𝔤) is a central extension of 𝔤/𝐶𝑖(𝔤). It follows that if 𝐶𝑁(𝔤) = 0 for some 𝑁 then 𝔤 is at most
𝑁-step nilpotent.

Lemma 4.2.5. Let 𝔤 be a Lie algebra. Then

(i) If 𝔤 is nilpotent, any subalgebra or quotient of 𝔤 is nilpotent.

(ii) If 𝔤 is nilpotent, then the centre 𝔷(𝔤) is non-zero if 𝔤 is. Moreover, 𝔤/𝔷(𝔤) is nilpotent if and only if 𝔤 is.
4Oddly, not as the derived ideal even though it is an ideal.
5Partly just to cause confusion, but also because it comes up a lot, playing slightly different roles, which leads to the different notation. We’ll

see it again shortly in a slightly different guise.
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Proof. For (i) we use induction on dim(𝔤). If 𝔤 is Abelian, the result is trivial, so we may suppose that 𝔤 is a central
extension

0 // 𝔠 // 𝔤 // 𝔮 // 0
where 𝔠 is central. If 𝔥 is a subalgebra, then we obtain an induced short exact sequence

0 // 𝔠 ∩ 𝔥 // 𝔥 // (𝔥 + 𝔠)/𝔠 // 0
But since dim(𝔮) < dim(𝔤), by induction (𝔥 + 𝔠)/𝔠) is nilpotent as it is a subalgebra of 𝔤/𝔠 ≅ 𝔮. Hence 𝔥 is nilpotent
also (as it is either isomorphic to (𝔥 + 𝔠)/𝔠 or it is a central extension of it).

Part (ii) is trivial since a non-trivial central extension always has a non-trivial centre. (Alternatively, as
𝐶𝑘(𝔤)/𝐶𝑘+1(𝔤) is central in 𝔤/𝐶𝑘+1(𝔤), clearly the last non-zero term of the lower central series is central.)

Remark 4.2.6. Notice that if 𝔞 is an arbitrary ideal in 𝔤, and 𝔞 and 𝔤/𝔞 are nilpotent it does not follow that 𝔤 is
nilpotent. Indeed recall from Example 3.2.5 the non-abelian 2-dimensional Lie algebra 𝔰2, with basis {𝑥, 𝑦} where
[𝑥, 𝑦] = 𝑦. Then k.𝑦 is a 1-dimensional ideal in 𝔰2 but it is not central. Indeed 𝔷(𝔰2) = 0 so 𝔰2 is not nilpotent, even
though the ideal k.𝑦 and the quotient 𝔰2/k.𝑦 are (since they are both abelian). Note that this shows that 𝔰2 cannot
be written as a central extension of 𝔤𝔩1 by itself.

Remark 4.2.7. The characterisation of the property of nilpotence in terms of the lower central series is similar to
the characterisation of solvable Lie algebras in terms of the derived series. This is one reason it is commonly used.
There is, however, another nature nested sequence of ideals which can be used to characterize nilpotence: If 𝔤 is
any Lie algebra, set 𝑍0(𝔤) = 𝔤, and, assuming 𝑍𝑘(𝔤) is defined, let 𝑞𝑘 ∶ 𝔤 → 𝔤/𝑍𝑘(𝔤) be the quotient map, and set
𝑍𝑘+1(𝔤) = 𝑞−1𝑘 (𝔷(𝔤𝑘)). This process yields an increasing sequence of ideals of 𝔤 known as the upper central series. If it
exhausts 𝔤, that is, if for some 𝑛 ≥ 0we have𝑍𝑘(𝔤) = 𝔤 for all 𝑘 large enough, the 𝔤 is nilpotent. If 𝔤 is not nilpotent,
the upper central series will stabilize at a maximal nilpotent ideal of 𝔤.

In terms of the adjoint representation, the centre of a Lie algebra 𝔤 can be viewed as ker(ad), the kernel of the
adjoint action, but it can also be viewed as the invariants in 𝔤, that is

𝔤𝔤 = {𝑧 ∈ 𝔤 ∶ 𝑎𝑑(𝑥)(𝑧) = 0, ∀𝑥 ∈ 𝔤}.

Using either the upper or lower central series, it is easy to see that the only composition factor of (𝔤, ad) is the trivial
representation.

We nowwish to show that the notion of a flag in a vector space gives us a large supply of nilpotent Lie algebras.
In the next Lemmawe use the notation of Lemma 4.1.7.

Lemma 4.2.8. Suppose thatℱ is a (not necessarily complete) flag in a finite-dimensional vector space 𝑉. Then the Lie
algebra 𝔫ℱ = 𝔟1ℱ ⊆ 𝔤𝔩𝑉 is nilpotent.

Proof. By (i) of Lemma 4.1.7, [𝔫ℱ , 𝔫ℱ ] ⊆ 𝔟2ℱ , and by induction [𝔫ℱ , 𝐶𝑘(𝔫ℱ )] ⊆ 𝔟𝑘+1ℱ , so that 𝐶𝑘(𝔤) ⊆ 𝔟𝑘ℱ , and
hence𝐶𝑘(𝔫) = 0 if 𝔟𝑘ℱ = 0, which is true whenever 𝑘 ≥ 𝑑 = dim(𝑉).

Example 4.2.9. Whenℱ is a complete flag, so that dim(𝑉) = 𝑑, if we pick a basis {𝑒1, 𝑒2, … , 𝑒𝑑} of 𝑉 such that
𝐹𝑘 = ⟨{𝑒𝑘+1, 𝑒2, … , 𝑒𝑑}⟩k, then the matrix 𝐴 representing an element 𝑥 ∈ 𝔫ℱ with respect to this basis is strictly
upper triangular, that is, 𝑎𝑖𝑗 = 0 for all 𝑖 ≥ 𝑗. But then if 𝔫𝑑 ⊆ 𝔤𝔩𝑑 denotes the space of strictly upper-triangular
matrices, it is easy to see that dim(𝔫𝑑) = 􏿴𝑑2􏿷. When 𝑑 = 2we just get the 1-dimensional Lie algebra 𝔤𝔩1, thus the first
nontrivial case is when 𝑛 = 3 and in this case 𝔫3 is the 3-dimensional 2-step nilpotent Lie algebra we constructed
previously as a central extension.

On the other hand, if 𝔟𝑑 ⊆ 𝔤𝔩𝑑 denotes the upper-triangular matrices, i.e. 𝔟𝑑 corresponds to the subalgebra 𝔟ℱ
of 𝔤𝔩𝑉 , and we set 𝔱𝑑 to be the set of diagonal matrices in 𝔟𝑛, then it is straight-forward to show by considering the
subalgebra 𝔱𝑛 of diagonalmatrices in 𝔟𝑛 that [𝔱𝑑, 𝔫𝑑] = 𝔫𝑑, so that, as 𝔟𝑑 = 𝔱𝑑 ⊕ 𝔫𝑑, it follows that 𝔟𝑑 is not nilpotent.

Remark 4.2.10. Note that in Example 4.1.7, unlike in Lemma 4.2.8, it is essential thatℱ is a complete flag. Ifℱ
is not a complete flag the corresponding subalgebra 𝔟ℱ will not be solvable (since, for example, if dim(𝐹𝑖/𝐹𝑖+1) > 1,
then there is a surjective homomorphism 𝔟ℱ → 𝔤𝔩𝐹𝑖/𝐹𝑖+1 , which is not solvable.)

Remark 4.2.11. Note that the subalgebra 𝔱𝑑 ⊂ 𝔤𝔩𝑑 of diagonalmatrices is abelian, and hence nilpotent, but the only
nilpotent endomorphism of k𝑑 that lies in 𝔱𝑑 is 0. Thus a nilpotent linear Lie algebra need not consist of nilpotent
endomorphisms. It turns out that, in some sense, the example of 𝔱𝑑 is the onlyway in which a nilpotent Lie algebra
𝔫 ⊆ 𝔤𝔩𝑑 can fail to consist of nilpotent endomorphisms. Wewill make this precise in 4.3.2.

20



4.2.1 Nilpotent representations

Definition 4.2.12. Let 𝔤 be a Lie algebra and (𝑉, 𝜌) a representation of 𝔤. We say that (𝑉, 𝜌) is nilpotent if, for all
𝑥 ∈ 𝔤, the endomorphism 𝜌(𝑥) ∈ 𝔤𝔩𝑉 is a nilpotent linear map (that is, for some 𝑛 ≥ 1, 𝜌(𝑥)𝑛 = 0).

Lemma 4.2.13. Let 𝐴 be an associative algebra, and suppose 𝑎, 𝑏 ∈ 𝐴 are nilpotent i.e. for some 𝑛 > 0, we have 𝑎𝑛 =
𝑏𝑛 = 0. Then if 𝑎 and 𝑏 commute, 𝑎 + 𝑏 is also nilpotent.

Proof. This follows from the binomial theorem: Indeed we have

(𝑎 + 𝑏)𝑚 =
𝑚
􏾜
𝑘=0

􏿶
𝑚
𝑘 􏿹
𝑎𝑘𝑏𝑚−𝑘.

But now if𝑚 ≥ 2𝑛, then we must have either 𝑘 ≥ 𝑛 or𝑚 − 𝑘 ≥ 𝑛, hence in either case, each of the terms on the
left-hand side vanishes, hence so does the right-hand side, and hence 𝑎 + 𝑏 is nilpotent as required.

Lemma 4.2.14. Suppose 𝔤 is a Lie algebra and (𝑉, 𝜌) and (𝑊, 𝜎) are representation of 𝔤.

i) If 𝑥 ∈ 𝔤 is such that both 𝜌(𝑥) and 𝜎(𝑥) are nilpotent, then the action of 𝑥 on𝑉 ⊗𝑊 is also nilpotent. Moreover, the
action of 𝑥 on𝑉∗ is also nilpotent. Thus if𝑉 and𝑊 are nilpotent, so are𝑉∗,𝑉 ⊗𝑊 and Hom(𝑉,𝑊) ≅ 𝑉∗ ⊗𝑊.

ii) If𝑉 is nilpotent, then any subrepresentation and any quotient representation of𝑉 is also nilpotent.

Proof. By definition, the action of 𝑥 on 𝑉 ⊗𝑊 is given by 𝜌(𝑥) ⊗ 1𝑊 + 1𝑉 ⊗ 𝜎(𝑥). Since the two terms in this sum
commute, the claim follows from Lemma 4.2.13 (taking𝐴 = End(𝑉 ⊗𝑊).)

To see that 𝑥 acts nilpotently on𝑉∗, note that if 𝑓 ∈ 𝑉∗, then

𝑥𝑛(𝑓)(𝑣) = (−1)𝑛𝑓(𝜌(𝑥)𝑛)(𝑣)) = ±𝑓(0) = 0, ∀𝑣 ∈ 𝑉, 𝑓 ∈ 𝑉∗.

For part 𝑖𝑖) if𝑈 is a subrepresentation of𝑉 then, as in Lemma 2.2.2, 𝜌(𝔤) ⊆ 𝔟𝑈 = {𝑥 ∈ 𝔤𝔩𝑉 ∶ 𝑥(𝑈) ⊆ 𝑈}. But
𝔟𝑈 is an associative subalgebra of End(𝑉) and the maps 𝑖∗ and 𝑝∗ from 𝔟𝑈 to End(𝑈) and End(𝑉/𝑈) are also maps
of associative algebras, hence if 𝜌(𝑥) ∈ 𝔟𝑈 is nilpotent, its images in End(𝑈) and End(𝑉/𝑈) are also.

Thenext proposition is the key result in this section. For theproofwewill need thenotionof the normalizer𝑁𝔤(𝔞)
of a subalgebra 𝔞 of a Lie algebra 𝔤 given in Definition 1.2.6. We have

𝑁𝔤(𝔞) = {𝑥 ∈ 𝔤 ∶ [𝑥, 𝑎] ∈ 𝔞, ∀𝑎 ∈ 𝔞},

so that𝑁𝔤(𝔥) is the largest subalgebra of 𝔤 in which 𝔞 is an ideal.

Proposition 4.2.15. Let 𝔤 be a Lie algebra, and let (𝑉, 𝜌) be a nilpotent representation of 𝔤.

i) The invariant subspace
𝑉𝔤 = {𝑣 ∈ 𝑉 ∶ 𝜌(𝑥)(𝑣) = 0, ∀𝑥 ∈ 𝔤}

is non-zero.

ii) There is a complete flagℱ in𝑉 such that 𝔤 ⊆ 𝔫ℱ . In particular, the image 𝜌(𝔤) is a nilpotent Lie algebra.

Proof. Toprove 𝑖), we use induction on 𝑑 = dim(𝔤), the case 𝑑 = 1 being clear. Now if𝜌 is not faithful, i.e. ker(𝜌) ≠ 0,
then dim(𝜌(𝔤)) < dim(𝔤), andwe are done by induction applied to the image 𝜌(𝔤), hencewemay assume 𝜌 gives an
embedding of 𝔤 into 𝔤𝔩𝑉 as a subalgebra, and wemay thus identify 𝔤with its image in the rest of this proof.

Now let𝒮 = {𝔟 ⊊ 𝔤 ∶ 𝔟 is a proper subalgebra of 𝔤} denote the set of proper subalgebras of 𝔤, and pick 𝔞 ∈ 𝒮 .
Now by Lemma 4.2.14, 𝔞 ⊊ 𝔤 ⊆ 𝔤𝔩𝑉 = 𝑉∗ ⊗𝑉 are all nilpotent representations of 𝔞, since the restriction of (𝑉, 𝜌) to
𝔞 is. But then, by the same Lemma, 𝔤/𝔞 is also a nilpotent representation, and since dim(𝔞) < dim(𝔤), it follows by
induction that the 𝔞-invariants (𝔤/𝔞)𝔞 form a non-zero subrepresentation. Let 𝑥 ∈ 𝔤 be such that 0 ≠ 𝑥 + 𝔞 ∈ (𝔤/𝔞)𝔞.
Then ad(𝑎)(𝑥) ∈ 𝔞 for all 𝑎 ∈ 𝔞, or equivalently, since ad(𝑎)(𝑥) = −ad(𝑥)(𝑎), for all 𝑎 ∈ 𝔞, we have ad(𝑥)(𝑎) ∈ 𝔞, that
is, 𝑥 ∈ 𝑁𝔤(𝔞). Thus the normalizer of 𝔞 is a subalgebra of 𝔤which is strictly larger than 𝔞.
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Thus if we take 𝔞 ∈ 𝒮 of maximal dimension, we must have 𝑁𝔤(𝔞) = 𝔤, that is 𝔞 is an ideal in 𝔤. But then if
𝑧 ∈ 𝔤\𝔞, it is easy to see that k.𝑧 ⊕ 𝔞 is a subalgebra6 of 𝔤, hence again by maximality, we must have 𝔤 = k.𝑧 ⊕ 𝔞. By
induction, we know that𝑉𝔞 = {𝑣 ∈ 𝑉 ∶ 𝑎(𝑣) = 0, ∀𝑎 ∈ 𝔞} is a nonzero subspace of𝑉. We claim that 𝑧 preserves
𝑉𝔞. Indeed

𝑎(𝑧(𝑣)) = [𝑎, 𝑧](𝑣) + 𝑧(𝑎(𝑣)) = 0, ∀𝑎 ∈ 𝔞, 𝑣 ∈ 𝑉𝔞,
since [𝑎, 𝑧] ∈ 𝔞. But the restriction of 𝑧 to𝑉𝔞 is nilpotent, so the subspace𝑈 = {𝑣 ∈ 𝑉𝔞 ∶ 𝑧(𝑣) = 0} is nonzero. Since
𝑈 = 𝑉𝔤 we are done.

For 𝑖𝑖), let 𝒞 = (𝑉 = 𝐹𝑚 > 𝐹𝑚−1 > … > 𝐹1 > 𝐹0 = {0}) be a composition series for 𝑉. It suffices to show
that each of the composition factors are trivial. But if 1 ≤ 𝑘 ≤ 𝑚, then 𝐹𝑘 is a subrepresentation of𝑉 and hence it is
nilpotent. Similarly𝑄𝑘 = 𝐹𝑘/𝐹𝑘+1, as a quotient of 𝐹𝑘must be nilpotent. But then by part (1), its invariants𝑄𝔤

𝑘 are a
non-zero subrepresentation of𝑄𝑘, and since𝑄𝑘 is simple it follows that𝑄𝑘 is the trivial representation as required.

Corollary 4.2.16. (Engel’s theorem.) A Lie algebra 𝔤 is nilpotent if and only if ad(𝑥) is nilpotent for every 𝑥 ∈ 𝔤, i.e the
adjoint representation is nilpotent.

Proof. If 𝔤 is nilpotent, then since by definition ad(𝑥)(𝐶𝑖(𝔤)) ⊆ 𝐶𝑖+1(𝔤), we see that ad(𝑥)𝑘 = 0 for all 𝑥 ∈ 𝔤 if 𝔤 is
𝑘-step nilpotent. Now suppose that ad(𝑥) is nilpotent for all 𝑥 ∈ 𝔤. Then (𝔤, ad) is a nilpotent representation, and
hence by part 𝑖𝑖) of Proposition 4.2.15, we see that ad(𝔤) is nilpotent. But since ad(𝔤) ≅ 𝔤/𝔷(𝔤) it follows that 𝔤 is
nilpotent as required.

4.3 Representations of solvable Lie algebras

In this section we will assume that our field k is algebraically closed of characteristic zero.

4.3.1 Lie’s theorem

Our first goal is the following theorem:

Theorem4.3.1. (Lie’s theorem) Let 𝔤 be a solvable Lie algebra and𝑉 is a 𝔤-representation. Then there is a homomorphism
𝜆∶ 𝔤 → 𝔤𝔩1(k) and a nonzero vector 𝑣 ∈ 𝑉 such that 𝑥(𝑣) = 𝜆(𝑥).𝑣 for all 𝑥 ∈ 𝔤. Equivalently, any finite-dimensional
irreducible representation of a solvable Lie algebra is one-dimensional.

Wefirst explain the equivalence asserted in the last sentence of the statement. Note that the existence of a non-
zero 𝑣 ∈ 𝑉 such that 𝑥(𝑣) = 𝜆(𝑥).𝑣 for all 𝑥 ∈ 𝔤 is equivalent to the assertion that the line k.𝑣 is a subrepresentation
of𝑉. Thus the statement of the theorem shows that any representation contains a one-dimensional subrepresen-
tation, and hence any irreducible representationmust itself be one-dimensional. Since any representation contains
an irreducible representation, the equivalence follows.

The crucial observation that is needed to prove Lie’s theorem is given in the following Lemma:

Lemma4.3.2. (Lie’s Lemma)Let𝔤 be aLie algebra, let 𝐼 ⊂ 𝔤 be an ideal, and let𝑉 be afinite dimensional𝔤-representation.
Suppose that 𝜆∶ 𝐼 → 𝔤𝔩1(k) is a homomorphism of Lie algebras for which the subspace 𝑉𝜆,𝐼 = {𝑣 ∈ 𝑉 ∶ ℎ(𝑣) =
𝜆(ℎ).𝑣, ∀ℎ ∈ 𝐼} is nonzero. Then𝜆 vanishes on [𝔤, 𝐼] ⊂ 𝐼, and𝑉𝜆,𝐼 is a 𝔤-subrepresentation of𝑉.

Proof. Fix 𝑥 ∈ 𝔤 and 𝑣 ∈ 𝑉𝜆,𝐼\{0}. For each𝑚 ∈ N, let𝑊𝑚 = ⟨{𝑣, 𝑥(𝑣), … , 𝑥𝑚(𝑣)}⟩k. The𝑊𝑚 form an increasing
sequence of subspaces of𝑉 with dim(𝑊𝑚+1/𝑊𝑚) ≤ 1, fromwhich it is easy to see that there is some 𝑑with𝑊−1 ∶=
{0} < 𝑊0 < 𝑊1 < … < 𝑊𝑑−1 = 𝑊𝑑, where 𝑥(𝑊𝑑) ⊆ 𝑊𝑑.

Claim:
ℎ(𝑥𝑚(𝑣)) ∈ 𝜆(ℎ).𝑥𝑚(𝑣) +𝑊𝑚−1, ∀ℎ ∈ 𝐼,𝑚 ≥ 0

Proof of claim: This obvious for𝑚 = 0 and if𝑚 ≥ 1, since [ℎ, 𝑥] ∈ 𝐼, by induction we have
ℎ𝑥𝑚(𝑣) = 𝑥ℎ𝑥𝑚−1(𝑣) + (ℎ𝑥 − 𝑥ℎ)𝑥𝑚−1(𝑣)

∈ 𝑥 􏿴𝜆(ℎ).𝑥𝑚−1(𝑣) +𝑊𝑚−2􏿷 + 𝜆([ℎ, 𝑥])𝑥𝑚−1(𝑣) +𝑊𝑚−2

⊆ 𝜆(ℎ)𝑥𝑚(𝑣) +𝑊𝑚−1,
(4.3.1)

6Oneway to see this is to note that k.𝑧 ⊕ 𝔞 is a line– i.e. one-dimensional subspace– of 𝔤/𝔞 and any such subspace is a subalgebra, because, by
the alternating property, the Lie bracket vanishes on lines. Note in particular that the direct sum is one of vector spaces, not Lie algebras.
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since 𝑥(𝑊𝑚−2) ⊆ 𝑊𝑚−1 and [ℎ, 𝑥] ∈ 𝐼.
It follows that𝑊𝑑 is stable under the action of 𝐼 and 𝑥, and that if ℎ ∈ 𝐼, then the matrix of the action of ℎ

on𝑊𝑑 with respect to the basis {𝑣, 𝑥(𝑣), … , 𝑥𝑑−1(𝑣)} is upper-triangular with each diagonal entry equal to 𝜆(ℎ). In
particular, tr(ℎ|𝑊𝑑 ) = 𝜆(ℎ).dim(𝑊𝑑) = 𝜆(ℎ).𝑑. But then

0 = tr([ℎ, 𝑥]) = 𝜆([ℎ, 𝑥]).𝑑,

and since 𝑑 > 0 and char(k) = 0, it follows that 𝜆([ℎ, 𝑥]) = 0. But now considering (4.3.1) with𝑚 = 1we see that
𝜆([ℎ, 𝑥]) = 0 implies that ℎ𝑥(𝑣) = 𝜆(ℎ).𝑥(𝑣), so that 𝑥(𝑣) ∈ 𝑉𝜆,𝐼 if 𝑣 ∈ 𝑉𝜆,𝐼 as required.

Completion of the proof of Lie’s Theorem:

Use induction on dim(𝔤). Since 𝔤 is solvable,𝐷(𝔤) is a proper ideal in 𝔤, and by induction the theoremholds for𝐷(𝔤).
But then let 𝜆∶ 𝐷(𝔤) → k be a homomorphism of Lie algebras such that

𝑊 = {𝑣 ∈ 𝑉 ∶ ℎ(𝑣) = 𝜆(ℎ).𝑣, ∀ℎ ∈ 𝐷(𝔤)} ≠ {0}.

But then by Lemma 4.3.2,𝑊 is a 𝔤-subrepresentation, and if we let 𝜌∶ 𝔤 → 𝔤𝔩𝑊 , then 𝜌(𝔤) ⊆ 𝔤𝔩𝑊 has𝜆(𝐷(𝔤)).𝐼𝑊 =
𝜌(𝐷(𝔤)) = 𝐷(𝜌(𝔤)). But𝐷(𝔤𝔩𝑊) = 𝔰𝔩(𝑊), and since char(k) = 0, k.𝐼𝑊 ∩ 𝔰𝔩(𝑊) = {0}, so that as𝐷(𝔤1) ⊆ 𝔰𝔩(𝑊) ∩
k.𝐼𝑊 = {0}. It follows that the action of 𝔤 on𝑊 factors through 𝔤/𝐷(𝔤), which is abelian, and the result is then clear,
since commuting linear maps on a non-zero vector space always have a common eigenvector.

Remark 4.3.3. The proof of Lemma 4.3.2 relies on a trick which permeates the course, namely that one can often
compute a trace in two different ways to obtain important information. One way will be by observing that one is
computing the trace of a commutator, which is therefore zero. The other will, in one fashion or another, follow from
consideration of the generalised eigenspaces of the linear map in question.

Corollary 4.3.4. Let 𝔤 be a solvable Lie algebra and let (𝑉, 𝜌) be a 𝔤-representation. Then there is a complete flagℱ =
(𝑉 = 𝐹0 ⊃ 𝐹1 ⊃ … ⊃ 𝐹𝑑 = {0}) where each 𝐹𝑖 is a 𝔤-subrepresentation, so that 𝜌(𝔤) ⊆ 𝔟ℱ . In particular, if 𝔤 is solvable,
then it has a composition series each of whose terms is an ideal in all of 𝔤.

Proof. Take any composition seriesℱ for𝑉. Since Lie’s theorem shows that the irreducible representations of 𝔤 are
all one-dimensional, the resulting chain of subrepresentations will form a complete flag and 𝜌(𝔤) ⊆ 𝔟ℱ . The final
sentence follows by applying this to the adjoint representation (𝔤, ad), since 𝐼 ⊆ 𝔤 is an ideal if and only if it is a
subrepresentation of the adjoint representation.

Definition 4.3.5. Recall from Example 2.1.5 that the isomorphism classes of one-dimensional representations of
a Lie algebra 𝔤 are given by the elements of (𝔤/𝐷(𝔤))∗ = 𝐷(𝔤)0: a homomorphism 𝜆∶ 𝔤 → 𝔤𝔩1 is just a linear map
𝜆∶ 𝔤 → kwhichvanisheson𝐷(𝔤). Recall thatwewritek𝜆 for the representation (k, 𝜆). Wewill refer to anelementof
𝐷(𝔤)0 (equivalently, an isomorphismclass of 1-dimensional𝔤-representations) as aweightof𝔤. In the casewhere𝔤 is
solvable, Lie’s theorem shows that theweights are exactly the isomorphism classes of irreducible 𝔤-representations.

Remark4.3.6. Note that, since it is ak-vector space,𝐷(𝔤)0 is anabeliangroup. This abeliangroupstructure canalso
be seen from thepoint of viewof one-dimensional representations: since the tensor product of 1-dimensional vector
spaces is 1-dimensional, the tensor product restricts to an operation on 1-dimensional vector spaces. This gives
the set of isomorphism classes of one-dimensional representations the structure of an abelian group: the operation
is commutative because the map 𝜎∶ 𝐿1 ⊗ 𝐿2 → 𝐿2 ⊗ 𝐿1 given by 𝜎(𝑣1 ⊗ 𝑣2) = 𝑣2 ⊗ 𝑣1 is an isomorphism of 𝔤-
representations (for any two 𝔤-representations 𝐿1,𝐿2) and if 𝐿 is any one-dimensional representation then 𝐿⊗ 𝐿∗ ≅
k0 via the evaluation (or contraction) map induced by the natural bilinear pairing 𝐿 × 𝐿∗ → k0.

Since a direct calculation shows that k𝜆 ⊗ k𝜇 ≅ k𝜆+𝜇, this abelian group structure becomes the vector addition
under the identification of the set of isomorphism classes of 1-dimensional representations with (𝔤/𝐷(𝔤))∗.

4.3.2 Representations of nilpotent Lie algebras

In this section we assume that k is an algebraically closed field of characteristic zero.

23



Definition 4.3.7. Let 𝔤 be a Lie algebra and let𝒮 be a set of irreducible representation of 𝔤. Let

Rep𝒮 (𝔤) = {𝑉 ∈ Rep(𝔤) ∶ [𝑇 ∶ 𝑉] > 0 if and only if ∃𝑆 ∈ 𝒮 , 𝑇 ≅ 𝑆}
Rep𝒮 (𝔤, 𝑉) = {𝑊 ≤ 𝑉 ∶ 𝑊 ∈ Rep𝒮 (𝔤)}.

If𝒮 = {𝑆} then wewill write Rep𝑆(𝔤), Rep𝑆(𝔤, 𝑉) rather than Rep{𝑆}(𝔤), Rep{𝑆}(𝔤, 𝑉) respectively.

Proposition 4.3.8. Let 𝔤 be a Lie algebra and (𝑉, 𝜌) a representation of 𝔤. If𝒮 is a set of irreducible 𝔤-representation
then Rep𝒮 (𝔤, 𝑉) has a unique element𝑉𝒮 which is maximal with respect to containment, that is𝑉𝒮 ∈ Rep𝒮 (𝔤, 𝑉) and
if𝑈 ∈ Rep𝒮 (𝔤, 𝑉) then𝑈 ≤ 𝑉𝒮 .

Proof. First note that if it exists, such amaximal element is automatically unique, since if𝑊1,𝑊2 are bothmaximal
with respect to containment wemust have𝑊1 ≤ 𝑊2 ≤ 𝑊1 and hence𝑊1 = 𝑊2.

Next note that if𝑉1, 𝑉2 ∈ 𝒱𝑆 then𝑉1 +𝑉2 ∈ 𝒱𝑆. Indeed by the second isomorphism theorem, (𝑉1 +𝑉2)/𝑉1 ≅
𝑉2/(𝑉1 ∩ 𝑉2), so that any composition factor of 𝑉1 + 𝑉2 must be a composition factor of 𝑉1 or of 𝑉2/(𝑉1 ∩ 𝑉2),
and hence is a composition factor of 𝑉1 or 𝑉2. Now pick𝑊 ∈ 𝒱𝑆 with dim(𝑊) ≥ dim(𝑈) for all𝑈 ∈ 𝒱[𝑆] (such
a𝑊 exists if𝑉 is finite-dimensional, as we always assume). We claim that𝑊 is maximal for containment. Indeed
if𝑈 ∈ 𝒱𝑆 then we have just shown that𝑊 +𝑈 ∈ 𝒱𝑆, hence dim(𝑊) ≤ dim(𝑊 + 𝑈) ≤ dim(𝑊) by our choice
of𝑊, and hence 𝑈 ≤ 𝑊 and𝑊 is maximal for containment as required. Thus𝑊 = 𝑉𝒮 is the unique maximal
subrepresentation in𝒱𝒮 .

Definition 4.3.9. Recall that the isomorphism classes of 1-dimensional representations of 𝔤 can be identifiedwith
𝐷(𝔤)0 ⊆ 𝔤, and given 𝜆 ∈ 𝐷(𝔤)0, we write k𝜆 for the 1-dimensional representation (k, 𝜆). Given a 𝔤-representation
(𝑉, 𝜌), we will write𝑉𝜆 and Rep𝜆(𝔤, 𝑉) instead of𝑉k𝜆 and Repk𝜆

(𝔤, 𝑉). When 𝜆 ∈ 𝐷(𝔤)0 wewill refer to𝑉𝜆 as the
𝜆-weight space of𝑉.7 If𝑉 is a finite-dimensional representation of a Lie algebra 𝔤, let

Ψ𝑉 = {𝜆 ∈ 𝐷(𝔤)0 ∶ 𝜆 is a composition factor of𝑉}

ThusΨ𝑉 is the finite set of the one-dimensional representations of𝑉 which occur as composition factors of𝑉. If 𝔤
is solvable and char(k) = 0 then by Lie’s TheoremΨ𝑉 contains all the composition factors of𝑉.

If𝜑∶ 𝔤1 → 𝔤2 and (𝑉, 𝜌) is a representation of 𝔤2, then (𝑉, 𝜑∗(𝜌)) is a representation of 𝔤1, where𝜑∗(𝜌) = 𝜌 ∘𝜑.
Since𝜑(𝐷(𝔤1)) ⊆ 𝐷(𝔤2), the transpose 𝜑⊺ ∶ 𝔤∗2 → 𝔤∗1 restricts to give a map 𝜑⊺ ∶ 𝐷(𝔤2)0 → 𝐷(𝔤1)0, andΨ𝜑∗(𝑉) =
𝜑⊺(Ψ𝑉). Now if𝑥 ∈ 𝔤 and 𝑖𝑥 ∶ 𝔤𝔩1 → 𝔤 is thehomomorphism 𝑖𝑥(𝑡) = 𝑡.𝑥 (∀𝑡 ∈ k = 𝔤𝔩1), and𝜆 ∈ 𝐷(𝔤)0 then 𝑖⊺𝑥 (𝜆) =
𝜆(𝑥). The weights of the 𝔤𝔩1-representation 𝜌 ∘ 𝑖𝑥 are just the eigenvalues of 𝜌(𝑥), as in Example 2.1.4, it follows that
the eigenvalues of 𝜌(𝑥) are {𝜆(𝑥) ∶ 𝜆 ∈ Ψ𝑉}, and the 𝜇-generalised eigenspace of 𝜌(𝑥) is⨁𝜆∈Ψ𝑉 ∶𝜆(𝑥)=𝜇

𝑉𝜆.

Lemma 4.3.10. Suppose that 𝔤 is a Lie algebra and𝜆, 𝜇 ∈ 𝐷(𝔤)0 are weights of 𝔤. If𝑉 and𝑊 are 𝔤-representations then

i) 𝑉𝜆 ⊗𝑊𝜇 ⊆ (𝑉 ⊗𝑊)𝜆+𝜇.

ii) If𝜙∶ 𝑉 → 𝑊 is a homomorphism of 𝔤-representation, then𝜙(𝑉𝜆) ⊆ 𝑊𝜆.

Proof. For part (i), we may assume that 𝑉 = 𝑉𝜆 and𝑊 = 𝑊𝜇, hence there are composition series (𝐹𝑘)𝑟𝑘=0 and
(𝐺𝑙)𝑠𝑙=0, where 𝐹𝑘/𝐹𝑘+1 ≅ k𝜆 for each 𝑘, and 𝐺𝑙/𝐺𝑙+1 ≅ k𝜇, for all 𝑙 ∈ {0, 1, … , 𝑟} and 𝑘 ∈ {0, 1… , 𝑠}. Pick bases
{𝑒𝑖 ∶ 0 ≤ 𝑖 ≤ 𝑟 − 1} and {𝑓𝑗 ∶ 0 ≤ 𝑗 ≤ 𝑠 − 1} of 𝑉 and𝑊 respectively such that 𝐹𝑘 = ⟨{𝑒𝑖 ∶ 𝑖 ≥ 𝑘}⟩k and 𝐺𝑙 =
⟨{𝑓𝑗 ∶ 𝑗 ≥ 𝑙}⟩k. If we set𝐻𝑘 = ∑𝑟+𝑠=𝑘 𝐹𝑟 ⊗ 𝐺𝑠, then𝐻𝑘 is a subrepresentation of 𝑉 ⊗𝑊 and we have 𝑥(𝑒𝑘) ⊗ 𝑓𝑙 =
𝜆(𝑥)𝑒𝑘 ⊗ 𝑓𝑙 + 𝐹𝑘+1 ⊗𝐺𝑙 and 𝑒𝑘 ⊗ 𝑥(𝑓𝑙) = 𝜇(𝑥).𝑒𝑘 ⊗ 𝑓𝑙 + 𝐹𝑘 ⊗𝐺𝑙+1 hence

𝑥(𝑒𝑘 ⊗ 𝑓𝑙) = 𝑥(𝑒𝑘) ⊗ 𝑓𝑙 + 𝑒𝑘 ⊗ 𝑥(𝑓𝑙) ∈ (𝜆 + 𝜇)(𝑒𝑘 ⊗ 𝑓𝑙) + 𝐻𝑘+𝑙+1 (4.3.2)

and thus𝐻𝑘/𝐻𝑘+1 ≅ kdim(𝐻𝑘)−dim(𝐻𝑘+1)𝜆+𝜇 . It follows𝑉 ⊗𝑊 has k𝜆+𝜇 as its unique composition factor.

For part (ii), since 𝑉𝜆 ∈ Rep𝜆(𝔤), and 𝜙(𝑉𝜆) ≅ 𝑉𝜆/ker(𝜙|𝑉𝜆 ) is isomorphic to a quotient of 𝑉𝜆, it lies in
Rep𝜆(𝔤,𝑊) and so by the maximality of𝑊𝜆 it follows that𝜙(𝑉𝜆) ⊆ 𝑊𝜆.

The adjoint representation of a nilpotent Lie algebra 𝔤 has the trivial representation as its only composition fac-
tor, that is, 𝔤 = 𝔤0. This has the following important consequence:

7This is somewhat nonstandard – the𝜆-isotypical subrepresentation of𝑉𝜆 is usually called the𝜆-generalised weight space of𝑉, with its socle,
𝑉𝑠𝜆 being the 𝜆-weight space.
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Proposition 4.3.11. Let 𝔤 be a nilpotent Lie algebra, 𝔥 ⊆ 𝔤 be a subalgebra of 𝔤, and (𝑉, 𝜌) a representation of 𝔤. Then
if 𝜇 ∈ (𝔥/𝐷(𝔥))∗ ≅ 𝐷(𝔥)0/𝔥0 ⊆ 𝔤∗/𝔥0 ≅ 𝔥∗ is a weight of 𝔥, and 𝑉𝜇 is the 𝜇-isotypic subrepresentation of Res𝔤𝔥(𝑉), the
restriction of 𝑉 to 𝔥, then 𝑉𝜇 is a 𝔤-subrepresentation of 𝑉. In particular, taking 𝔥 = k.𝑥 for 𝑥 ∈ 𝔤\{0}, any generalised
eigenspace𝑉𝜇,𝑥 of 𝜌(𝑥) is a 𝔤-subrepresentation.

Proof. Since 𝔤 is nilpotent, we have 𝔤 = 𝔤0 as an 𝔥-representation. But then by Lemma 4.3.10, we have 𝔤 ⊗ 𝑉𝜇 =
𝔤0 ⊗ 𝑉𝜇 ⊆ (𝔤 ⊗ 𝑉)𝜇, and since the map ̃𝑎𝜌 ∶ 𝔤 ⊗ 𝑉 → 𝑉 given by ̃𝑎𝜌(𝑥 ⊗ 𝑣) = 𝜌(𝑥)(𝑣) is a homomorphism of 𝔥-
representations by Example 2.3.4, it follows that ̃𝑎𝜌(𝔤 ⊗ 𝑉𝜇) = 𝜌(𝔤)(𝑉𝜇) ⊆ 𝑉𝜇, that is,𝑉𝜇 is a 𝔤-subrepresentation
as required.

Definition 4.3.12. Let 𝔤 be a nilpotent Lie algebra and let (𝑉, 𝜌) be a representation of 𝔤. Say 𝑥 ∈ 𝔤 is𝑉-generic if,
for all 𝜆, 𝜇 ∈ Ψ𝑉 we have 𝜆(𝑥) = 𝜇(𝑥) if and only if 𝜆 = 𝜇.

If 𝐷𝑉 = {𝜆 − 𝜇 ∶ 𝜆, 𝜇 ∈ Ψ𝑉}\{0}, then 𝑥 is 𝑉-generic if and only if 𝑥 ∉ ⋃𝜈∈𝐷𝑉 ker(𝜈). If k is infinite,8 it
is an elementary exercise to show that a nonzero k-vector space cannot be written as the union of finitely many
hyperplanes, hence𝑉-generic elements of 𝔤 exist for any finite-dimensional 𝔤-representation𝑉.

Theorem 4.3.13. Let 𝔤 be a nilpotent Lie algebra and (𝑉, 𝜌) a finite-dimensional representation of 𝔤. For each 𝜆 ∈
(𝔤/𝐷𝔤)∗, let

𝑊𝜆 =􏾎
𝑥∈𝔤

𝑉𝜆(𝑥),𝑥, 𝑉𝜆(𝑥),𝑥 = {𝑣 ∈ 𝑉 ∶ ∃𝑛 > 0 such that (𝜌(𝑥) − 𝜆(𝑥))𝑛(𝑣) = 0}.

If 𝑥0 ∈ 𝔤 is𝑉-generic, then we have𝑉𝜆(𝑥0),𝑥0 = 𝑉𝜆 = 𝑊𝜆 and hence𝑉 = ⨁𝜆 𝑉𝜆 is the direct sum of its (generalised)
weight spaces.

Proof. Since 𝔤 is nilpotent, it is solvable, hence for any 𝔤-representation (𝑈, 𝜎) its composition factors all lie inΨ𝑈
and, as in Definition 4.3.9, if 𝑥 ∈ 𝔤 then 𝜎(𝑥) has spectrum {𝜆(𝑥) ∶ 𝜆 ∈ Ψ𝑈}. In particular, taking𝑈 = 𝑉𝜆 we see
that 𝜌(𝑥)|𝑉𝜆 has 𝜆(𝑥) as its sole eigenvalue, that is,𝑉𝜆 ⊆ 𝑉𝜆(𝑥),𝑥. It follows that𝑉𝜆 ⊆ 𝑊𝜆.

Now if 𝑥 ∈ 𝔤, we have𝑉 =⨁𝜆(𝑥)∶𝜆∈Ψ𝑉
𝑉𝜆(𝑥),𝑥 and by Proposition 4.3.11 each𝑉𝜆(𝑥),𝑥 is a 𝔤-subrepresentation of

𝑉, hence taking𝑈 = 𝑉𝜆(𝑥),𝑥 we see that if k𝜈 is a composition factor, then 𝜈(𝑥) = 𝜆(𝑥). It follows that if we take 𝑥0
to be𝑉-generic, the generalised eigenspace𝑉𝜆(𝑥0),𝑥0 has 𝜆 as its unique composition factor, so that𝑉𝜆(𝑥0),𝑥0 ⊆ 𝑉𝜆.
Hence𝑉𝜆(𝑥0),𝑥0 = 𝑉𝜆 = 𝑊𝜆 and𝑉 =⨁𝜆∈Ψ𝑉

𝑉𝜆.

8Any field k with char(k) = 0 contains a copy of Q and so is infinite. Alteratively, any algebraically closed field is infinite – e.g. take the 𝑛-th
roots of some 𝜇 ∈ k× where 𝑛 is taken coprime to char(k).
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Chapter 5

Cartan subalgebras, trace forms and
Cartan’s criteria

5.1 Nilpotent Lie algebras asmeasurements: Cartan subalgebras

In this section we work over an algebraically closed field k. In particular, k is infinite.

Let 𝔤 be a Lie algebra. Recall from Definition 1.2.6 that if 𝔥 is a subalgebra of 𝔤 then the normalizer𝑁𝔤(𝔥) of 𝔥 in
𝔤 is𝑁𝔤(𝔥) = {𝑥 ∈ 𝔤 ∶ [𝑥, ℎ] ∈ 𝔥, ∀ℎ ∈ 𝔥}, the largest subalgebra of 𝔤 in which 𝔥 is an ideal.

Definition 5.1.1. A subalgebra 𝔥 is said to be a Cartan subalgebra if it is 𝑖) nilpotent and 𝑖𝑖) self-normalizing, that is,
𝑁𝔤(𝔥) = 𝔥. We will call a pair (𝔤, 𝔥) a Cartan pair if 𝔥 is a Cartan subalgebra of a Lie algebra 𝔤.

Lemma 5.1.2. If (𝔤, 𝔥) is a Cartan pair and 𝔤 =⨁𝛼∈Φ0
𝔤𝛼, is the decomposition of 𝔤 into 𝔥-isotypical subrepresentations

whereΦ0 ⊆ 𝔥∗ is the finite subset of 𝔥-weights for which 𝔤𝛼 ≠ {0}, then 0 ∈ Φ0 and 𝔤0 = 𝔥.

Proof. Consider 𝔤/𝔥 as an 𝔥-representation: if 𝑥 ∈ 𝑁𝔤(𝔥), then 𝑥 + 𝔥 ∈ (𝔤/𝔥)𝔥 of (𝔤/𝔥), the invariants of 𝔤/𝔥. Thus if
𝔥 = 𝑁𝔤(𝔥) is self-normalising, then (𝔤/𝔥)𝔥 = (𝔤/𝔥)𝑠0 = 0, hence (𝔤/𝔥)0 = {0}. On the other hand, since 𝔥 is nilpotent,
𝔥 ⊆ 𝔤0,

It is not clear from this definitionwhether a Lie algebra necessarily contains a Cartan subalgebra. Wewill for the
moment assume this result, in order to show how they provide a powerful tool to study the structure of an arbitrary
finite-dimensional Lie algebra.

5.1.1 The Cartan Decomposition

Definition5.1.3. Let (𝔤, 𝔥)beaCartanpair and let (𝑉, 𝜌)bea𝔤-representation. Then, byTheorem4.3.13, restricting
𝑉 and 𝔤, the adjoint representation, to 𝔥, wemay write them as a direct sum of their isotypic subrepresentations:

𝔤 = 𝔥 ⊕􏾘
𝛼∈Φ

𝔤𝛼, and𝑉 = 􏾘
𝜆∈Ψ𝑉

𝑉𝜆 (5.1.1)

is theweight-space decomposition of𝑉. The elements ofΦ are called the roots of 𝔤 and the elements ofΨ𝑉 are called
theweights of𝑉.

For 𝔤, as noted in the Lemma above, 𝔤0 = 𝔥, so we letΦ = {𝛼 ∈ 𝐷(𝔤)0\{0} ∶ 𝔤𝛼 ≠ {0}}. If we also setΨ𝑉 = {𝜆 ∈
𝐷(𝔤)0 ∶ 𝑉𝜆 ≠ {0}, then the Cartan decomposition of 𝔤 is

Remark 5.1.4. When k is algebraically closed with char(k) = 0 it is known that the set of all Cartan subalgebras
of a k-Lie algebra 𝔤 form a single orbit under the group of inner automorphisms of 𝔤. This shows that the Cartan
Decomposition of 𝔤 is unique up to automorphisms of 𝔤.

The following simpleLemmawill, alongwithCartan’s criterion for semisimplicity, be thekey to the classification
of semisimple Lie algebras. It shows that the 𝔥-weights of 𝔤 give a kind of grading of 𝔤 and its representations.
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Lemma 5.1.5. For any 𝛼 ∈ {0} ∪ Φ and 𝜆 ∈ Ψ, we have 𝜌(𝔤𝛼)(𝑉𝜆) ⊆ 𝑉𝜆+𝛼. In particular, if (𝑉, 𝜌) = (𝔤, ad) then for
any 𝛼, 𝛽 ∈ {0} ∪ Φwe have [𝔤𝛼, 𝔤𝛽] ⊆ 𝔤𝛼+𝛽.

Proof. This follows using the techniques of the proof of Proposition 4.3.11: the action map 𝜌 induces a homomor-
phismof 𝔥-representations 𝜌̃ ∶ 𝔤 ⊗𝑉 → 𝑉. Nowby part (i) of Lemma4.3.10we see 𝔤𝛼 ⊗𝑉𝜆 ⊆ (𝔤⊗𝑉)𝜆+𝛼, and then
part (ii) shows that its image under 𝜌̃ lies in 𝑉𝜆+𝛼. But by definition 𝜌̃(𝔤𝛼 ⊗ 𝑉𝜆) = 𝜌(𝔤𝛼)(𝑉𝜆), and so the proof is
complete.

5.1.2 Existence of Cartan subalgebras

Note that, if 𝔥 is a Cartan subalgebra of 𝔤, then the Theorem 4.3.13 shows that there is an 𝑥0 ∈ 𝔥 such that 𝔥 = 𝔤0,𝑥0 .
This motivates the following definition:

Definition 5.1.6. If 𝑥 ∈ 𝔤, let 𝔤0,𝑥 be the generalized 0-eigenspace of ad(𝑥). Note that we always have 𝑥 ∈ 𝔤0,𝑥 so
that dim(𝔤0,𝑥) ≥ 1. We say that 𝑥 ∈ 𝔤 is regular if 𝔤0,𝑥 is of minimal dimension.

Proposition 5.1.7. Let 𝔤 be a Lie algebra over a field k.

i) If 𝑥 ∈ 𝔤 is any element, then 𝔤0,𝑥 is a self-normalizing subalgebra of 𝔤.

ii) If 𝑥 ∈ 𝔤 is a regular element, then 𝔤0,𝑥 is a nilpotent and so a Cartan subalgebra of 𝔤.

Proof. Part 𝑖) is straight-forward: It follows immediately from Lemma 4.3.11 applied to the adjoint representation
that 𝔥 = 𝔤0,𝑥 is a subalgebra of 𝔤. To see that 𝔥 is a self-normalizing in 𝔤. Indeed if 𝑧 ∈ 𝑁𝔤(𝔥) then [𝑥, 𝑧] ∈ 𝔥 (since
certainly 𝑥 ∈ 𝔥), so that for some 𝑛we have ad(𝑥)𝑛([𝑥, 𝑧]) = 0, and hence ad(𝑥)𝑛+1(𝑧) = 0 and 𝑧 ∈ 𝔥 as required.

To establish part 𝑖𝑖), assume that 𝑥 is regular, and let 𝔥 = 𝔤0,𝑥. To see that 𝔥 is nilpotent, by Engel’s theorem it
suffices to show that, for each 𝑦 ∈ 𝔥, the map ad(𝑦) is nilpotent as an endomorphism of 𝔥. To see this, we consider
the characteristic polynomials of ad(𝑦) on 𝔤, 𝔥 and 𝔤/𝔥: Since 𝔥 is a subalgebra of 𝔤, the characteristic polynomial
𝜒𝑦(𝑡) ∈ k[𝑡] of ad(𝑦) on 𝔤 is the product of the characteristic polynomials of ad(𝑦) on 𝔥 and 𝔤/𝔥, which we will write
as 𝜒𝑦1(𝑡) and 𝜒

𝑦
2(𝑡) respectively.

We may write 𝜒𝑦(𝑡) = ∑𝑛
𝑘=0 𝑐𝑘(𝑦)𝑡𝑘, where 𝑛 = dim(𝔤). Pick {ℎ1, ℎ2, … , ℎ𝑟} a basis of 𝔥 (so that dim(𝔥) = 𝑟).

Then if we write 𝑦 = ∑𝑟
𝑖=1 𝑦𝑖ℎ𝑖, the coefficients {𝑐𝑘(𝑦)}

𝑛
𝑘=0 of 𝜒𝑦(𝑡) are polynomial functions of the coordinates {𝑦𝑖 ∶

1 ≤ 𝑖 ≤ 𝑟}. Similarly we have

𝜒𝑦1(𝑡) =
𝑟
􏾜
𝑖=0
𝑑𝑖(𝑦)𝑡𝑖, 𝜒𝑦2(𝑡) =

𝑛−𝑟
􏾜
𝑗=0
𝑒𝑗(𝑦)𝑡𝑗

where the 𝑑𝑖, 𝑒𝑗 ∈ k[𝑥1, … , 𝑥𝑛] are polynomials and 𝑑𝑖(𝑦) = 𝑑𝑖(𝑦1, … , 𝑦𝑛)where 𝑦 = ∑𝑛
𝑖=1 𝑦𝑖ℎ𝑖. Since ad(𝑥)(𝑥) = 0,

wehave𝑥 ∈ 𝔤0,𝑥. But ad(𝑥) is invertibleon𝔤/𝔥, sinceall its eigenvalues arenon-zeroon𝔤/𝔥, hence𝜒𝑥2(𝑡)has 𝑒0(𝑥) ≠ 0,
and thus the polynomial 𝑒0 is nonzero.

Now let 𝑠 = min{𝑖 ∶ 𝑑𝑖(𝑥1, … , 𝑥𝑛) ≠ 0}. Then wemaywrite 𝜒𝑦1(𝑡) = 𝑡𝑠∑
𝑟−𝑠
𝑘=0 𝑑𝑠+𝑘(𝑦)𝑡𝑘, and hence

𝜒𝑦(𝑡) = 𝑡𝑠(𝑑𝑠 + 𝑑𝑠+1𝑡 + …)(𝑒0 + 𝑒1.𝑡 + …) = 𝑡𝑠𝑑𝑠𝑒0 +… ,

For any endomorphism of a vector space, the dimension of its 𝜆-generalised eigenspace is the largest power of
(𝑡 − 𝜆) dividing its characteristic polynomial. In particular this implies that, for any 𝑦 ∈ 𝔥, we have dim(𝔤0,𝑦) =
min{𝑖 ∶ 𝑐𝑖(𝑦) ≠ 0}. But since 𝑒0.𝑑𝑠 ∈ k[𝑥1, … , 𝑥𝑛] is nonzero, there is some 𝑧 ∈ 𝔥 such that 𝑑𝑠(𝑧).𝑒0(𝑧) ≠ 0, and
hence dim(𝔤0,𝑧) = 𝑠. Now by definition 𝑠 ≤ 𝑟 = dim(𝔤0,𝑥), hence since 𝑥 is regular, we must have 𝑠 = 𝑟, and hence
𝜒𝑦1(𝑡) = 𝑡𝑟, for all 𝑦 ∈ 𝔥. Hence every ad(𝑦) is nilpotent on 𝔥, so that 𝔥 is a Cartan subalgebra as required.

In the course of the proof of the above Propositionweused the fact that the coefficients of the characteristic poly-
nomial were polynomial functions of the coordinates of 𝑦 ∈ 𝔥with respect to a basis of 𝔥. This was crucial because,
whereas the product of two arbitrary nonzero functions may well be zero, the product of two nonzero polynomials
(over a field) is never zero. Lemma I.3 in Appendix I establishes a slightly more general statemetn which applied to
𝑉 = 𝔤,𝐴 = 𝔥 and𝜑 = ad gives a proof of this polynomial property.1

1If this all seems overly pedantic then feel free to ignore it.
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5.2 Trace forms and Cartan’s criterion for Solvability

In this section we introduce certain symmetric bilinear forms, which will play an important role in the rest of the
course. A brief review of the basic theory of symmetric bilinear forms2 is given in §I.3 in Appendix 1 of these notes.

5.2.1 Invariant bilinear forms

Let Bil(𝑉) be the space of bilinear forms on𝑉, that is,

Bil(𝑉) = {𝐵∶ 𝑉 ×𝑉 → k ∶ 𝐵 bilinear}.

From the definition of tensor products it follows that Bil(𝑉) can be identifiedwith (𝑉 ⊗𝑉)∗. The involution 𝜎∶ 𝑉 ×
𝑉 → 𝑉 × 𝑉 given by (𝑣, 𝑤) ↦ (𝑤, 𝑣) induces an involution (which we will also denote by 𝜎) on Bil(𝑉) and on
𝑉 ⊗𝑉. We say that a bilinear form 𝐵 is symmetric if 𝐵 ∘ 𝜎 = 𝐵, that is, if 𝐵(𝑣, 𝑤) = 𝐵(𝑤, 𝑣) for all 𝑣, 𝑤 ∈ 𝑉.

If𝑉 is a 𝔤-representation, the identification of Bil(𝑉)with (𝑉 ⊗ 𝑉)∗ shows that Bil(𝑉) also has the structure of
𝔤-representation: explicitly, if 𝐵 ∈ Bil(𝑉), then it yields a linear map 𝑏 ∶ 𝑉 ⊗ 𝑉 → k by the universal property of
tensor products, and if 𝑦 ∈ 𝔤, it acts on 𝐵 as follows:

𝑦(𝐵)(𝑣, 𝑤) = 𝑦(𝑏)(𝑣 ⊗ 𝑤)
= −𝑏(𝑦(𝑣 ⊗ 𝑤))
= −𝑏(𝑦(𝑣) ⊗ 𝑤 + 𝑣 ⊗ 𝑦(𝑤))
= −𝐵(𝑦(𝑣), 𝑤) − 𝐵(𝑣, 𝑦(𝑤)).

Notice that the involution 𝜎 ∈ End(𝑉 ⊗ 𝑉) commutes with the action of 𝔤 (this is a special case of the fact that, for
any two 𝔤-representations, the map 𝜏∶ 𝑉 ⊗𝑊 → 𝑊 ⊗𝑉 given by 𝜏(𝑣 ⊗ 𝑤) = 𝑤 ⊗ 𝑣 is a 𝔤-homomorphism). It
follows that the action of 𝔤 preserves the space 𝑆2(𝑉) of symmetric bilinear forms.

Definition 5.2.1. We say that a bilinear form 𝐵 ∈ Bil(𝔤) is invariant if it is an invariant vector for the action of 𝔤 on
Bil(𝔤) ≅ (𝔤 ⊗ 𝔤)∗, that is, if 𝐵(ad(𝑥)(𝑦), 𝑧) = 𝐵(𝑦, −𝑎𝑑(𝑥)(𝑧)) = 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝔤. This is often written as

𝐵([𝑥, 𝑦], 𝑧) = 𝐵(𝑥, [𝑦, 𝑧]), ∀𝑥, 𝑦, 𝑧 ∈ 𝔤.

Remark 5.2.2. If (𝑉, 𝜌) is a 𝔤-representation and𝐵 ∈ Bil(𝑉) is a bilinear form, then it defines a linearmap𝜃∶ 𝑉 →
𝑉∗ where 𝜃(𝑣)(𝑤) = 𝐵(𝑣, 𝑤) (∀𝑣,𝑤 ∈ 𝑉). If 𝐵 is invariant, that is 𝐵 ∈ Bil(𝑉)𝔤, then we have 𝜃(𝜌(𝑥)(𝑣))(𝑤) =
𝐵(𝜌(𝑥)(𝑣), 𝑤) = 𝐵(𝑣, −𝜌(𝑥)(𝑤)) = 𝜌∗(𝑥)(𝜃(𝑣))(𝑤) for all 𝑣, 𝑤 ∈ 𝑉, hence 𝜃(𝜌(𝑥)(𝑣)) = 𝜌(𝑥)∗(𝜃(𝑣)), that is, 𝜃 ∈
Hom(𝑉, 𝑉∗)𝔤 = Hom𝔤(𝑉, 𝑉∗) is a homomorphism of 𝔤-representations.

If𝜃 is an isomorphism, we say𝐵 is nondegenerate and in that case, for any linearmap𝛼 ∈ End(𝑉)wemay define
𝛼∗ = 𝜃−1 ∘ 𝛼⊺ ∘ 𝜃 ∈ End(𝑉), the adjoint of 𝛼with respect to 𝐵. If𝑉 is a 𝔤-representation and 𝐵 is nondegenerate,
then the condition that𝐵 is invariant can be expressed as𝜌(𝑥)∗ = −𝜌(𝑥) for all 𝑥 ∈ 𝔤, where𝜌∶ 𝔤 → 𝔤𝔩𝑉 is the action
map, that is, 𝜌(𝔤) consists of skew-adjoint endomorphisms of with respect to the bilinear form 𝐵.

Definition 5.2.3. If 𝛼∶ 𝔤1 → 𝔤2 is a homomorphism of Lie algebras, and 𝐵 is a bilinear form on 𝔤2, then we may
“pull-back” 𝐵 using 𝛼 to obtain a bilinear form on 𝔤1. Indeed viewing 𝐵 as an element of (𝔤2 ⊗ 𝔤2)∗, we obtain an
element 𝛼∗(𝐵) of (𝔤1 ⊗ 𝔤1)∗ given by 𝛼∗(𝐵)(𝑥, 𝑦) = 𝐵(𝛼(𝑥), 𝛼(𝑦)). It is immediate from the definitions that if 𝐵 is an
invariant form for 𝔤2, then 𝛼∗(𝐵) is an invariant form for 𝔤1.

It follows that if we can find an invariant form 𝑏𝑉 on a general linear Lie algebra 𝔤𝔩𝑉 , then any representation
𝜌∶ 𝔤 → 𝔤𝔩𝑉 of a Lie algebra 𝔤 on𝑉 will yield an invariant bilinear form 𝑡𝑉 = 𝜌∗(𝑏𝑉) on 𝔤. The next Lemma shows
that there is in fact a very natural invariant bilinear form, indeed an invariant symmetric bilinear form, on a general
linear Lie algebra 𝔤𝔩𝑉 :

Lemma 5.2.4. Let𝑉 be a k-vector space. The trace form 𝑏𝑉 ∶ 𝔤𝔩𝑉 ⊗ 𝔤𝔩𝑉 → k given by

𝑏𝑉(𝑎, 𝑏) = tr(𝑎.𝑏), ∀𝑎, 𝑏 ∈ 𝔤𝔩𝑉 ,

is a nondegenerate invariant symmetric bilinear form on 𝔤𝔩𝑉 .
2Part A Algebra focused more on positive definite and Hermitian forms, but there is a perfectly good theory of symmetric bilinear forms over

an arbitrary field k. When k is algebraically closed, the theory is also straight-forward!
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Proof. Let 𝜗∶ 𝑉 ⊗ 𝑉∗ → 𝔤𝔩𝑉 be give by 𝜗(𝑤 ⊗ 𝑓) = 𝑓.𝑤 ∈ 𝔤𝔩𝑉 , where (𝑓.𝑤)(𝑣) = 𝑓(𝑣).𝑤 for all 𝑣 ∈ 𝑉. For 𝑉
finite-dimensional, this map is an isomorphism and if 𝜄 ∶ 𝑉 ⊗ 𝑉∗ → k is the natural “contraction” map induced by
the evaluationmap (𝑣, 𝑓) ↦ 𝑓(𝑣), then tr(𝜗(𝑣 ⊗ 𝑓)) = tr(𝑓.𝑣) = 𝑓(𝑣) = 𝜄(𝑣 ⊗ 𝑓) (see Lemma I.13 for details).

Moreover, the isomorphism𝜗⊗𝜗∶ 𝑉 ⊗𝑉∗ ⊗𝑉 ⊗𝑉∗ → 𝔤𝔩𝑉 ⊗𝔤𝔩𝑉 identifies the compositionmap (𝑎, 𝑏) → 𝑎 ∘ 𝑏
with the contractionmap on the 2nd and 3rd factors. Indeed for any 𝑣1, 𝑣2 ∈ 𝑉, 𝑓1, 𝑓2 ∈ 𝑉∗ we have

𝜗(𝑣1 ⊗ 𝑓1) ∘ 𝜗(𝑣2 ⊗ 𝑓2) = (𝑓1.𝑣1) ∘ (𝑓2.𝑣2) = 𝑓1(𝑣2).(𝑓2.𝑣1) = 𝜗(𝜄23(𝑣1 ⊗ 𝑓1 ⊗ 𝑣2 ⊗ 𝑓2))

Thus we see that (𝑎, 𝑏) ↦ tr(𝑎𝑏) corresponds under 𝜗 ⊗ 𝜗 to the map 𝜄14 ⊗ 𝜄32 ∶ 𝑉 ⊗ 𝑉∗ ⊗𝑉 ⊗𝑉∗ → k, where
we write 𝜄𝑘𝑙 for the contraction map acting on the 𝑘-th and 𝑙-th tensor factors if the 𝑘th is𝑉 and the 𝑙th is𝑉∗. The
composition (𝑎, 𝑏) ↦ 𝑎𝑏 gives the contraction 𝜄23 and then taking trace corresponds to the contraction 𝜄14. Taking
tr(𝑏𝑎) gives the same value since (𝑎, 𝑏) ↦ tr(𝑏𝑎) simply contracts the factors in the opposite order, so that tr(𝑎𝑏) =
tr(𝑏𝑎) and thus 𝑏𝑉 is a symmetric bilinear form. To show it is invariant, since 𝑏𝑉 = 𝜄14 ⊗ 𝜄23 it suffices to check that
𝜄 is invariant. But this is clear, since 𝑥(𝑣 ⊗ 𝑓) = 𝑥(𝑣) ⊗ 𝑓 − 𝑣 ⊗ (𝑓 ∘ 𝑥), thus 𝜄(𝑥(𝑣 ⊗ 𝑓)) = 𝑓(𝑥(𝑣)) − (𝑓 ∘ 𝑥)(𝑣) = 0,
while 𝑥(𝜄(𝑣 ⊗ 𝑓)) = 𝑥(𝑓(𝑣)) = 0, since 𝔤𝔩𝑉 acts by 0 on k, the trivial representation. We leave it as an exercise to
check the nondegeneracy of 𝑏𝑉 .

Remark 5.2.5. One can also of course check the invariance property by a direct calculation: for 𝑎, 𝑏, 𝑐 ∈ 𝔤𝔩𝑉 we
have

tr([𝑎, 𝑏].𝑐) = tr((𝑎𝑏 − 𝑏𝑎).𝑐) = tr(𝑎.(𝑏𝑐)) − tr(𝑏.(𝑎𝑐))
= tr(𝑎.(𝑏𝑐)) − tr((𝑎𝑐).𝑏)
= tr(𝑎.(𝑏𝑐 − 𝑐𝑏)
= tr(𝑎, [𝑏, 𝑐]).

where going from the first to the second lineweused the symmetry property of tr to replace tr(𝑏.(𝑎𝑐))with tr((𝑎𝑐).𝑏).

Definition 5.2.6. If 𝔤 is a Lie algebra, and let (𝑉, 𝜌) be a representation of 𝔤. wemay define a bilinear form 𝑡𝑉 ∶ 𝔤 ×
𝔤 → k on 𝔤, known as a trace form of the representation (𝑉, 𝜌), to be 𝜌∗(𝑏𝑉). Explicitly, we have

𝑡𝑉(𝑥, 𝑦) = tr𝑉(𝜌(𝑥)𝜌(𝑦)), ∀𝑥, 𝑦 ∈ 𝔤.

Definition 5.2.7. The Killing form 𝜅∶ 𝔤 × 𝔤 → k is the trace form given by the adjoint representation, that is:

𝜅(𝑥, 𝑦) = tr(ad(𝑥)ad(𝑦)).

Note that if 𝔞 ⊆ 𝔤 is a subalgebra, the Killing form of 𝔞 is not necessarily equal to the restriction of that of 𝔤. We
will write 𝜅𝔤 when it is not clear from context which Lie algebra is concerned.

If 𝔞 is an ideal in 𝔤, then in fact the Killing form is unambiguous, as the following Lemma shows.

Lemma 5.2.8. Let 𝔞 be an ideal of 𝔤. The Killing form 𝜅𝔞 of 𝔞 is given by the restriction of the Killing form 𝜅𝔤 on 𝔤, that is:

𝜅𝔤|𝔞 = 𝜅𝔞.

Moreover, the subspace orthogonal to 𝔞, that is, 𝔞⟂ = {𝑥 ∈ 𝔤 ∶ 𝜅(𝑥, 𝑦) = 0, ∀𝑦 ∈ 𝔞} is also an ideal.

Proof. If 𝑎 ∈ 𝔞we have ad(𝑎)(𝔤) ⊆ 𝔞, thus the same will be true for the composition ad(𝑎1)ad(𝑎2) for any 𝑎1, 𝑎2 ∈ 𝔞.
Thus if we pick a vector space complement𝑊 to 𝔞 in 𝔤, thematrix of ad(𝑎1)ad(𝑎2)with respect to a basis compatible
with the subspaces 𝔞 and𝑊 will be of the form

􏿶
𝐴 𝐵
0 0. 􏿹

where 𝐴 ∈ End(𝔞) and 𝐵 ∈ Homk(𝔞,𝑊). Then clearly tr(ad(𝑎1)ad(𝑎2)) = tr(𝐴). Since 𝐴 is clearly given by
ad(𝑎1)|𝔞ad(𝑎2)|𝔞, we are done. To see that 𝔞⟂ is an ideal, we must check that for any 𝑥 ∈ 𝔤 and 𝑦 ∈ 𝔞⟂ we have
[𝑥, 𝑦] ∈ 𝔞⟂. But if 𝑎 ∈ 𝔞 then 𝜅(𝑎, [𝑥, 𝑦]) = 𝜅([𝑎, 𝑥], 𝑦) = 0 since [𝑎, 𝑥] ∈ 𝔞.
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5.2.2 Cartan criterion for solvable Lie algebras

For the rest of this section k is an algebraically closed field of characteristic zero.

We now wish to show how the Killing form yields a criterion for determining whether a Lie algebra is solvable
or not. For this we need a couple of technical preliminaries. Recall that, if (𝑉, 𝜌) is a representation of a nilpotent
Lie algebra 𝔥, then it decomposes as the direct sum 𝑉 = ⨁𝜆∈Ψ𝑉

𝑉𝜆, whereΨ𝑉 ⊆ 𝐷(𝔥)0 denotes the set of one-
dimensional representations of 𝔥which occur as composition factors of𝑉, and𝑉𝜆 is themaximal subrepresentation
of 𝑉 whose only composition factor is k𝜆. When (𝔤, 𝔥) is a Cartan pair and we view 𝔤 as a 𝔥 representation via the
inclusion 𝔥 ⊆ 𝔤, the setΨ𝔤 = {0} ∪Φ, where 𝔤0 = 𝔥.

Definition 5.2.9. Let (𝔤, 𝔥) be a Cartan pair and let 𝔤 = 𝔥 ⊕⨁𝛼∈Φ 𝔤𝛼 be the associated decomposition of 𝔤. For
each 𝛼 ∈ Φwe set 𝔥𝛼 = [𝔤𝛼, 𝔤−𝛼] ⊆ 𝔥. Note that if −𝛼 ∉ Φ, then 𝔥𝛼 = {0}.

Lemma 5.2.10. Let (𝔤, 𝔥) be a Cartan pair and let Φ ⊆ 𝐷(𝔥)0 be the roots of 𝔤 associated to its Cartan decomposi-
tion. Let (𝑉, 𝜌) be a 𝔤-representation and let 𝑉 = ⨁𝜆∈Ψ𝑉

𝑉𝜆 be its decomposition into its isotypical summands as an
𝔥-representation. If 𝛼 ∈ Φ and 𝔥𝛼 ⊆ 𝔥 is as in Definition 5.2.9, then for any 𝜆 ∈ Ψ𝑉 , there is an 𝑟𝜆 ∈ Q such that
𝜆|𝔥𝛼 = 𝑟𝜆.𝛼|𝔥𝛼 .

Proof. The set of weightsΨ is finite, thus there are positive integers 𝑝, 𝑞 such that𝑉𝜆+𝑡𝛼 ≠ 0 only for integers 𝑡with
−𝑝 ≤ 𝑡 ≤ 𝑞; in particular, 𝜆 − (𝑝 + 1)𝛼 ∉ Ψ and 𝜆 + (𝑞 + 1)𝛼 ∉ Ψ. Let𝑀 = ⨁−𝑝≤𝑡≤𝑞 𝑉𝜆+𝑡𝛼. If 𝑧 ∈ [𝔤𝛼, 𝔤−𝛼] is of
the form [𝑥, 𝑦]where 𝑥 ∈ 𝔤𝛼, 𝑦 ∈ 𝔤−𝛼 then by Lemma 5.1.5,

𝜌(𝑥)(𝑉𝜆+𝑞𝛼) ⊆ 𝑉𝜆+(𝑞+1)𝛼 = {0}, 𝜌(𝑦)(𝑉𝜆−𝑝𝛼) ⊆ 𝑉𝜆−(𝑝+1)𝛼 = {0}

we see that 𝜌(𝑥) and 𝜌(𝑦) preserve𝑀. Thus the action of 𝜌(𝑧) on𝑀 is the commutator of the action of 𝜌(𝑥) and 𝜌(𝑦)
on𝑀, and so tr(𝜌(𝑧),𝑀) = 0. On the other hand,wemay also compute the trace of𝜌(𝑧) on𝑀directly: for any ℎ ∈ 𝔥,
𝜌(ℎ) acts on an isotypical summand𝑉𝜇 with unique eigenvalue 𝜇(ℎ), hence tr𝑉𝜇 (𝜌(ℎ)) = dim(𝑉𝜇).𝜇(ℎ). Applying
this to 𝜌(𝑧)we find

0 = tr(𝜌(𝑧),𝑀) = 􏾜
−𝑝≤𝑡≤𝑞

tr(𝜌(𝑧), 𝑉𝜆+𝑡𝛼) = 􏾜
−𝑝≤𝑡≤𝑞

dim(𝑉𝜆+𝑡𝛼)(𝜆 + 𝑡𝛼)(𝑧)

= dim(𝑀).𝜆(𝑧) +

⎛
⎜⎜⎜⎜⎜⎜⎝ 􏾜−𝑝≤𝑡≤𝑞

𝑡.dim(𝑉𝜆+𝑡𝛼)

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝛼(𝑧)

Since dim(𝑀) ≥ dim(𝑉𝜆) > 0, this can be rearranged to give 𝜆(𝑧) = 𝑟𝜆.𝛼(𝑧) as required.

Definition 5.2.11. Let 𝔤 be a Lie algebra over a field k. We say that 𝔤 is perfect if it satisfies 𝔤 = 𝐷(𝔤) = [𝔤, 𝔤]. A
perfect Lie algebra therefore has no nontrivial abelian quotients.

Proposition5.2.12. Let𝑉 beafinite-dimensionalk-vector space and let𝑏𝑉 ∶ 𝔤𝔩𝑉 ×𝔤𝔩𝑉 → k, be the trace form,𝑏𝑉(𝑥, 𝑦) =
tr𝑉(𝑥𝑦), for all 𝑥, 𝑦 ∈ 𝔤𝔩𝑉 . If 𝔞 is a non-zero perfect subalgebra of 𝔤𝔩𝑉 then there is an 𝑥 ∈ 𝔞 such that 𝑏𝑉(𝑥, 𝑥) ≠ 0, so that
𝑏𝑉 does not vanish identically on 𝔞.

Proof. Suppose that 𝔥 is a Cartan subalgebra of 𝔞 so that that 𝔞 = ⨁𝜆∈Φ∪{0} 𝔞𝜆 is the associated Cartan decompo-
sition, where 𝔥 = 𝔞0. If we let 𝑉 = ⨁𝜇∈Ψ 𝑉𝜇 be the decomposition of 𝑉 into generalised 𝔥-weight spaces as in
Theorem 4.3.13, then since 𝔞 ⊆ 𝔤𝔩𝑉 ≅ 𝑉∗ ⊗𝑉, it follows thatΦ⋃{0} ⊆ {𝜇1 − 𝜇2 ∶ 𝜇1, 𝜇2 ∈ Ψ}. Now if 𝔞 = 𝔤0, then
𝔥 = 𝔞 is nilpotent and hence solvable, but by assumption 𝔞 = 𝐷(𝔞), so this is a contradiction. It follows thatΦmust
be non-empty, and so in particular there must be some non-zero 𝜆 ∈ Ψ𝑉 . Next observe that

𝔞 = 𝐷𝔞 = [𝔞, 𝔞] = 􏿮 􏾘
𝜆∈Φ∪{0}

𝔞𝜆, 􏾘
𝜇∈Φ∪{0}

𝔞𝜇􏿱 = 􏾜
𝜆,𝜇
[𝔞𝜆, 𝔞𝜇].

Since we know that [𝔞𝜆, 𝔞𝜇] ⊆ 𝔞𝜆+𝜇, andmoreover 𝔥 = 𝔞0, it follows that wemust have

𝔥 = [𝔥, 𝔥] +􏾜
𝛼
[𝔞𝛼, 𝔞−𝛼] = 𝐷(𝔥) +􏾜

𝛼
𝔥𝛼
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where the sum runs over those roots𝛼 such that−𝛼 ∈ Φ. But by definition,𝜆 vanishes on𝐷𝔥, so that theremust be
some 𝛼 ∈ Φwith 𝜆(𝔥𝛼) ≠ 0. For such an 𝛼, let 𝑥 ∈ 𝔥𝛼 = [𝔞𝛼, 𝔞−𝛼] be such that 𝜆(𝑥) ≠ 0. Then we have

𝑏𝑉(𝑥, 𝑥) = tr(𝑥2) = 􏾜
𝜇∈Ψ

dim(𝑉𝜇)𝜇(𝑥)2.

But now by Lemma 5.2.10 for each 𝜇 ∈ Ψ there is an 𝑟𝜇 ∈ Q such that 𝜇(𝑥) = 𝑟𝜇.𝛼(𝑥) for all 𝑥 ∈ [𝔞𝛼, 𝔞−𝛼]. In
particular, 0 ≠ 𝜆(𝑥) = 𝑟𝜆𝛼(𝑥) so that 𝑟𝜆 ≠ 0 and 𝛼(𝑥) ≠ 0. Hence we see that

𝑡𝑉(𝑥, 𝑥) =

⎛
⎜⎜⎜⎜⎜⎜⎝􏾜𝜇∈Ψ

dim(𝑉𝜇)𝑟2𝛼,𝜇

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝛼(𝑥)

2.

Since the terms in the sum are nonnegative, and the term corresponding to 𝜆 is positive, we conclude 𝑡𝑉(𝑥, 𝑥) ≠ 0
are required.

Recall that for any finite dimensional Lie algebra, the derived series stablizes to an ideal which we denote as
𝐷∞(𝔤). It has the property that it is equal to its own derived subalgebra, i.e. 𝐷∞(𝔤) is perfect.

Theorem 5.2.13. Let 𝔤 be a Lie algebra and let (𝑉, 𝜌) be a 𝔤-representation. Then if 𝑡𝑉 vanishes on 𝐷(𝔤) then 𝜌(𝔤) is
solvable, or equivalently,𝐷∞(𝔤) ⊆ ker(𝜌).

Proof. Since 𝜌(𝐷(𝔤)) = 𝐷(𝜌(𝔤)), replacing 𝔤 by its image 𝜌(𝔤), we may assume that 𝔤 ⊆ 𝔤𝔩𝑉 and 𝑏𝑉 vanishes on
𝐷(𝔤). We must show that 𝔤 is solvable, that is𝐷∞(𝔤) = {0}. But if this is not the case, then setting 𝔞 = 𝐷∞(𝔤) it
follows that 𝔞 is a non-zero perfect subalgebra of 𝔤𝔩𝑉 . But then the previous Proposition shows there is some 𝑥 ∈ 𝔞
for which 𝑏𝑉(𝑥, 𝑥) ≠ 0. But by assumption 𝑏𝑉 vanishes identically on𝐷(𝔤) ⊇ 𝔞, which gives a contradiction.

Corollary 5.2.14. (Cartan’s Criterion for Solvability) Let 𝔤 be a (finite-dimensional) k-Lie algebra and let 𝜅 denote its
Killing form. Then the following are equivalent:

i) 𝜅(𝐷(𝔤), 𝐷(𝔤)) = 0,

ii) 𝔤 is solvable,

iii) 𝜅(𝔤,𝐷(𝔤)) = 0, that is,𝐷(𝔤) ⊆ rad(𝜅).

is solvable if and only if the Killing form vanishes on𝐷(𝔤).

Proof. Clearly 𝑖𝑖𝑖) ⟹ 𝑖) so it suffices to show 𝑖) ⟹ 𝑖𝑖) and 𝑖𝑖) ⟹ 𝑖𝑖𝑖).
For 𝑖) ⟹ 𝑖𝑖) note that 𝑖) is the hypothesis of Theorem 5.2.13 for the representation (𝔤, ad), and hence the

theorem shows that𝐷∞(𝔤) ⊆ ker(ad) = 𝔷(𝔤). But since𝐷∞(𝔤) is perfect, this shows that𝐷∞(𝔤) = 𝐷(𝐷∞(𝔤)) ⊆
𝐷(𝔷(𝔤)) = {0} and hence 𝑖𝑖) holds.

For 𝑖𝑖) ⟹ 𝑖𝑖𝑖) note that if 𝔤 is solvable, by Lie’s theorem if 𝒞 = (𝑉 = 𝐹0 > 𝐹1 > … > 𝐹𝑑 = {0}) is a
composition series for (𝔤, ad) then each subquotient𝐹𝑖/𝐹𝑖+1must be one-dimensional, i.e. 𝒞 is a complete flag. Pick
a basis 𝐵 = {𝑒1, … , 𝑒𝑑} of 𝔤 such that 𝐹𝑘 = ⟨𝑒𝑖 ∶ 𝑖 ≤ 𝑑 − 𝑘⟩k, and let 𝛼 ↦ [𝛼]𝐵 denote the isomorphism 𝔤𝔩𝔤 → 𝔤𝔩𝑑(k)
where [𝛼]𝐵 = (𝛼𝐵𝑖𝑗)1≤𝑖,𝑗≤𝑑. This isomorphism identifies 𝔟𝒞 ⊃ 𝐷(𝔟𝒞 ) = 𝔫𝒞 with 𝔟𝑑 ⊃ 𝔫𝑑 the space of upper-
triangular matrices and strictly upper triangular matrices in 𝔤𝔩𝑑 respectively. In particular, for any 𝑥, 𝑦 ∈ 𝔟𝒞 we
have tr𝔤(𝑥𝑦) = ∑𝑑

𝑖=1 𝑥
𝐵
𝑖𝑖 .𝑦𝐵𝑖𝑖 , and in particular tr𝔤(𝑥𝑦) = 0 if 𝑥 ∈ 𝔟𝒞 , 𝑦 ∈ 𝔫𝒞 . But as𝒞 is a composition series for 𝔤,

we have ad(𝔤) ⊆ 𝔟𝒞 , and hence ad(𝐷(𝔤)) = 𝐷(ad(𝔤)) ⊆ 𝐷(𝔟𝒞 ) = 𝔫𝒞 . It follows immediately that 𝜅(𝔤,𝐷(𝔤)) ⊆
tr𝔤(𝔟𝒞 , 𝔫𝒞 ) = 0 as required.
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Chapter 6

Semisimple Lie algebras

In this section we assume that our field k is algebraically closed of characteristic zero, and all representations are assumed to
be finite dimensional over k.

6.1 The solvable radical, semisimplicity, and Cartan’s criterion

Suppose that 𝔤 is a Lie algebra, and 𝔞 and 𝔟 are solvable Lie ideals of 𝔤. It is easy to see that 𝔞 + 𝔟 is again solvable
(for example, because 0 ⊆ 𝔞 ⊆ 𝔞 + 𝔟, and 𝔞 and (𝔞 + 𝔟)/𝔞 ≅ 𝔟/(𝔞 ∩ 𝔟) are both solvable). It follows that if 𝔤 is
finite dimensional, then it has a largest solvable ideal 𝔯. Note that this is in the strong sense: every solvable ideal of
𝔤 is a subalgebra of 𝔯 (c.f. Definition 4.3.7 where the same strategy was used to define the subrepresentation𝑉𝑆 of a
𝔤-representation given an irreducible representation 𝑆 of 𝔤).

Definition 6.1.1. Let 𝔤 be a finite dimensional Lie algebra. The largest solvable ideal 𝔯 of 𝔤 is known as the (solvable)
radical of 𝔤, and will be denoted rad(𝔤). We say that 𝔤 is semisimple if rad(𝔤) = 0, that is, if 𝔤 contains no non-zero
solvable ideals.

Lemma 6.1.2. The Lie algebra 𝔤/rad(𝔤) is semisimple, that is, it has zero radical.

Proof. Suppose that 𝔰 is a solvable ideal in 𝔤/rad(𝔤). Then if 𝔰′ denotes the preimage of 𝔰 in 𝔤, we see that 𝔰′ is an
ideal of 𝔤, andmoreover it is solvable since rad(𝔤) and 𝔰 = 𝔰′/rad(𝔤) as both solvable. But then by definitionwe have
𝔰′ ⊆ rad(𝔤) so that 𝔰′ = rad(𝔤) and 𝔰 = 0 as required.

Example 6.1.3. The Lemma shows that any Lie algebra 𝔤 contains a canonical solvable ideal rad(𝔤) such that
𝔤/rad(𝔤) is a semisimple Lie algebra. Thus we have a short exact sequence:

0 // rad(𝔤) // 𝔤 // 𝔤/rad(𝔤) // 0,
so that any Lie algebra is an extension of the semisimple Lie algebra 𝔤/rad(𝔤) by the solvable Lie algebra rad(𝔤).

In characteristic zero, every Lie algebra 𝔤 is built out of rad(𝔤) and 𝔤/rad(𝔤) as a semidirect product.

Theorem 6.1.4. (Levi’s theorem) Let 𝔤 be a finite dimensional Lie algebra over a field k of characteristic zero, and let 𝔯 be
its radical. Then there exists a subalgebra 𝔰 of 𝔤 such that 𝔤 ≅ 𝔯 ⋉ 𝔰. In particular 𝔰 ≅ 𝔤/𝔯 is semisimple.

6.1.1 Cartan’s Criterion for semisimplicity

TheKilling formgives us away of detectingwhen a Lie algebra is semisimple. Recall that, given a symmetric bilinear
form 𝐵∶ 𝑉 ×𝑉 → k, the radical of 𝐵 is

rad(𝐵) = {𝑣 ∈ 𝑉 ∶ ∀𝑤 ∈ 𝑉, 𝐵(𝑣, 𝑤) = 0} = 𝑉⟂.

The form 𝐵 said to be nondegenerate if rad(𝐵) = {0}. We first note the following simple result.

Lemma6.1.5. A finite dimensional Lie algebra 𝔤 is semisimple if and only if it does not contain any non-zero abelian ideals.
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Proof. Clearly if 𝔤 contains an abelian ideal, it contains a solvable ideal, so that rad(𝔤) ≠ 0. Conversely, if 𝔰 is a
non-zero solvable ideal in 𝔤, then the last term in the derived series of 𝔰will be an abelian ideal of 𝔤.

We have the following simple characterisation of semisimple Lie algebras.

Theorem 6.1.6. A Lie algebra 𝔤 is semisimple if and only if the Killing form is nondegenerate.

Proof. Let 𝔤⟂ = {𝑥 ∈ 𝔤 ∶ 𝜅(𝑥, 𝑦) = 0, ∀𝑦 ∈ 𝔤}. Then by Lemma 5.2.8 𝔤⟂ is an ideal in 𝔤, and clearly the restriction of
𝜅 to 𝔤⟂ is zero, so by Cartan’s Criterion, and Lemma 5.2.8 the ideal 𝔤⟂ is solvable. It follows that if 𝔤 is semisimple
wemust have 𝔤⟂ = {0} and hence 𝜅 is non-degenerate.

Conversely, suppose that𝜅 is non-degenerate. To showthat𝔤 is semisimple it is enough to showthat anyabelian
ideal of 𝔤 is trivial, thus suppose that 𝔞 is an abelian ideal, and pick𝑊 a complementary subspace to 𝔞 so that 𝔤 =
𝔞 ⊕𝑊. With respect to this decomposition, if 𝑥 ∈ 𝔤 and 𝑎 ∈ 𝔞, we have

ad(𝑥) = 􏿶
𝑥1 𝑥2
0 𝑥3 􏿹

, ad(𝑎) = 􏿶
0 𝑎2
0 0 􏿹 ∈ 􏿶

Homk(𝔞, 𝔞) Homk(𝑊, 𝔞)
Homk(𝔞,𝑊) Homk(𝑊,𝑊) 􏿹 .

But then we see that ad(𝑥) ∘ ad(𝑎) = 􏿶
0 𝑥1𝑎2
0 0 􏿹, and hence tr(ad(𝑥)ad(𝑎)) = 0. It follows that 𝔞 ⊆ 𝔤⟂ = {0} as 𝜅

is non-degenerate and hence 𝔞 = {0} as required.

Remark 6.1.7. It is worth noting that the proof of the previous theorem establishes two facts: first, that 𝔤⟂ is a
solvable ideal in 𝔤 for any Lie algebra 𝔤, and secondly, that any abelian ideal of 𝔤 is contained in 𝔤⟂. Combined with
the previous Lemma this shows that 𝔤⟂ = {0} ⟺ rad(𝔤) = {0}, but in general the containment 𝔤⟂ ⊆ rad(𝔤) need
not be an equality.

6.2 Simple and semisimple Lie algebras

Definition 6.2.1. Recall from Definition 3.1.1 that a Lie algebra 𝔤 is said to be almost simple if it has no non-trivial
proper ideals. We say that 𝔤 is simple if it is nonabelian and has no nontrivial proper ideal, i.e. 𝔤 is almost simple and
nonabelian. We now show that this notion is closed related to our notion of a semisimple Lie algebra.

Lemma6.2.2. Let𝑉 be a k-vector space equippedwith a symmetric bilinear form𝐵. Then for any subspace𝑈 of𝑉 we have

i) dim(𝑈) + dim(𝑈⟂) ≥ dim(𝑉),

ii) the restriction 𝐵|𝑈 is non-degenerate if and only if𝑈 ⊕𝑈⟂ = 𝑉.

Proof. See Lemma I.21 in Appendix I.

Proposition 6.2.3. Let 𝔤 be a Lie algebra, and let 𝐼 be an ideal of 𝔤.

i) If 𝔤 is semisimple then 𝔤 = 𝐼 ⊕ 𝐼⟂, and both 𝐼 and 𝐼⟂ are semisimple, hence any ideal and any quotient of 𝔤 is semisim-
ple.

ii) 𝐼 is semisimple if and only if 𝔤 = 𝐼 ⊕ 𝐼⟂.

Proof. For part 𝑖) consider 𝐼 ∩ 𝐼⟂. The Killing form 𝜅 of 𝔤 vanishes identically on 𝐼 ∩ 𝐼⟂ by definition, and since it is
an ideal, theKilling formof 𝐼 ∩ 𝐼⟂ is just the restriction of theKilling formof 𝔤. It follows fromCartan’s Criterion that
𝐼 ∩ 𝐼⟂ is solvable, and hence since 𝔤 is semisimple we must have 𝐼 ∩ 𝐼⟂ = 0. But then by part i) of Lemma 6.2.2 we
must have 𝔤 = 𝐼 ⊕ 𝐼⟂. Since this is evidently an orthogonal direct sum, the Killing formmust be nondegenerate on
both 𝐼 and 𝐼⟂, and since they are ideals, Cartan’s criterion then implies they are both semisimple. Since the quotient
map induces an isomorphism 𝐼⟂ ≅ 𝔤/𝐼 it follows that any quotient of 𝔤 is also semisimple.

For 𝑖𝑖), note that by part 𝑖𝑖) of Lemma 6.2.2, 𝜅 is non-degenerate on 𝐼 if and only if 𝔤 = 𝐼 ⊕ 𝐼⟂. But the restriction
of 𝜅𝔤 to 𝐼 is the Killing form of 𝐼, and so Cartan’s criterion completes the proof.

Corollary 6.2.4. Let 𝔤 be a semisimple Lie algebra and let Derk(𝔤) be the Lie algebra of derivations of 𝔤. Then ad ∶ 𝔤 →
Derk(𝔤) is an isomorphism, so that in particular any derivation of 𝔤 is inner.
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Proof. Suppose that 𝛿 ∈ Derk(𝔤). Then wemay form 𝔤1 = 𝔤⋊𝛿 𝔤𝔩1, the semi-direct product1 of 𝔤 and 𝔤𝔩1. Now 𝔤 is a
semisimple ideal in 𝔤1, so by Proposition 6.2.3, 𝔤1 = 𝔤 ⊕ 𝔤⟂. But then [𝔤⟂, 𝔤] ⊆ 𝔤⟂ ∩ 𝔤 = {0}. and so if 𝑎 ∈ 𝔞 is such
that (𝑎, −1) ∈ 𝔤⟂ then for all 𝑥 ∈ 𝔤we have

0 = [(𝑎, −𝑡), (𝑥, 0)] = ad(𝑎)(𝑥) − 𝛿(𝑥),

and hence 𝛿 = ad(𝑎) is an inner derivation as required.

Theorem 6.2.5. Let 𝔤 be a semisimple Lie algebra.

i) There exist ideals 𝔤1, 𝔤2, … 𝔤𝑘 ⊆ 𝔤which are simple Lie algebras and for which the natural map:

𝔤1 ⊕ 𝔤2 ⊕…⊕ 𝔤𝑘 → 𝔤,

is an isomorphism. In particular, if 𝔤 is semisimple it is perfect, i.e. 𝐷(𝔤) = 𝔤..

ii) Any simple ideal 𝔞 ∈ 𝔤 is equal to some 𝔤𝑖 (1 ≤ 𝑖 ≤ 𝑘). In particular the decomposition in part 𝑖) is unique up to
reordering.

Proof. For part 𝑖)we use induction on the dimension of 𝔤. Let 𝔞 be a minimal non-zero ideal in 𝔤. If 𝔞 = 𝔤 then 𝔤 is
simple, so we are done. Otherwise, we have dim(𝔞) < dim(𝔤). Then 𝔤 = 𝔞 ⊕ 𝔞⟂, and by induction 𝔞⟂ is a direct sum
of simple ideals. It follows that 𝔤 = 𝔞 ⊕ 𝔞⟂, hence any ideal in 𝔞 is also an ideal in 𝔤, thus since 𝔞 is a minimal ideal,
it must be simple, and so 𝔤 is a direct sum of simple ideals as required. Since a simple Lie algebra is trivially seen to
be perfect, each 𝔤𝑖 is perfect and hence so is 𝔤.

For part 𝑖𝑖), suppose that 𝔤 = 𝔤1 ⊕ 𝔤2 ⊕…⊕ 𝔤𝑘 is a decomposition as above and 𝔞 is a simple ideal of 𝔤. Now as
𝔷(𝔤) = {0}, wemust have 0 ≠ [𝔤, 𝔞] ⊂ 𝔞, and hence by simplicity of 𝔞 it follows that [𝔤, 𝔞] = 𝔞. But then we have

𝔞 = [𝔤, 𝔞] = [
𝑘

􏾘
𝑖=1

𝔤𝑖, 𝔞] = [𝔤1, 𝔞] ⊕ [𝔤2, 𝔞] ⊕ … ⊕ [𝔤𝑘, 𝔞],

(the ideals [𝔤𝑖, 𝔞] are contained in 𝔤𝑖 so the last sum remains direct). But 𝔞 is simple, so direct sum decomposition
must have exactly one nonzero summand andwehave 𝔞 = [𝔤𝑖, 𝔞] for some 𝑖 (1 ≤ 𝑖 ≤ 𝑘). Finally, using the simplicity
of 𝔤𝑖 we see that 𝔞 = [𝔤𝑖, 𝔞] = 𝔤𝑖 as required.

Remark 6.2.6. For any finite-dimensional Lie algebra 𝔤, its solvable radical rad(𝔤) is a solvable ideal, and hence
has 𝔤𝔩1 as its only composition factor, while 𝔤/rad(𝔤) is semisimple. The previous Theorem thus shows that 𝔤/rad(𝔤)
is a direct sum of simple Lie algebras. Combined with Proposition 6.2.3, this gives a substantial refinement of the
Jordan-Hölder theorem of Chapter 3.

Let𝒞 = (𝔤 = 𝔤0 ▷ 𝔤1 ▷…▷ 𝔤𝑑 = {0}) be a composition series for 𝔤with composition factors 𝔰𝑖 = 𝔤𝑖/𝔤𝑖+1. If
𝔰𝑖 is simple, then applying Proposition 6.2.3 to 𝔰𝑖 ◁ 𝔤𝑖−1/𝔤𝑖−1 we see that 𝔤𝑖−1/𝔤𝑖−1 is a direct sum which (by abuse
of notation) we write as 𝔰𝑖 ⊕ 𝔰𝑖−1. It follows that we may modify 𝔤𝑖 to obtain a new composition series with the
composition factor 𝔰𝑖 now occuring as 𝔰𝑖−1. Applying this repeatedly, we may modify any composition series to
obtain a composition series 𝒞 ′ with the property that there is some 𝑘 ≤ 𝑑 such that 𝔤𝑘 = rad(𝔤), and hence the
composition factor 𝔤𝑠/𝔤𝑠+1 ≅ 𝔤𝔩1 for all 𝑠 ≥ 𝑘, while the composition factors 𝔤𝑠/𝔤𝑠+1 for 𝑠 < 𝑘 are all in fact direct
summands of 𝔤0/𝔤𝑘.

6.2.1 The Jordan Decomposition

The following proposition is a consequence of the primary decomposition theorem in linear algebra. For complete-
ness, we provide a proof in the appendices – see Proposition I.2.

1Recall that a semidirect product of Lie algebras 𝔞 ⋊ 𝔟 requires, in addition to the two Lie algebras, a homomorphism 𝜑∶ 𝔟 → Derk(𝔞). If
𝔟 = 𝔤𝔩1 however, 𝜑 is determined by 𝜑(1) ∈ Derk(𝔞), i.e. we only need to specify the derivation by which ad(1) acts on 𝔞 in the semidirect
product.
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Proposition 6.2.7. Let𝑉 be a finite-dimensional k-vector space. For any 𝑥 ∈ End(𝑉), there is a direct sum decomposition

𝑉 =􏾘
𝜆∈k

𝑉𝜆,𝑥, where𝑉𝜆,𝑥 = 􏿺𝑣 ∈ 𝑉 ∶ ∃𝑁 > 0, (𝑥 − 𝜆)𝑁(𝑣) = 0􏿽.

The subspace𝑉𝜆,𝑥 is known as the𝜆-generalized eigenspace of 𝑥.

If the only 𝜆 ∈ k for which𝑉𝜆,𝑥 ≠ {0} is 𝜆 = 0, so that 𝑥𝑁 = 0 for some𝑁 ∈ N, we say that 𝑥 is nilpotent. If, for
each 𝑣 ∈ 𝑉𝜆,𝑥 wemay take𝑁 = 1, thenwe say that 𝑥 is semisimple. Equivalently, 𝑥 ∈ Endk(𝑉) is semisimple if there
is a direct sumdecomposition𝑉 =⨁1≤𝑖≤𝑛 𝐿𝑖 such that 𝑥(𝐿𝑖) ⊆ 𝐿𝑖, i.e. in terms of the 𝔤𝔩1-representation𝜌𝑥 ∶ 𝔤𝔩1 →
𝔤𝔩𝑉 givenby𝜌𝑥(𝑐) = 𝑐.𝑥, the representation (𝑉, 𝜌𝑥) is semisimple. The generalised eigenspace decomposition above
can be used to give a decomposition of the endomorphism 𝑥 in a semisimple (or diagonalisable) and nilpotent part:

Lemma 6.2.8. Let 𝑥∶ 𝑉 → 𝑉 be a linear map. Then there exists a diagonalisable linear map 𝑥𝑠 and a nilpotent linear
map 𝑥𝑛 such that 𝑥 = 𝑥𝑠 + 𝑥𝑛 and [𝑥𝑠, 𝑥𝑛] = 0. Moreover, if𝑈 ≤ 𝑉 is 𝑥-stable, so that 𝑥(𝑈) ⊆ 𝑈, then 𝑥𝑠 and 𝑥𝑛 also
preserve𝑈.

Proof. Let𝑉 =⨁𝜆∈k 𝑉𝜆 be the generalised eigenspace decomposition of𝑉 given by the action of 𝑥. Suppose that
{𝜆1, … , 𝜆𝑘} are the distinct eigenvalues of 𝑥, and let (𝑒𝑖)𝑘𝑖=1 be the projection maps to 𝑉𝜆𝑖 . Then if 𝑥𝑠 = ∑𝑘

𝑖=1 𝜆𝑖.𝑒𝑖,
clearly 𝑥𝑠 is semisimple, and [𝑥, 𝑥𝑠] = 0 (since this is evident on each𝑉𝜆𝑘). Setting 𝑥𝑛 = 𝑥 − 𝑥𝑠, and noting that on
each𝑉𝜆𝑖 the map 𝑥 − 𝑥𝑠 is equal to 𝑥 − 𝜆𝑖, which is nilpotent, we conclude that 𝑥𝑛 is nilpotent as required.

Now suppose that𝑈 ≤ 𝑉 and 𝑥(𝑈) ⊆ 𝑈. Then wemust have𝑈 =⨁𝜆∈𝑆(𝑥|𝑈 )
𝑈𝜆,𝑥, and it follows directly from

the definition that𝑈𝜆,𝑥 = 𝑈 ∩ 𝑉𝜆,𝑥, so that𝑈 = ⨁𝜆∈𝑆(𝑥)(𝑈 ∩ 𝑉𝜆). But 𝑥𝑠 clearly preserves𝑈 ∩𝑉𝜆 for each 𝜆,
and thus 𝑥𝑠 preserves𝑈. Since 𝑥𝑛 = 𝑥 − 𝑥𝑠, it also preserves𝑈 as required.

In fact, given 𝑥 = 𝑥𝑠 + 𝑥𝑛, the conditions that 𝑥𝑠 is semisimple and 𝑥𝑛 is nilpotent along with the fact that they
commute, determines them uniquely. To see this we use the following:

Lemma 6.2.9. Let𝑉 be a k-vector space and 𝑥 ∈ End(𝑉).

i) If 𝑛 ∈ End(𝑉) is such that [𝑥, 𝑛] = 0 and 𝑛 is nilpotent. Then we have𝑉𝜆,𝑥 = 𝑉𝜆,𝑥+𝑛.

ii) If 𝑥 = 𝑠 + 𝑛 where [𝑠, 𝑛] = 0 and 𝑠 is semisimple, 𝑛 is nilpotent, then 𝑠 = 𝑥𝑠 and 𝑛 = 𝑥𝑛, that is, the Jordan
decomposition is unique.

Proof. For part i) it suffices to show that𝑉𝜆,𝑥 ⊆ 𝑉𝜆,𝑥+𝑛 for all such pairs (𝑥, 𝑛) in End(𝑉). Indeed the lemma clearly
follows once one also knows the reverse inclusion, but this follows by considering the pair (𝑥 + 𝑛, −𝑛). To prove the
inclusion, note that since [𝑥, 𝑛] = 0, we have 𝑛(𝑉𝜆,𝑥) ⊆ 𝑉𝜆,𝑥. But by definition (𝑥 − 𝜆) is nilpotent on 𝑉𝜆,𝑥 and
hence (𝑥 + 𝑛) − 𝜆 = (𝑥 − 𝜆) + 𝑛, when restricted to𝑉𝜆,𝑥, is the sumof two commuting nilpotent endomorphisms of
𝑉𝜆,𝑥. It follows from Lemma 4.2.13 that (𝑥 + 𝑛) − 𝜆 acts nilpotently on𝑉𝜆,𝑥, and hence𝑉𝜆,𝑥 ⊆ 𝑉𝜆,𝑥+𝑛 as required.

Forpart 𝑖𝑖), note thatbypart 𝑖),𝑥𝑠 and𝑥𝑠+𝑥𝑛 = 𝑥have thesamegeneralisedeigenspaces. Butas𝑥𝑠 is semisimple,
its generalized eigenspaces are precisely its eigenspaces and hence it is completely determined by these. It follows
𝑥𝑠 is unique, and hence 𝑥𝑛 = 𝑥 − 𝑥𝑠 is also.

Lemma 6.2.10. Let𝑉 be a vector space and 𝑥 ∈ End(𝑉). If 𝑥 is semisimple then

ad(𝑥) ∶ End(𝑉) → End(𝑉)

is also semisimple, and similarly if 𝑥 is nilpotent.

Proof. First note that the action of ad(𝑥) on 𝔤𝔩𝑉 is just the action of 𝑥 on the tensor product 𝑉∗ ⊗ 𝑉. When 𝑥 is
nilpotent, the result is proved in Lemma 4.2.14. Alternatively, for 𝑟, 𝑠 ≥ 0 let 𝐺𝑟,𝑠 = 𝑥𝑟 ∘ 𝔤𝔩𝑉 ∘ 𝑥𝑠 ⊆ 𝔤𝔩𝑉 , and let
𝐹𝑘 = ∑𝑟+𝑠=𝑘 𝐺𝑟,𝑠. Clearly𝐺𝑟,𝑠 ⊆ 𝐺𝑟′,𝑠′ if 𝑟 ≥ 𝑟′, 𝑠 ≥ 𝑠′ so that𝐹𝑘 ⊇ 𝐹𝑘+1 and, if 𝑥𝑑 = 0, then𝐺𝑟,𝑠 = 0 if max{𝑟, 𝑠} ≥ 𝑑,
and hence𝐹𝑘 = 0 if 𝑘 ≥ 2𝑑− 1. Moreover, ad(𝑥)(𝐺𝑟,𝑠) ⊆ 𝐺𝑟+1,𝑠 +𝐺𝑟,𝑠+1 ⊆ 𝐹𝑟+𝑠+1, hence ad(𝑥)(𝐹𝑘) ⊆ 𝐹𝑘+1. It follows
ad(𝑥) is nilpotent as required.

If 𝑥 is semisimple, then wemaywrite𝑉 =⨁𝑛
𝑖=1 𝐿𝑖 where 𝑥(𝐿𝑖) ⊆ 𝐿𝑖 and dim(𝐿𝑖) = 1. But then

Hom(𝑉, 𝑉) = Hom

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑛
􏾘
𝑖=1

𝐿𝑖,
𝑛

􏾘
𝑗=1

𝐿𝑗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=

𝑛
􏾘
𝑖,𝑗=1

Hom(𝐿𝑖, 𝐿𝑗),
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and clearly the one-dimensional spaces Hom(𝐿𝑖, 𝐿𝑗) are preserved by ad(𝑥), so that Hom(𝑉,𝑉) decomposes into a
direct sum of one-dimensional ad(𝑥)-stable subspaces, and hence ad(𝑥) is semisimple.

Corollary 6.2.11. Let 𝑥 ∈ End(𝑉), and suppose 𝑥 = 𝑥𝑠 + 𝑥𝑛 is the Jordan decomposition of 𝑥. Then ad(𝑥) = ad(𝑥𝑠) +
ad(𝑥𝑛) is the Jordan decomposition of ad(𝑥).

Proof. By the previous Lemma, ad(𝑥𝑠) and ad(𝑥𝑛) are semisimple and nilpotent respectively, and as ad is a represen-
tation, [ad(𝑥𝑠), ad(𝑥𝑛)] = ad([𝑥𝑠, 𝑥𝑛]) = 0.

We now return to Lie algebras. The above linear algebra allows us to define an “abstract” Jordan decomposition
for the elements of any Lie algebra (over an algebraically closed field).

Definition 6.2.12. Suppose that 𝔤 is a Lie algebra and 𝑥 ∈ 𝔤. The endomorphism ad(𝑥) ∈ 𝔤𝔩𝔤 has a unique Jordan
decomposition ad(𝑥) = ad(𝑥)𝑠 + ad(𝑥)𝑛 in 𝔤𝔩𝔤. Then if 𝑠, 𝑛 ∈ 𝔤 are such that ad(𝑠) = ad(𝑥)𝑠 and ad(𝑛) = ad(𝑥)𝑛, we
say the Lie algebra elements 𝑠, 𝑛 are an abstract Jordan decomposition of 𝑥. Note that if 𝑧 ∈ 𝔷(𝔤) ≠ {0} then if (𝑠, 𝑛) is a
Jordan decomposition of 𝑥 so is (𝑠 + 𝑧, 𝑛 − 𝑧), thus the Jordan decomposition is unique if and only if 𝔷(𝔤) = {0}.

Note that that if 𝔤 = 𝔤𝔩𝑉 for somevector space𝑉, thenLemma6.2.10 shows that thenaive Jordandecomposition
gives an abstract Jordan decomposition for an element 𝑥 ∈ 𝔤𝔩𝑉 , and moreover if 𝑥 ∈ 𝔰𝔩𝑉 then the naive Jordan
decomposition 𝑥 = 𝑥𝑠 + 𝑥𝑛 has tr(𝑥𝑠) = tr(𝑥) = 0 so 𝑥𝑠, 𝑥𝑛 ∈ 𝔰𝔩𝑉 and the naive Jordan decomposition is the abstract
Jordan decomposition by the Corollary above.

Lemma 6.2.13. Let 𝔞 be a Lie algebra and Derk(𝔞) ⊂ 𝔤𝔩𝔞 the Lie algebra of k-derivations on 𝔞. Let 𝛿 ∈ Derk(𝔞). If
𝛿 = 𝑠 + 𝑛 is the Jordan decomposition of 𝛿 as an element of 𝔤𝔩𝔞, then 𝑠, 𝑛 ∈ Derk(𝔞).

Proof. Wemay decompose 𝔞 =⨁𝜆 𝔞𝜆 where 𝔞𝜆 is the generalized eigenspace of 𝛿with eigenvalue 𝜆 ∈ k say. Now
since 𝛿 is a derivation the map 𝔞𝜆 ⊗ 𝔞𝜇 → 𝔞 given by 𝑥 ⊗ 𝑦 ↦ [𝑥, 𝑦] is compatible with the action of 𝛿. But then by
Lemma 4.3.11, if 𝑥 ∈ 𝔞𝜆 and 𝑦 ∈ 𝔞𝜇, we have [𝑥, 𝑦] ∈ 𝔞𝜆+𝜇. It follows immediately that 𝑠 is a derivation on 𝔞, and
since 𝑛 = 𝛿 − 𝑠we see that 𝑛 is also.

Theorem 6.2.14. Let 𝔤 be a semisimple Lie algebra. Then any 𝑥 ∈ 𝔤 has an abstract Jordan decomposition: that is, there
exist unique elements 𝑠, 𝑛 ∈ 𝔤 such that 𝑥 = 𝑠 + 𝑛 and [𝑠, 𝑛] = 0, and ad(𝑠) is semisimple, while ad(𝑛) is nilpotent.

Proof. As noted above, since 𝔤 is semisimple, ad ∶ 𝔤 → 𝔤𝔩𝔤 is an embedding, and the conditions on 𝑠 and 𝑛 show that
if they exist, they must satisfy ad(𝑠) = ad(𝑥)𝑠 and ad(𝑛) = ad(𝑥)𝑛, where ad(𝑥) = ad(𝑥)𝑠 + ad(𝑥)𝑛 is the Jordan
decomposition of ad(𝑥) ∈ 𝔤𝔩𝔤. Thus it remains to show that ad(𝑥)𝑠 and ad(𝑥)𝑛 lie in the image of ad. But ad(𝑥) acts
as a derivation on 𝐼 = ad(𝔤), so by Lemma 6.2.13 so do ad(𝑥)𝑠 and ad(𝑥)𝑛. But then by part (ii) of Proposition 6.2.3,
we see that ad(𝑥)𝑠 = ad(𝑠) for some 𝑠 ∈ 𝔤 and ad(𝑥)𝑛 = ad(𝑛) for some 𝑛 ∈ 𝔤. The conditions on 𝑠, 𝑛 ∈ 𝔤 then follow
from the injectivity of ad, and we are done.

6.3 Representations of semisimple Lie algebras: Weyl’s theorem

The goal of this section is to establish the following theorem:

Theorem 6.3.1. (Weyl’s theorem.) Let 𝔤 be a semisimple Lie algebra. If𝑉 is a finite-dimensional representation of 𝔤 and
𝑈 is a subrepresentation of 𝑉, then there is a complementary subrepresentation𝑊, that is,𝑊 is a subrepresentation and
𝑉 = 𝑈 ⊕𝑊.

Remark 6.3.2. The property that every subrepresentation has a complement is called the semisimplicity of a rep-
resentation, so the theorem can be phrased as saying that the finite dimensional representations of a semisimple
Lie algebra are semisimple! Note that we showed in Theorem 6.2.5 that any ideal in a semisimple Lie algebra has a
complementary ideal, which establishes the semisimplicity of the adjoint representation.

It is easy to see that a semisimple representation is completely reducible, that is, is a direct sum of irreducible
subrepresentations (indeedMaschke’s theorem for finite groups establishes the same semisimplicity result for suit-
able representations of finite groups and the argument used to deduce complete reducibility in that settingworks in
this context also).
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Definition 6.3.3. Let (𝑉, 𝜌) be a 𝔤-representation. We define

𝑉𝔤 = 􏿺𝑣 ∈ 𝑉 ∶ 𝜌(𝑥)(𝑣) = 0, ∀𝑥 ∈ 𝔤􏿽, 𝔤.𝑉 = spank􏿺𝜌(𝑥)(𝑣) ∶ 𝑥 ∈ 𝔤, 𝑣 ∈ 𝑉􏿽

Note 𝑉𝔤 is the subrepresentation of invariants we have considered before, and one can check directly that 𝔤.𝑉 is a
subrepresentation, or note that it is the image of the 𝔤-homomorphism 𝑎 ∶ 𝔤 ⊗ 𝑉 → 𝑉 given by 𝑎(𝑥 ⊗ 𝑣) = 𝜌(𝑥)(𝑣).
See Example 2.3.4 for more details. It is the smallest subrepresentation𝑈 of𝑉 such that 𝔤 acts trivially on𝑉/𝑈.

The key toWeyl’s theorem is then the following proposition, whose proof we postpone.

Proposition 6.3.4. Let 𝔤 be a semisimple Lie algebra and (𝑉, 𝜌) a representation of 𝔤. Then𝑉 = 𝑉𝔤 ⊕ 𝔤.𝑉.

Definition 6.3.5. If 𝑉 is any vector space and𝑈 ≤ 𝑉 is a subspace, a projection to𝑈 is a linear map 𝑝∶ 𝑉 → 𝑈
such that 𝑝|𝑈 = 1𝑈 (and hence im(𝑝) = 𝑈). Equivalently, if 𝑖 ∶ 𝑈 → 𝑉 denotes the inclusion map, 𝑝∶ 𝑉 → 𝑈 is a
projection to𝑈 if 𝑝 ∘ 𝑖 = 1𝑈 . If 𝑝∶ 𝑉 → 𝑈 is a projection then 𝑉 = 𝑈 ⊕ ker(𝑝). Indeed the sum is direct because
if 𝑣 ∈ 𝑈 ∩ ker(𝑝) then 𝑣 = 𝑝(𝑣) = 0, hence by rank-nullity it must be all of𝑉. Conversely, if𝑉 = 𝑈 ⊕𝑊, then if
we define 𝑝𝑊(𝑣) = 𝑢where 𝑣 = 𝑢 + 𝑤, 𝑢 ∈ 𝑈,𝑤 ∈ 𝑊, the map 𝑝𝑊 is a projection to𝑈. Thus we have a bijective
correspondence:

Π𝑈 = {𝑝 ∈ Hom(𝑉,𝑈) ∶ 𝑝 ∘ 𝑖 = 1𝑈} ⟷ {𝑊 ≤ 𝑉 ∶ 𝑉 = 𝑈 ⊕𝑊} = 𝒞𝑈

betweenΠ𝑈 , the set of linear projection from𝑉 to𝑈 and𝒞𝑈 the set of complementary subspaces to𝑈 in𝑉. If𝑉 is
a 𝔤-representation, then this bijection restricts to one between 𝔤-invariant projections and complementary subrep-
resentations.

The direct sum decomposition 𝑉 = 𝑉𝔤 ⊕ 𝔤.𝑉 of Proposition 6.3.4 therefore yields a 𝔤-invariant projection
𝜋𝑉0 ∶ 𝑉 → 𝑉𝔤. Moreover, if (𝑉, 𝜌) and (𝑊, 𝜎) are finite-dimensional 𝔤-representations and 𝜙 ∈ Hom𝔤(𝑉,𝑊), it
is easy to check that𝜙(𝑉𝔤) ⊆ 𝑊𝔤 and𝜙(𝔤.𝑉) ⊆ 𝔤.𝑊, thus we see

𝜋𝑊0 ∘ 𝜙 = 𝜙 ∘ 𝜋𝑉0 , ∀𝜙 ∈ Hom𝔤(𝑉,𝑊) (6.3.1)

Remark 6.3.6. The maps 𝜋𝑉0 are the analogues for a semisimple Lie algebra 𝔤 of the “averaging” operators 𝑎𝑉 for
representations of a finite group𝐺where, for a𝐺-representation (𝑉, 𝜏), the operator 𝑎𝑉 is given by |𝐺|−1∑𝑔∈𝐺 𝜏(𝑔).
The operators 𝑎𝑉 play a crucial role in the proof ofMaschke’s theorem, and are compatiblewith𝐺-homomorphisms
in the same sense that the𝜋𝑉0 are compatible with 𝔤-homomorphisms, that is, they satisfy𝜙 ∘ 𝑎𝑉 = 𝑎𝑊 ∘ 𝜙 for any
homomorphism of𝐺-representations𝜙∶ 𝑉 → 𝑊.

Proof of Weyl’s theorem:

Let 𝑖 ∶ 𝑈 → 𝑉 denote the inclusion of a subrepresentation 𝑈 of 𝑉, where 𝑉 is a finite-dimensional 𝔤-
representation. By Definition 6.3.5, we must show that there is a 𝔤-invariant projection from 𝑠 ∶ 𝑉 → 𝑈, since
then ker(𝑠)will be a complementary subrepresentation to𝑈. Let𝐻1 = Hom(𝑉,𝑈) and𝐻2 = Hom(𝑈,𝑈), and let
𝑖∗ ∶ 𝐻1 → 𝐻2 denote the restriction map 𝜙 ↦ 𝜙|𝑈 = 𝜙 ∘ 𝑖. Since 𝑉 and𝑈 are 𝔤-representations, 𝐻1 and𝐻2 are
𝔤-representations and, moreover, it follows from the fact that 𝑖 is a 𝔤-homomorphism that 𝑖∗ is a homomorphism of
𝔤-representations2. The set of projections to𝑈 isΠ = {𝑝 ∈ 𝐻1 ∶ 𝑖∗(𝑝) = 1𝑈} ⊆ 𝐻1, and 𝑝 ∈ Π is 𝔤-homomorphism
if 𝑝 ∈ 𝐻𝔤

1 , thus we need to show thatΠ∩𝐻𝔤
1 is nonempty.

We claim that for any 𝑝 ∈ Π, its invariant part 𝜋𝐻10 (𝑝) ∈ Π ∩ 𝐻𝔤
1 , so that ker(𝜋𝐻10 (𝑝)) is a complementary

subrepresentation to𝑈 as required. To see that𝜋𝐻10 (𝑝) ∈ Π note by (6.3.1) we have

𝑖∗(𝜋𝐻10 (𝑝)) = 𝜋𝐻20 (𝑖∗(𝑝)) = 𝜋𝐻20 (1𝑈) = 1𝑈 .

where the second equality holds because 𝑝 is a projection, and the third since 1𝑈 ∈ Hom𝔤(𝑈,𝑈) = 𝐻𝔤
2 .

6.3.1 Casimir operators

Lemma6.3.7. Suppose that 𝔤 is semisimple and (𝑉, 𝜌) is a representation of 𝔤. Then the radical of 𝑡𝑉 is precisely the kernel
of 𝜌. Equivalently, 𝑡𝑉 induces a nondegenerate invariant form on 𝜌(𝔤).

2Explicitly, if 𝑥 ∈ 𝔤,𝜙 ∈ 𝐻1 then 𝑥(𝑖∗(𝜙)) = 𝑥|𝑈 ∘ (𝜙 ∘ 𝑖) − (𝜙 ∘ 𝑖) ∘ 𝑥|𝑈 = (𝑥|𝑈 ∘ 𝜙) ∘ 𝑖 − (𝜙 ∘ 𝑥) ∘ 𝑖 = 𝑖∗(𝑥(𝜙))
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Proof. If 𝜌(𝔤) = 0 then the Lemma holds trivially. Otherwise, we may replace 𝔤 by its image 𝔤1 = 𝜌(𝔤) ≠ 0, which,
since it is nonzero, is semisimple because 𝔤 is. Now let 𝔯 = rad(𝑡𝑉), an ideal in 𝔤1. Since it 𝔤1 is semisimple, it follows
that 𝔯 is semisimple (or zero), and hence by part 𝑖) of Theorem 6.2.5,𝐷(𝔯) = 𝔯, that is, 𝔯 is perfect. But by Proposition
5.2.12, the trace form on 𝔤𝔩𝑉 does not vanish identically on any nonzero perfect subalgebra of 𝔤𝔩𝑉 , hence we must
have 𝔯 = {0} as required.

Definition 6.3.8. Let 𝔤 be a semisimple Lie algebra and (𝑉, 𝜌) a representation of 𝔤with 𝜌(𝔤) ≠ 0. Then if we let
𝔤1 = 𝜌(𝔤), then by Lemma 6.3.7, 𝑡𝑉 is nondegenerate on 𝔤1, and so induces an isomorphism of 𝔤-representations
𝜃𝑉 ∶ 𝔤1 → 𝔤∗1. Let 𝜏∶ 𝔤∗1 → 𝔤𝔩𝑉 denote the composition of 𝜃−1𝑉 with 𝑖 ∶ 𝔤1 → 𝔤𝔩𝑉 the inclusion map. We have a
sequence of 𝔤1- (and 𝔤-) homomorphisms

(𝔤1 ⊗ 𝔤1)∗ = 𝔤∗1 ⊗ 𝔤∗1
𝜏⊗𝜏 // 𝔤𝔩𝑉 ⊗ 𝔤𝔩𝑉

𝑐 // 𝔤𝔩𝑉 ,
where 𝑐 is just composition of linear maps. These are both homomorphisms of 𝔤-representations since we have
already seen that 𝜏 is, and the fact that 𝑐 is follows the discussion in the proof of Lemma 5.2.4.3 We thus obtain the
Casimir operator,

𝐶 = 𝐶𝑉 = 𝑐(𝜏 ∘ 𝜏)(𝑡𝑉) ∈ 𝔤𝔩𝑉
𝔤.

The fact that𝐶 ∈ 𝔤𝔩𝑉
𝔤means that𝐶𝜌(𝑥) = 𝜌(𝑥)𝐶 for all 𝑥 ∈ 𝔤, that is,𝐶𝑉 is a 𝔤-endomorphism of𝑉.

Lemma 6.3.9. Let {𝑥1, … , 𝑥𝑛} be a basis of 𝔤1 and {𝛿1, … , 𝛿𝑛} the corresponding dual basis of 𝔤∗1. Then 𝑡𝑉 = ∑𝑛
𝑖=1 𝛿𝑖 ⊗

𝜃𝑉(𝑥𝑖), and hence𝐶𝑉 = ∑
𝑛
𝑖=1 𝑦𝑖𝑥𝑖 ∈ 𝔤𝔩𝑉 , where 𝑦𝑖 = 𝜃

−1
𝑉 (𝛿𝑖). It follows that

i) 𝑉𝔤 ⊆ ker(𝐶𝑉) and im(𝐶𝑉) ⊆ 𝔤.𝑉,

ii) tr(𝐶𝑉) = dim(𝔤1) = dim(𝜌(𝔤)).

Proof. Clearly we may write any element of 𝔤∗ ⊗ 𝔤∗ in the form∑𝑛
𝑖=1 𝛿𝑖 ⊗ 𝑓𝑖 for some 𝑓𝑖 ∈ 𝔤∗.4 But by definition,

𝜃𝑉(𝑥𝑖)(𝑦) = 𝑡𝑉(𝑥𝑖, 𝑦) = ∑𝑛
𝑗=1 𝛿𝑗(𝑥𝑖).𝑓𝑗(𝑦) = 𝑓𝑖(𝑦), hence 𝑡𝑉 = ∑𝑛

𝑖=1 𝛿𝑖 ⊗ 𝜃𝑉(𝑥𝑖) as claimed. Thus 𝐶𝑉 = 𝑐 ∘ (𝜏 ⊗
𝜏)(𝑡𝑉) = 𝑐(∑𝑛

𝑖=1 𝜃
−1
𝑉 (𝛿𝑖) ⊗ 𝑥𝑖) = ∑𝑛

𝑖=1 𝑦𝑖𝑥𝑖 ∈ 𝔤𝔩𝑉 . Since 𝑥𝑖, 𝑦𝑖 ∈ 𝔤1, part 𝑖) is immediate from the definitions, while
for 𝑖𝑖) since tr(𝑦𝑖𝑥𝑖) = 𝑡𝑉(𝑦𝑖, 𝑥𝑖) = 1 it is clear that tr(𝐶𝑉) = ∑

𝑛
𝑖=1 1 = 𝑛 = dim(𝔤1).

Example 6.3.10. Let us take 𝔤 = 𝔰𝔩2 ⊆ 𝔤𝔩2. Then the trace form 𝑡(𝑥, 𝑦) = tr(𝑥.𝑦) is non-degenerate and invariant,
and

𝑡(𝑒, 𝑓) = 𝑡(𝑒, 𝑓) = 1, 𝑡(ℎ, ℎ) = 2, 𝑡(𝑒, 𝑒) = 𝑡(𝑓, 𝑓) = 𝑡(𝑒, ℎ) = 𝑡(𝑓, ℎ) = 0
so if we let 𝛿𝑒, 𝛿𝑓, 𝛿ℎ be the basis of 𝔤∗ dual to {𝑒, 𝑓, ℎ}, we see that 𝑡 = (1 + 𝜎)(𝛿𝑒 ⊗ 𝛿𝑓 + 𝛿ℎ ⊗ 𝛿ℎ)where 𝜎 ∈ End(𝔤∗ ⊗
𝔤∗) is the map 𝜎(𝑎 ⊗ 𝑏) = 𝑏 ⊗ 𝑎. It follows that 𝜃𝑉(𝑒) = 𝛿𝑓, 𝜃𝑉(𝑓) = 𝛿𝑒 and 𝜃𝑉(ℎ) =

1
2𝛿ℎ, and hence 𝐶𝑉 =

𝑒𝑓 + 𝑓𝑒 + 1
2ℎ

2.

Proof of Proposition 6.3.4: We prove the statement by induction on dim(𝑉), the case dim(𝑉) = 0 being trivial. If𝑉 =
𝑉𝔤 then certainly 𝔤.𝑉 = {0} and the statement holds. Thus wemay assume that𝑉 ≠ 𝑉𝔤, so that 𝜌(𝔤) ≠ {0}, hence
we have a Casimir operator 𝐶 ∈ 𝔤𝔩𝑉 . Since it is a 𝔤-endomorphism, if 𝑉 = ⨁𝑉𝜆 is the decomposition of 𝑉 into
the generalised eigenspaces of 𝐶𝑉 , each𝑉𝜆 is a subrepresentations of𝑉. Since if the statement of the proposition
holds for representations𝑈 and𝑊 it certainly holds for their direct sum𝑈 ⊕𝑊, we are done by induction unless
𝐶 has exactly one generalised eigenspace, i.e. 𝑉 = 𝑉𝜆. But then by part 𝑖𝑖) of Lemma 6.3.9, dim(𝑉).𝜆 = tr(𝐶) =
dim(𝜌(𝔤)), so that 𝜆 ≠ 05, and hence𝐶 is invertible. The by part 𝑖) of Lemma 6.3.9 we have𝑉𝔤 ⊆ ker(𝐶) = {0} and
im(𝐶) = 𝑉 ⊆ 𝔤.𝑉, so that𝑉 = {0} ⊕ 𝔤.𝑉 = 𝑉𝔤 ⊕ 𝔤.𝑉 as required.

6.3.2 The Jordan decomposition: functoriality

Given a representation (𝑉, 𝜌) of 𝔤, it is thus natural to ask whether 𝜌(𝑥) = 𝜌(𝑠) + 𝜌(𝑛) is again the naive Jordan
decomposition of 𝜌(𝑥).

Theorem6.3.11. Let 𝔤 be a semisimple Lie algebra and let (𝑉, 𝜌) be a representation of 𝔤. Then if 𝑠 ∈ 𝔤 is semisimple, so is
𝜌(𝑠), and similarly if 𝑛 ∈ 𝔤 is nilpotent, then so is 𝜌(𝑛). In particular, if 𝑥 ∈ 𝔤 has abstract Jordan decomposition 𝑥 = 𝑠 + 𝑛,
then 𝜌(𝑥) = 𝜌(𝑠) + 𝜌(𝑛) is the naive Jordan decomposition of 𝜌(𝑥).

3It is also equivalent to the fact that, for any 𝑎 ∈ 𝔤𝔩𝑉 , the map ad(𝑎) is a derivation for the associative algebra End(𝑉).
4Indeed if𝑉 and𝑊 are vector spaces and𝐵 = {𝑒1, … , 𝑒𝑑} is a basis of𝑉, then any element of𝑉 ⊗𝑊 may bewritten uniquely as∑𝑑

𝑖=1 𝑒𝑖 ⊗𝑤𝑖
for𝑤𝑖 ∈ 𝑊, (1 ≤ 𝑖 ≤ 𝑑).

5This is where we use that the characteristic of the field is 0.
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Proof. Let us first show that the final sentence follows from the fact that 𝜌(𝑠) is semisimple if 𝑠 is semisimple and
𝜌(𝑛) is nilpotent if 𝑛 is nilpotent. Indeeed since [𝑠, 𝑛] = 0 and 𝜌 is a Lie algebra bomomorphism, [𝜌(𝑠), 𝜌(𝑛)] = 0,
thus 𝜌(𝑠) semisimple and 𝜌(𝑛) nilpotent implies that the pair (𝜌(𝑠), 𝜌(𝑛)) satisfy the characterising property of the
naive Jordan decomposition established in Lemma 6.2.9.

• 𝜌(𝑛) is nilpotent: Let 𝜄 ∶ 𝔤𝔩1 → 𝔤 be given by 𝜄(𝑡) = 𝑡.𝑛, so that (𝔤, ad ∘ 𝜄) and (𝑉, 𝜌 ∘ 𝜄) are 𝔤𝔩1-representations.
Let 𝑉 = ⨁𝜆∈Ψ(𝑛) 𝑉𝜆 be the generalised weight-space decomposition of 𝑉 as a representation of 𝔤𝔩1 – that
is, the generalised eigenspace decomposition of 𝑉 with respect to 𝜌(𝜄(1)) = 𝜌(𝑛). Since ad(𝑛) is nilpotent,
𝔤 = 𝔤0 as a representation of 𝔤𝔩1.
Fix 𝜆 ∈ Ψ(𝑛). If ̃𝑎 ∶ 𝔤0 ⊗ 𝑉𝜆 → 𝑉 is given by ̃𝑎(𝑥 ⊗ 𝑣) = 𝜌(𝑥)(𝑣), then ̃𝑎 is a 𝔤-homomorphism, and hence
a homomorphism of 𝔤𝔩1-representations. Since 𝔤0 ⊗𝑉𝜆 ⊆ (𝔤 ⊗ 𝑉)𝜆+0 it follows that 𝔤.𝑉𝜆 ⊆ 𝑉𝜆, that is𝑉𝜆
is a 𝔤-subrepresentation of𝑉. But now 𝔤 = 𝐷(𝔤), hence if 𝔤𝜆 denotes its image in 𝔤𝔩𝑉𝜆 ,𝐷(𝔤

𝜆) = 𝔤𝜆, so that
𝔤𝜆 ⊆ 𝔰𝔩𝑉𝜆 . But then tr𝑉𝜆 (𝜌(𝑛) = 𝜆.dim(𝑉𝜆) = 0, hence 𝜆 = 0. It follows that𝑉 = 𝑉0 and 𝜌(𝑛) is nilpotent
as required.

• 𝜌(𝑠) is semisimple: Since 𝔤 is semisimple, Weyl’s theorem ensures that 𝑉 is completely reducible, and so it
suffices to check that 𝜌(𝑠) is semisimple in the case where 𝑉 is irreducible. Let 𝑉 = ⨁𝜆∈𝑆𝑉⊆k 𝑉𝜆 be the
generalised eigenspace decomposition of 𝜌(𝑠), where 𝑆𝑉 ⊆ k is the set of eigenvalues of 𝜌(𝑠), and let 𝔤 =
⨁𝛼∈𝑆𝔤

𝔤𝑠𝛼 be the decomposition of 𝔤 into the eigenspaces of ad(𝑠) (since ad(𝑠) is semisimple, 𝔤 is the direct
sum of its ad(𝑠)-eigenspaces). Let𝑉𝑠

𝜆 ⊆ 𝑉𝜆 be the 𝜌(𝑠)-eigenspace of 𝜌(𝑠) inside the generalised eigenspace
and let 𝑉𝑠 = ⨁𝜆∈Ψ𝑉

𝑉𝑠
𝜆. We claim that 𝑉𝑠 is a 𝔤-subrepresentation of 𝑉. Note that the claim establishes

the semisimplicity of 𝜌(𝑠), since𝑉𝑠
𝜆 ≠ 0 if and only if𝑉𝜆 ≠ 0, so we must have 0 ≠ 𝑉𝑠 ⊆ 𝑉. But since𝑉 is

irreducible, it follows𝑉𝑠 = 𝑉 as required.

To verify the claimwemay assume that 𝑣 ∈ 𝑉𝜆 and 𝑥 ∈ 𝔤𝛼. Then

𝜌(𝑠) 􏿴𝜌(𝑥)(𝑣)􏿷 = 􏿴𝜌([𝑠, 𝑥]) + 𝜌(𝑥)𝜌(𝑠)􏿷 (𝑣)

= 𝛼(𝑠)𝜌(𝑥)(𝑣) + 𝜆(𝑠)𝜌(𝑥)(𝑣) = (𝛼 + 𝜆)(𝑠) 􏿴𝜌(𝑥)(𝑣)􏿷 ,

that is 𝜌(𝑥)(𝑣) ∈ 𝑉𝑠
𝛼+𝜆 ⊂ 𝑉𝑠, and𝑉𝑠 ≤ 𝑉 is a subrepresentation of𝑉 as claimed.

Remark 6.3.12. Note that the proof that𝜌(𝑛) is nilpotent does not require that 𝔤 is semisimple, it only requires that
𝔤 be perfect. On the other hand, the proof that ad(𝑠) is semisimple usesWeyl’s theorem, to reduce to the semisimple
case. In fact it is the case that if 𝔤 is a perfect Lie algebra in characteristic zero, then every element 𝑥 ∈ 𝔤 has an
abstract Jordan decomposition 𝑥 = 𝑠 + 𝑛, and that decomposition yields the naive Jordan decomposition of its
image 𝜌(𝑥) ∈ 𝔤𝔩𝑉 for any finite-dimensional representation (𝑉, 𝜌) of 𝔤.
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Chapter 7

The structure of semisimple Lie algebras

If (𝔤, 𝔥) is aCartanpair, theamountof informationcapturedby theCartandecomposition𝔤 = 𝔥⊕⨁𝛼∈Φ 𝔤𝛼 depends
on 𝔤. At one extreme, when 𝔤 is nilpotent, we have the trivial decomposition 𝔥 = 𝔤. The semisimple case is in some
sense at the opposite extreme: the Cartan subalgebra 𝔥 turns out to be abelian and the decomposition of 𝔤 is as fine
as possible – 𝔤 is a semisimple 𝔥-representation.

7.1 The Killing form and the Cartan decomposition

Proposition 7.1.1. Let (𝔤, 𝔥) be a Cartan pair and let 𝔤 = ⨁𝜆∈Φ0
𝔤𝜆 be the associated Cartan decomposition of 𝔤, where

Φ0 = {0} ∪Φ, 𝔤0 = 𝔥, and let 𝜅 denote the Killing form of 𝔤.

i) We have 𝜅(𝔤𝜆, 𝔤𝜇) = 0 unless 𝜆 + 𝜇 = 0.

ii) Forany𝜆 ∈ Φ0 the restrictionof𝜅 to𝔤𝜆×𝔤−𝜆 gives a linearmap𝜃𝜆 ∶ 𝔤𝜆 → 𝔤∗−𝜆. TheKilling form𝜅 is nondegenerate,
and hence 𝔤 semisimple, if and only if, for every𝜆 ∈ Φ the linear map 𝜃𝜆 is an isomorphism. In particular:

a) the restriction of 𝜅 to 𝔥 = 𝔤0 is nondegenerate,
b) dim(𝔤𝜆) = dim(𝔤−𝜆) and so 𝜆 ∈ Φ if and only if −𝜆 ∈ Φ.

Proof. Let 𝜃∶ 𝔤 → 𝔤∗ be the map given by 𝜃(𝑥)(𝑦) = 𝜅(𝑥, 𝑦) for 𝑥, 𝑦 ∈ 𝔤. By 2.2.1, 𝔤∗ ≅ ⨁𝜆∈Φ0
𝔤∗𝜆 as an 𝔥-

representation. Now 𝔤𝜆 is the 𝜆-generalised weight space of 𝔤, hence its only composition factor is k𝜆. By Lemma
2.2.9 it follows that 𝔤∗𝜆 has k−𝜆 as its unique composition factor, and hence 𝔤∗ = ⨁𝜆∈Φ0

𝔤∗𝜆 gives the 𝔥-weight
isotypical decomposition of 𝔤∗ where (𝔤∗)𝜆 ≅ (𝔤−𝜆)∗.

Since 𝜅 is invariant, 𝜃 ∈ Hom(𝔤, 𝔤∗)𝔤 = Hom𝔤(𝔤, 𝔤∗), i.e. it is a homomorphism of 𝔤-representations. In par-
ticular, it is an 𝔥-homomorphism, so that 𝜃(𝔤𝜆) ⊆ (𝔤∗)𝜆 = 𝔤∗−𝜆. It follows that 𝜅(𝔤𝜆, 𝔤𝜇) = 𝜃(𝔤𝜆)(𝔤𝜇) = 0 unless
𝜇 = −𝜆 as claimed. Moreover, if 𝔤 is semisimple, then 𝜅 is nondegenerate, i.e. 𝜃 is an isomorphism. But as 𝜃 is an
𝔥-homomorphism this forces 𝜃𝜆 = 𝜃|𝔤𝜆 ∶ 𝔤𝜆 → 𝔤∗−𝜆 to be an isomorphism for all 𝜆 as required.

Remark 7.1.2. When 𝔤 is semisimple, by Proposition 7.1.1, 𝜅 induces an isomorphism 𝜃0 ∶ 𝔥 → 𝔥∗. Given 𝜆 ∈ 𝔥∗,
we will write 𝑡𝜆 ∈ 𝔥 for 𝜃−10 (𝜆), so that 𝑡𝜆 is uniquely determined by the condition that 𝜅(𝑡𝜆, ℎ) = 𝜆(ℎ) for all ℎ ∈ 𝔥.

Lemma 7.1.3. If (𝔤, 𝔥) is a Cartan pair and 𝜅 is the Killing form of 𝔤, then we have

𝜅(ℎ1, ℎ2) = 􏾜
𝛼∈Φ

dim(𝔤𝛼)𝛼(ℎ1)𝛼(ℎ2), ∀ℎ1, ℎ2 ∈ 𝔥. (7.1.1)

If 𝔤 is semisimple, it follows that

i) ⟨Φ⟩k = 𝔥∗

ii) 𝔥 is abelian.

iii) Recall 𝔥𝛼 = [𝔤𝛼, 𝔤−𝛼] ⊆ 𝔥. We have 𝔥𝛼 ∩ ker(𝛼) = {0}, and hence dim(𝔥𝛼) ≤ 1.
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Proof. Since 𝔤 = ⨁𝜆∈Φ0
𝔤𝜆 as an 𝔥-representation, 𝜅(ℎ1, ℎ2) = ∑𝜆∈Φ0 𝑡𝔤𝜆 (ℎ1, ℎ2). Equation (7.1.1) thus follows

immediately by applying Lemma 2.2.8 to the 𝔥-representations 𝔤𝜆.
Now suppose that 𝔤 is semisimple and let 𝑆 = ⟨Φ⟩k. SinceΦ ⊆ 𝐷(𝔥)0 ⊆ 𝔥∗, clearly 𝑆 ⊆ 𝐷(𝔥)0. Let 𝑆0 = Φ0 =

{ℎ ∈ 𝔥 ∶ 𝛼(ℎ) = 0, ∀𝛼 ∈ Φ}, where, since 𝔥 is finite-dimensional, we view 𝑆0 as a subspace of 𝔥 via the canonical
isomorphism (𝔥∗)∗ ≅ 𝔥. It is clear from (7.1.1) that 𝑆0 ⊆ rad(𝜅|𝔥), but if 𝔤 is semisimple, part 𝑖𝑖) of Proposition 7.1.1
shows that this is {0}. But then 𝑆 = (𝑆0)0 = 𝔥∗, so thatΦ spans 𝔥∗ establishing 𝑖). But 𝑆 ⊆ 𝐷(𝔥)0 hence𝐷(𝔥)0 = 𝔥∗
and hence𝐷(𝔥) = {0}, establishing part 𝑖𝑖). Finally, by Lemma 5.2.10 applied to the adjoint representation of 𝔤, if
𝛽 ∈ Φ, then we have 𝛽|𝔥𝛼 = 𝑟𝛽.𝛼|𝔥𝛼 for some 𝑟𝛽 ∈ Q. But then if 𝑧 ∈ 𝔥𝛼 ∩ ker(𝛼) it follows 𝛽(𝑧) = 𝑟𝛽.𝛼(𝑧) = 0 for all
𝛽 ∈ Φ, and hence 𝑧 ∈ 𝑆0 = {0} as required. Since dim(ker(𝛼)) = dim(𝔥) − 1, clearly dim(𝔥𝛼) ≤ 1.

7.1.1 The roots of a semisimple Lie algebra

Definition 7.1.4. The standard basis for 𝔰𝔩2(k) is 𝑒 = 􏿶
0 1
0 0 􏿹 , ℎ = 􏿶

1 0
0 −1 􏿹 and 𝑓 = 􏿶

0 0
1 0 􏿹. The relations

obeyed by {𝑒, ℎ, 𝑓} in 𝔰𝔩2 are [𝑒, 𝑓] = ℎ, [ℎ, 𝑒] = 2𝑒 and [ℎ, 𝑓] − 2𝑓. If 𝔤 is an arbitrary Lie algebra, an 𝔰𝔩2-triple is a
triple {𝐸,𝐻, 𝐹} of elements of 𝔤which obey the same relations, so [𝐸, 𝐹] = 𝐻, [𝐻, 𝐸] = 2𝐸 and [𝐻, 𝐹] = −2𝐹. Such
a triple determines a homomorphism𝜃∶ 𝔰𝔩2 → 𝔤where𝜃(𝑒) = 𝐸, 𝜃(ℎ) = 𝐻 and𝜃(𝑓) = 𝐹. Since 𝔰𝔩2 is simple, such
a homomorphism is determined by its image up to a scalar.

Definition 7.1.5. Recall that, as in Definition 2.2.10, if𝑊 is an 𝔥-representation then we write𝑊𝑠 for the socle of
𝑊, that is, the sum of all irreducible 𝔥-subrepresentations of𝑊. If (𝔤, 𝔥) is a Cartan pair and 𝔤 = ⨁𝜆∈Φ0

𝔤𝜆, is the
decomposition of 𝔤 as an 𝔥-representation, then the 𝔥-representation 𝔤𝜆 has k𝜆 as its only composition factor and
hence 𝔤𝑠𝜆 = {𝑥 ∈ 𝔤𝜆 ∶ [ℎ, 𝑥] = 𝜆(ℎ).𝑥, ∀ℎ ∈ 𝔥}, that is, if 𝑥 ∈ 𝔤𝑠𝜆 and 𝑥 ≠ 0 then k.𝑥 ≅ k𝛼 as 𝔥-representations. For
example, 𝔤𝑠0 = 𝔤𝔥, i.e. 𝔤𝑠0 is the subrepresentation of 𝔥-invariants in 𝔤.

The following Lemma is the first step in constructing a copy of 𝔰𝔩2 for each pair {±𝛼} of roots in a semisimple Lie
algebra.

Lemma 7.1.6. Let (𝔤, 𝔥) be a Cartan pair such that 𝔤 is semisimple, and let 𝔤 = 𝔥 ⊕⨁𝛼∈Φ 𝔤𝛼 the associated Cartan
decomposition. If 𝑥 ∈ 𝔤𝑠𝛼 and 𝑦 ∈ 𝔤−𝛼 then [𝑥, 𝑦] = 𝜅(𝑥, 𝑦).𝑡𝛼. Moreover if 𝑒𝛼 ∈ 𝔤𝑠𝛼 is nonzero, then ad(𝑒𝛼)(𝔤−𝛼) = k.𝑡𝛼 =
𝔥𝛼 so that 𝔥 = 𝔥𝛼 ⊕ ker(𝛼). In particular, if ℎ𝛼 ∈ 𝔥𝛼 is given by 𝛼(ℎ𝛼) = 2, there is an 𝑓𝛼 ∈ 𝔤−𝛼 such that [𝑒𝛼, 𝑓𝛼] = ℎ𝛼.

Proof. For 𝑖) take any 𝑥 ∈ 𝔤𝑠𝛼, 𝑦 ∈ 𝔤−𝛼 and ℎ ∈ 𝔥. Then for all ℎ ∈ 𝔥,

𝜃0([𝑥, 𝑦])(ℎ) = 𝜅(ℎ, [𝑥, 𝑦]) = 𝜅([ℎ, 𝑥], 𝑦) = 𝜅(𝑥, 𝑦)𝛼(ℎ)

Thus [𝑥, 𝑦] = 𝜃−10 (𝜅(𝑥, 𝑦)𝛼) = 𝜅(𝑥, 𝑦)𝑡𝛼. By part 𝑖𝑖𝑖) of Lemma 7.1.6, we know 𝔥𝛼 ∩ ker(𝛼) = {0}. Hence 𝔥𝛼 =⊆ k.𝑡𝛼.
But since 𝜃𝛼 ∶ 𝔤𝛼 → 𝔤∗−𝛼 is an isomorphism, for any non-zero 𝑒𝛼 ∈ 𝔤𝑠𝛼 wemay find 𝑦 ∈ 𝔤−𝛼 with 𝜅(𝑒𝛼, 𝑦) ≠ 0. Hence
there is an 𝑓𝛼 ∈ k.𝑦with 𝜅(𝑒𝛼, 𝑓𝛼) = 2𝛼(𝑡𝛼)−1 so that [𝑒𝛼, 𝑓𝛼] = ℎ𝛼 andmoreover 𝔥𝛼 ⊇ ad(𝑒𝛼)(k.𝑓𝛼) = k.ℎ𝛼 hence
𝔥𝛼 = k.ℎ𝛼 = k.𝑡𝛼.

Definition 7.1.7. Given a root 𝛼 ∈ Φ, the element ℎ𝛼 is known as the coroot associated to 𝛼. We will writeΦ∨ =
{ℎ𝛼 ∶ 𝛼 ∈ Φ} ⊂ 𝔥 for the set of coroots.

Proposition 7.1.8. Let 𝔤 be a semisimple Lie algebra and 𝔥 a Cartan subalgebra with Cartan decomposition 𝔤 =
𝔥⨁𝛼∈Φ 𝔤𝛼. Then

i) The root spaces 𝔤𝛼 are one-dimensional, and if 𝛼 ∈ Φ, 𝑐 ∈ Z, then 𝑐.𝛼 ∈ Φ if and only if 𝑐 = ±1.

ii) 𝔰𝔩𝛼 = 𝔤𝛼 ⊕ 𝔥𝛼 ⊕ 𝔤−𝛼 is a subalgebra of 𝔤 isomorphic to 𝔰𝔩2(k).

iii) 𝔤 is a semisimple𝔥-representation, so that for allℎ ∈ 𝔥, ad(ℎ) is semisimple, andhence𝔥 consists of semisimple elements,
i.e. the Jordan decomposition of ℎ ∈ 𝔥 is ℎ = ℎ𝑠.

Proof. Fix 𝛼 ∈ Φ, and let {𝑒𝛼, 𝑓𝛼, ℎ𝛼} be as in Lemma 7.1.6, so that {𝑒𝛼, ℎ𝛼, 𝑓𝛼} ⊆ 𝑀where

𝑀 =􏾘
𝑘≤1

𝑀𝑘.𝛼, 𝑀𝛼 = k.𝑒𝛼, 𝑀𝑝.𝛼 = 𝔤𝑝.𝛼, ∀𝑝 ≤ 0.
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We claim that𝑀 is a subalgebra. Since𝑀𝑝.𝛼 ⊆ 𝔤𝑝.𝛼 for all 𝑝 ∈ Z, it suffices to check that [𝑀𝑘.𝛼,𝑀𝑙.𝛼] ⊆ 𝑀(𝑘+𝑙).𝛼
for 𝑘 ≤ 𝑙 ≤ 1. For 𝑘 + 𝑙 ≤ 0 this is clear because𝑀(𝑘+𝑙)𝛼 = 𝔤(𝑘+𝑙)𝛼 while if 𝑘 = 0 it is equivalent to𝑀𝑙.𝛼 being an
𝔥-subrepresentationwhichwe have already checked unless 𝑙 = 1, but as 𝑒𝛼 ∈ 𝔤𝑠𝛼,𝑀𝛼 ≅ k𝛼. Finally if 𝑘 = 𝑙 = 1, then
[𝑀𝛼,𝑀𝛼] = k.[𝑒𝛼, 𝑒𝛼] = 0 = 𝑀2𝛼.

It follows that ad(ℎ𝛼) = [ad(𝑒𝛼), ad(𝑓𝛼)] acts on𝑀with trace zero. But𝑀 =⨁𝑘≤1𝑀𝑘.𝛼 is the decomposition
of𝑀 into ad(ℎ𝛼) generalised eigenspaces where𝑀𝑘𝛼 = 𝑀2𝑘,ℎ𝛼 , hence

0 = 􏾜
𝑝≤1

2𝑝.dim(𝑀𝑝.𝛼) = 2 −􏾜
𝑝≥1

2𝑝.dim(𝔤−𝑝.𝛼) = 2.􏿴1 −􏾜
𝑝>0

𝑝.dim(𝔤−𝑝.𝛼)

If 𝑝 > 1 then 𝑝.dim(𝔤−𝑝.𝛼) > 1 unless dim(𝔤−𝑝.𝛼) = 0 hence dim(𝔤−𝑝.𝛼) = 0 for all 𝑝 > 1 so that dim(𝔤−𝛼) = 1.
Since dim(𝔤𝜆) = dim(𝔤−𝜆) it follows dim(𝔤𝑐.𝛼) = 0 if |𝑐| > 1 and dim(𝔤𝛼) = dim(𝔤−𝛼) = 1, which proves part 𝑖). It
follows that 𝔰𝔩𝛼 is three-dimensional with basis {𝑒𝛼, ℎ𝛼, 𝑓𝛼}. But [𝑒𝛼, 𝑓𝛼] = ℎ𝛼 by our choice of 𝑓𝛼, and as 𝔤𝛼, 𝔤−𝛼 are
1-dimensional, 𝔤±𝛼 ≅ k±𝛼, and hence as 𝛼(ℎ𝛼) = 2we have [ℎ𝛼, 𝑒𝛼] = 2𝑒𝛼, [ℎ𝛼, 𝑓𝛼] = −2𝑓𝛼. Thus {𝑒𝛼, ℎ𝛼, 𝑓𝛼} is an
𝔰𝔩2-triple, so that 𝔰𝔩𝛼 ≅ 𝔰𝔩2, establishing part 𝑖𝑖).

Finally, since 𝔥 is abelian 𝔥 ≅ kdim(𝔥)0 thus the Cartan decomposition 𝔤 = 𝔥 ⊕⨁𝛼∈Φ 𝔤𝛼 exhibits 𝔤 as a direct sum
of irreducible 𝔥-representations, hence ad(ℎ) acts diagonalisably on 𝔤 for all ℎ ∈ 𝔥, which proves part 𝑖𝑖𝑖).

We can use our strategy of evaluating traces in two ways once more to obtain finer information about the set of
roots associated to the Cartan decomposition of a semisimple Lie algebra. For this we need the some more termi-
nology:

Definition 7.1.9. Suppose that𝛼, 𝛽 are two roots in 𝔤. Thenwemay consider the roots which have the form 𝛽 + 𝑘𝛼
for some integer 𝑘 ∈ Z. Clearly, since 𝔤 is finite dimensional, there are integers 𝑝, 𝑞 > 0 such that 𝛽 + 𝑘𝛼 ∈ Φ0 for
each 𝑘with −𝑝 ≤ 𝑘 ≤ 𝑞, but neither 𝛽 − (𝑝 + 1)𝛼 nor 𝛽 + (𝑞 + 1)𝛼 are inΦ0 = Φ. We call this set of roots1 𝑆𝛼(𝛽) the
𝛼-string through 𝛽.

Proposition 7.1.10. Let𝛼, 𝛽 ∈ Φ and suppose that 𝑆𝛼(𝛽) = {𝛽 − 𝑝𝛼,… , 𝛽 + 𝑞𝛼} is the𝛼-string through 𝛽. Then we have

i)

𝛽(ℎ𝛼) = 𝜅(ℎ𝛼, 𝑡𝛽) =
2𝜅(𝑡𝛼, 𝑡𝛽)
𝜅(𝑡𝛼, 𝑡𝛼)

= 𝑝 − 𝑞.

In particular 𝛽 − 𝛽(ℎ𝛼).𝛼 ∈ Φ.

ii) If 𝛽 = 𝑐.𝛼 for some 𝑐 ∈ k, then 𝑐 = ±1.

iii) If 𝑆 = {𝛽 + 𝑘𝛼 ∈ Φ∪ {0} ∶ 𝑘 ∈ Z}, then 𝑆 = 𝑆𝛼(𝛽).

Proof. First note that if 0 ∈ 𝑆𝛼(𝛽) then 𝛽 = 𝑘.𝛼 for some 𝑘 ∈ Z, and the claims of this proposition in that case
all follow from Proposition 7.1.8. Thus we may assume 𝛽 ∉ Z.𝛼 so that 𝑆𝛼(𝛽) ⊆ Φ. Let 𝛾 = 𝛽 − 𝑝𝛼, so that
the 𝑆𝛼(𝛽)𝑆𝛼(𝛾) = {𝛾, 𝛾 + 𝛼,… , 𝛾 + 𝑠𝛼}, where 𝑠 = 𝑝 + 𝑞. Consider the subspace𝑀𝛽 = ⨁0≤𝑘≤𝑠 𝔤𝛾+𝑘𝛼, and let
{𝑒𝛼, ℎ𝛼, 𝑒−𝛼}be an 𝔰𝔩2-triple corresponding to an isomorphism𝜑∶ 𝔰𝔩2 → 𝔰𝔩𝛼 as inRemark 7.1.4. Since𝛾−𝛼 ∉ Φ∪ {0}
and 𝛾 + (𝑠 + 1)𝛼 ∉ Φ∪ {0}, we see that 𝔰𝔩𝛼 preserves𝑀𝛽. Hence tr𝑀𝛽 (ad(ℎ𝛼)|𝑀𝛽 ) = tr𝑀([ad(𝑒𝛼)|𝑀𝛽 , ad(𝑒−𝛼)|𝑀𝛽 ]) =
0. Let 𝑒 ∶ 𝔤𝔩1 → 𝔥 be the map 𝑒(𝑡) = 𝑡.ℎ𝛼, so that 𝑒⊺(𝜆) = 𝜆(ℎ𝛼) is the unique eigenvalue of ad(ℎ𝛼)|𝔤𝛼 where
𝑒⊺ ∶ 𝔥∗ → 𝔤𝔩1

∗ = 𝔤𝔩1 = k denotes the transpose of 𝑒.
But the weight spaces of𝑀𝛽 are 𝔤𝛾+𝑘𝛼 where 0 ≤ 𝑘 ≤ 𝑠, which are thus 1-dimensional eigenspaces for ad(ℎ𝛼)

with eigenvalue 𝑒⊺(𝛾 + 𝑘𝛼) = 𝛾(ℎ𝛼) + 2𝑘. Thus the spectrum of ad(ℎ𝛼) is an arithmetic progression {𝛾(ℎ𝛼) + 2𝑘 ∶
0 ≤ 𝑘 ≤ 𝑠} with each eigenvalue having multiplicity one. But then since tr(ad(ℎ𝛼) = 0 , their mean value is 0, so
0 = 𝛾(ℎ𝛼) +

2
𝑠+1

∑𝑠
𝑘=0 = 𝛾(ℎ𝛼) + 𝑠, and so

𝑒⊺(𝑆𝛼(𝛽)) = {−𝑠, −𝑠 + 2,… , 𝑠 − 2, 𝑠}. (7.1.2)

Since 𝑠 = 𝑝 + 𝑞, it follows that 𝛽(ℎ𝛼) = (𝛾 + 𝑝𝛼)(ℎ𝛼) = 𝑝 − 𝑞 as required, and 𝛽 − (𝑝 − 𝑞)𝛼 = 𝛾 + 𝑞.𝛼 ∈ 𝑆𝛼(𝛽) ⊆ Φ.
For part 𝑖𝑖), note 𝑒⊺ restricts to an isomorphism k.𝛼 → k, with 𝑒⊺(𝑎𝛼) = 2𝑎. Thus if 𝛽 = 𝑐.𝛼, since 𝛽 ∉ Z.𝛼

by assumption, 0 ∉ 𝑒⊺(𝑆𝛼(𝛽)) so by (7.1.2), 𝑠 must be odd, where 𝑠 + 1 = |𝑆𝛼(𝑐.𝛼)|. But then, again by (7.1.2),

1Some references will impose the condition that 𝛼 and 𝛽 are linearly independent, in which case the 𝛼-string through 𝛽will be a subset ofΦ.
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1 ∈ {−𝑠, −𝑠 + 2,… 𝑠} and since 1 = 𝑒⊺(𝛼/2), it follows 𝛼/2 ∈ 𝑆𝛼(𝛽) ⊆ Φ. But then 𝛼 = 2(𝛼/2) ∈ 2.Φ, which is a
contradiction. Hence if 𝛽 ∉ Z.𝛼wemust have 𝛽 ∉ k.𝛼.

Finally, note that 𝑆 is clearly the disjoint union of the𝛼-root strings it contains, and by the above, if 𝑆𝛼(𝛽′) is any
such string, we may form the corresponding 𝔰𝔩𝛼-subrepresentation𝑀𝛽′ of 𝔤. But the eigenvalues of ad(ℎ𝛼) on𝑀𝛽′
must be 𝑒⊺(𝑆𝛼(𝛽′)) = 𝑃𝑠 = {−𝑠, −𝑠 + 2,… , 𝑠 − 2, 𝑠}where 𝑠 = |𝑆𝛼(𝛽′)|. Since for 𝑠 ≤ 𝑠′ we have 𝑃𝑠 ⊆ 𝑃𝑠′ , any two
such sets intersect. Since themap 𝛽 + 𝑘𝛼 ↦ 𝛽(ℎ𝛼) + 2𝑘 is injective and the roots strings in 𝑆 are pairwise disjoint, it
follows 𝑆 = 𝑆𝛼(𝛽) as claimed.

7.1.2 Rational form of 𝔥 and inner product spaces

Recall that since 𝜅|𝔥 is non-degenerate, it gives an isomorphism 𝜃∶ 𝔥 → 𝔥∗. For 𝜆 ∈ 𝔥∗, we write 𝑡𝜆 for 𝜃−1(𝜆),
so that 𝜅(𝑡𝜆, ℎ) = 𝜆(ℎ), (∀𝜆 ∈ 𝔥∗, ℎ ∈ 𝔥). Given a root 𝛼 ∈ Φ, we have seen that 𝔰𝔩𝛼 = 𝔤𝛼 ⊕ 𝔤−𝛼 ⊕ [𝔤𝛼, 𝔤−𝛼] ⊆ 𝔤
is a subalgebra isomorphic to 𝔰𝔩2. Indeed each summand is 1-dimensional, and [𝔤𝛼, 𝔤−𝛼] = k.𝑡𝛼 ⊆ 𝔥. We set ℎ𝛼 =
2𝛼(𝑡𝛼)−1.𝑡𝛼, so that 𝛼(ℎ𝛼) = 2.

Definition 7.1.11. Let 𝔥Q = {ℎ ∈ 𝔥 ∶ 𝛼(ℎ) ∈ Q, ∀𝛼 ∈ Φ}. Clearly 𝔥Q is a Q-vector space (a subspace of 𝔥 viewed as
aQ-vector space2). Recall also that a symmetric bilinear form (., .) on aQ-vector space𝑉 is said to be positive definite
if (𝑣, 𝑣) ≥ 0with equality holding precisely when 𝑣 = 0. Such a form is also commonly called an inner product.

Lemma 7.1.12. The Q-vector space 𝔥Q has the following properties

i) If 𝜅Q denotes the restriction of the Killing form to 𝔥Q , then 𝜅Q is a Q-valued positive definite symmetric bilinear form
on 𝔥Q .

ii) 𝔥Q = ⟨Φ∨⟩Q = ⟨{𝑡𝛼 ∶ 𝛼 ∈ Φ}⟩Q , and dimQ(𝔥Q) = dimk(𝔥). In particular, 𝜃 identifies the dual (𝔥Q)∗ of 𝔥Q with
⟨Φ⟩Q .

Proof. For part 𝑖), since we have shown in Proposition 7.1.8 that dim(𝔤𝛼) = 1 for all 𝛼 ∈ Φ, we may simplify the
expression for 𝜅|𝔥 given in (7.1.1) to obtain 𝜅(ℎ1, ℎ2) = ∑𝛾∈Φ 𝛾(ℎ1)𝛾(ℎ2). It is thus immediate from the definition of
𝔥Q that the Killing form isQ-valued on 𝔥Q . Moreover, if ℎ ∈ 𝔥Q , since𝛾(ℎ)2 ≥ 0 for all𝛾 ∈ Φ, we have𝜅Q(ℎ, ℎ) ≥ 0,
with equality if and only if 𝛾(ℎ) = 0 for all 𝛾 ∈ Φ, and since ⟨Φ⟩ = 𝔥∗, this holds only if ℎ = 0. Thus 𝜅Q is positive
definite as claimed.

For part 𝑖𝑖), by Proposition 7.1.10, the roots are Z-valued on set of coroots Φ∨, hence 𝔥Q ⊇ ⟨Φ∨⟩Q . Moreover
ℎ𝛼 = 𝑐𝛼.𝑡𝛼 where 2 = 𝑐𝛼.𝜅(𝑡𝛼, 𝑡𝛼), hence 𝜅(ℎ𝛼, ℎ𝛼) = 𝑐2𝛼𝜅(𝑡𝛼, 𝑡𝛼) = 2.𝑐𝛼 ∈ Z. Thus 𝑡𝛼 = 2𝜅(ℎ𝛼, ℎ𝛼)−1.ℎ𝛼 ∈ Q.ℎ𝛼,
and hence clearly ⟨{𝑡𝛼 ∶ 𝛼 ∈ Φ}⟩Q = ⟨Φ∨⟩Q .

Now since Φ spans 𝔥∗, we may find a subset 𝐵 = {𝛾1, … , 𝛾𝑙} ⊆ Φ which is a basis of 𝔥∗. Let 𝐵′ = 𝜃−10 (𝐵) =
{𝑡𝛾𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑙} ⊆ ⟨Φ∨⟩Q . Since it is a k-basis of 𝔥, 𝐵′ is linearly independent over k and hence over Q. It follows
dimQ(⟨Φ∨⟩Q) ≥ 𝑙. But if 𝜂∶ 𝔥Q → Q𝑙 is given by 𝜂(ℎ) = (𝛾𝑖(ℎ))𝑙𝑖=1, then 𝜂 is injective because 𝐵 is a basis of 𝔥∗.
Hence dim(𝔥Q) ≤ 𝑙. It follows that 𝔥Q = ⟨Φ∨⟩Q and dimQ(𝔥Q) = 𝑙 = dimk(𝔥). Since span{𝑡𝛼 ∶ 𝛼 ∈ Φ} = 𝔥Q , the
final statement in 𝑖𝑖) is now also clear.

Definition 7.1.13. Let (−, −) denote the bilinear form on 𝔥∗ which is obtained by identifying 𝔥∗ with 𝔥: that is

(𝜆, 𝜇) = 𝜅(𝑡𝜆, 𝑡𝜇).

Clearly it is a nondegenerate symmetric bilinear form, and via the previous Lemma, for all𝛼, 𝛽 ∈ Φwehave (𝛼, 𝛽) =
𝜅(𝑡𝛼, 𝑡𝛽) ∈ Q, so that it restricts to a Q-valued symmetric bilinear form on 𝔥∗Q which is positive definite.

*Remark 7.1.14. The group𝑌 generatedby {ℎ𝛼 ∶ 𝛼 ∈ Φ} is a finitely generated abelian groupwhich is a subgroupof
aQ-vector space, and so is torsion-free. It follows from the structure theorem for finitely generated abelian groups3

that 𝑌 is therefore actually a free abelian group. Moreover, the inner product restricts to an integer-valued positive
definite form on𝑌. A finitely generated free abelian groupwith such a form is called a lattice. (See the final problem
sheet for some discussion of these.) Note that any basis 𝐵 for 𝑌 is also a Q-basis of 𝔥Q but not conversely – this
gives at least somemotivation for the notion of a base we will see shortly, in that some subsets ofΦmay yield only
a Q-basis of 𝔥Q , whereas others may yield a Z-basis of𝑌.

2Since k has characteristic zero, it contains a canonical copy of Q – it is the intersection of all of the subfields of k)
3which youmay have seen in a previous algebra course...
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7.2 Abstract root systems

In this section we study the geometry which we are led to by the configuration of roots associated to a Cartan de-
composition of a semisimple Lie algebra. These configurationswill turn out to have a very special, highly symmetric,
formwhich allows them to be completely classified.

Wewill workwith rational inner product spaces𝑉, that is,Q-vector spaces𝑉 equippedwith a positive-definite
symmetric bilinear form4 which we will denote by (., .). Such vector spaces have, in addition to a notion of length
given by, for any 𝑣 ∈ 𝑉, the norm ‖𝑣‖ = (𝑣, 𝑣)1/2, a notion of angle: by the Cauchy-Schwarz inequality there is a
unique 𝜃 ∈ [0, 𝜋]with

cos(𝜃) = (𝑣1, 𝑣2)
‖𝑣1‖.‖𝑣2‖

∈ [−1, 1].

The group of orthogonal linear transformations of𝑉 is

O(𝑉) = {𝑔 ∈ GL(𝑉) ∶ (𝑔(𝑣), 𝑔(𝑤)) = (𝑣, 𝑤), ∀𝑣, 𝑤 ∈ 𝑉}.

Definition7.2.1. A reflection is a nontrivial element ofO(𝑉)whichfixes a subspace of codimension 1 (i.e. dimension
dim(𝑉) − 1). If 𝑠 ∈ O(𝑉) is a reflection and𝑊 < 𝑉 is the+1-eigenspace, then𝐿 = 𝑊⟂ is a line preserved by 𝑠, hence
the restriction 𝑠|𝐿 of 𝑠 to 𝐿 is an element of𝑂(𝐿) = {±1}, which since 𝑠 is nontrivial must be −1. In particular 𝑠 has
order 2. If 𝑣 is any nonzero element of 𝐿 then it is easy to check that 𝑠 is given by

𝑠(𝑢) = 𝑢 − 2(𝑢, 𝑣)(𝑣, 𝑣) 𝑣.

Given 𝑣 ≠ 0 we will write 𝑠𝑣 for the reflection given by the above formula, and refer to it as the “reflection in the
hyperplane perpendicular to 𝑣”.

We now give the definition which captures the geometry of the root of a semisimple Lie algebra.

Definition 7.2.2. A pair (𝑉,Φ) consisting a rational inner product space𝑉 and a finite subsetΦ ⊂ 𝑉\{0} is called
an (abstract) root system if it satisfies the following properties:

i) Φ spans𝑉;

ii) If 𝛼 ∈ Φ, 𝑐 ∈ Q, then 𝑐𝛼 ∈ Φ if and only if 𝑐 = ±1;

iii) If 𝛼 ∈ Φ then 𝑠𝛼 ∶ 𝑉 → 𝑉 preservesΦ;

iv) If 𝛼, 𝛽 ∈ Φ and we define

⟨𝛼, 𝛽⟩ = 2(𝛼, 𝛽)
(𝛼, 𝛼) , (7.2.1)

then ⟨𝛼, 𝛽⟩ ∈ Z. We say ⟨𝛼, 𝛽⟩ is a Cartan integer.

This definition is, unsurprisingly, motivated by the following result.

Lemma 7.2.3. Let (𝔤, 𝔥) be a Cartan pair where 𝔤 is semisimple, and let 𝔤 = 𝔥 ⊕⨁𝛼∈Φ 𝔤𝛼 be the associated Cartan
decomposition and let 𝔥∗Q be the Q-span ofΦ in 𝔥∗. Then (𝔥∗Q, Φ) is an abstract root system.

Proof. Let (−, −) denote the symmetric bilinear form on 𝔥∗Q induced by the restriction of the Killing form 𝜅|𝔥 as in
§7.1.2. Lemma 7.1.12 shows that this restriction is positive definite. Property 𝑖) for an abstract root system follows
immediately from thedefinitions, and the remainingproperties follow fromProposition 7.1.10: part 𝑖𝑖) of that Propo-
sition establishes property 𝑖𝑖), while part 𝑖) establishes properties 𝑖𝑖𝑖) and 𝑖𝑣).

Remarkably, the finite set of vectors given by a root system has both a rich enough structure that it captures the
isomorphism type of a semisimple Lie algebra, but is also explicit enough that we can completely classify them, and
hence classify semisimple Lie algebras.

4Such forms only make sense over ordered fields, such as Q or R.
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Definition7.2.4. Let (𝑉,Φ)bea root system. Then theWeyl groupof the root systemis thegroup𝑊 = ⟨𝑠𝛼 ∶ 𝛼 ∈ Φ⟩.
Since its generators preserve the finite setΦ and these vectors span𝑉, it follows that it is a finite subgroup of O(𝑉).
Example 7.2.5. Let 𝔤 = 𝔰𝔩𝑛, Then let 𝔡𝑛 denote the diagonalmatrices in 𝔤𝔩𝑛 and 𝔥 the (traceless) diagonal matrices
in 𝔰𝔩𝑛. As you saw in the problem sets, 𝔥 forms a Cartan subalgebra in 𝔰𝔩𝑛. Let {𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛} be the basis of
𝔡∗𝑛 dual to the basis {𝐸𝑖𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛} of 𝔡𝑛 in 𝔤𝔩𝑛. The Cartan decomposition of 𝔰𝔩𝑛 is 𝔥 ⊕⨁1≤𝑖≠𝑗≤𝑛 k.𝐸𝑖𝑗, where
ad(ℎ)(𝐸𝑖𝑗) = (ℎ𝑖 − ℎ𝑗)𝐸𝑖𝑗, where ℎ𝑘 = 𝜖𝑘(ℎ) for 𝑘 ∈ {1, … , 𝑛}. Thus

𝔥Q = {
𝑛
􏾜
𝑖=1
ℎ𝑖𝐸𝑖𝑖 ∶ ℎ𝑖 ∈ Q,

𝑛
􏾜
𝑖=1
ℎ𝑖 = 0} and 𝔥∗Q =

⎧⎪⎪⎨
⎪⎪⎩

𝑛
􏾜
𝑖=1
𝑐𝑖𝜀𝑖 ∶ 𝑐𝑖 ∈ Q

⎫⎪⎪⎬
⎪⎪⎭
⁄Q.(𝜀1 +…+ 𝜀𝑛),

where the roots in 𝔥∗Q are the (images of the) vectors {𝜀𝑖 − 𝜀𝑗 ∶ 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗}. Moreover, the Killing form for 𝔰𝔩𝑛
is 𝜅(𝑥, 𝑦) = 2𝑛.tr(𝑥𝑦), so the {𝐸𝑖𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛} are an orthogonal basis of 𝔥with 𝜅(𝐸𝑖𝑖, 𝐸𝑖𝑖) = 2𝑛. TheWeyl group𝑊
in this case is the group generated by the reflections 𝑠𝛼 which, for𝛼 = 𝜀𝑖 − 𝜀𝑗 interchange the basis vectors 𝜀𝑖 and 𝜀𝑗,
so it is easy to see that𝑊 is just the symmetric group on 𝑛 letters.

7.2.1 Positive sets and sets of simple roots

Since the set of rootsΦ spans𝑉, it certainly contains (many) subsets which form a basis of𝑉. The key to the classi-
fication of root systems is to show that there is a special class of such bases which capture enough of the geometry
of the set of roots that the entire root system can be recovered from the bases of this form.

Definition 7.2.6. Given a set of vectors𝑋 in a vector space𝑉, we will write

N.𝑋 =

⎧⎪⎪⎨
⎪⎪⎩
􏾜
𝑠∈𝑌

𝑐𝑠.𝑠 ∶ 𝑌 ⊆ 𝑋 finite, 𝑐𝑠 ∈ N

⎫⎪⎪⎬
⎪⎪⎭ ⊆ Z.𝑋 =

⎧⎪⎪⎨
⎪⎪⎩
􏾜
𝑠∈𝑌

𝑐𝑠.𝑠 ∶ 𝑌 ⊆ 𝑋 finite , 𝑐𝑠 ∈ Z

⎫⎪⎪⎬
⎪⎪⎭ .

The set N.𝑋 is closed under vector addition andmultiplication by elements of N.

Definition 7.2.7. Let (𝑉,Φ) be a root system, and letΔ be a subset ofΦ. We say thatΔ is a base (or a set of simple
roots) for Φ if Δ is a linearly independent and for each 𝛼 ∈ Φ, exactly one of 𝛼 or −𝛼 lies in N.Δ. Note that since
⟨Φ⟩Q = 𝑉, a base Δ is in particular a basis of 𝑉. Given a base Δ ofΦ we setΦ+Δ = NΔ ∩Φ andΦ−Δ = −Φ+Δ, the
subsets ofΔ-positive andΔ-negative roots respectively.
Remark 7.2.8. One can express the conditions that a subsetΔ ⊆ Φmust satisfy to be a base in various equivalent
ways. For example, one can rephrase them as follows: 𝑖) Φ ⊆ Z.Δ and 𝑖𝑖)N.Δ ∩ −N.Δ = ∅ and Φ ∩N.Δ is as
large as possible, i.e. |Φ ∩N.Δ| = |Φ|/2.

The second condition is perhaps less natural-seeming, but it is helpful to note that if it holds, andwewrite 𝔫± =
⨁𝛼∈Φ±Δ

𝔤𝛼, then 𝔫+ and 𝔫− are subalgebras of 𝔤 and in fact 𝔤 = 𝔫+ ⊕ 𝔥 ⊕ 𝔫− (a direct sum as a vector space – each

summand is only a subalgebra, not an ideal, of 𝔤). Moreover, the Killing form induces an isomorphism 𝜃+ ∶ 𝔫+ →
(𝔫−)∗.

The following definition gives us a natural way of decomposing the rootsΦ into “positive” and “negative” sub-
sets.

Definition 7.2.9. Let𝑉 be a Q-vector space. A positive set𝒫 in𝑉 is a subset𝒫 ⊆ 𝑉\{0} such that

• For each 𝑣 ∈ 𝑉\{0}, exactly one of 𝑣 or −𝑣 lies in𝒫 .

• if 𝑣1, 𝑣2 ∈ 𝒫 and 𝜆 ∈ Q>0 then 𝜆.𝑣1, 𝑣1 + 𝑣2 ∈ 𝒫 .

If𝒫 is a positive set, then we define a total order< on𝑉 by 𝑣1 < 𝑣2 if and only if 𝑣2 − 𝑣1 ∈ 𝒫 .

Example 7.2.10. If𝑉 is aQ-vector space and 𝐵⃗ = (𝑒1, … , 𝑒𝑛) is an ordered basis of𝑉, and let {𝛿1, … , 𝛿𝑙} be the dual
basis of 𝑉∗ so that for any 𝑣 ∈ 𝑉 we have 𝑣 = ∑𝑙

𝑖=1 𝛿𝑖(𝑣).𝑒𝑖. Let 𝑠 ∶ 𝑉\{0} → {1, … , 𝑙} be given by 𝑠𝐵⃗(𝑣) = min{𝑘 ∶
1 ≤ 𝑘 ≤ 𝑙, 𝛿𝑘(𝑣) ≠ 0}, and, if 𝑣 ∈ 𝑉\{0} has 𝑠𝐵⃗(𝑣) = 𝑘, let 𝑝𝐵⃗(𝑣) = 𝛿𝑘(𝑣). Then

𝒫(𝐵⃗) = {𝑣 ∈ 𝑉\{0} ∶ 𝑝𝐵⃗(𝑣) > 0} =

⎧⎪⎪⎨
⎪⎪⎩

𝑙
􏾜
𝑖=𝑘
𝜆𝑖𝑒𝑖 ∶ 𝑘 ∈ {1, 2, … , 𝑙}, 𝜆𝑘 > 0

⎫⎪⎪⎬
⎪⎪⎭

is a positive system.
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Definition7.2.11. Let (𝑉,Φ)bea root systemandfixapositive set𝒫 in𝑉. LetΦ+𝒫 = Φ∩𝒫 andΦ−𝒫 = Φ∩(−𝒫)
(where the positive set𝒫 is understood from context, we will simply writeΦ+). We say thatΦ+ is a set of positive
roots if there is a positive set𝒫 in𝑉 for whichΦ+ = Φ+𝒫 = Φ∩𝒫 .

Given a set of positive rootsΦ+𝒫 , we say that 𝛼 ∈ Φ+𝒫 is decomposable if 𝛼 = 𝛽 + 𝛾 for some 𝛽, 𝛾 ∈ Φ+𝒫 . A root is
indecomposable if it is not decomposable. LetΠ𝒫 be the set of indecomposable roots inΦ+𝒫 .

Proposition 7.2.12. Let (𝑉,Φ) be an abstract root system.

i) Let (𝑉,Φ) be a root system and suppose that𝒫 is a positive system. Then the set of indecomposable rootsΠ = Π𝒫
is linearly independent andΦ+𝒫 = N.Π𝒫 ∩Φ, so thatΠ is a base of (𝑉,Φ) and the mapΦ+𝒫 ↦ Π𝒫 is bijective
with inverseΠ𝒫 ↦ N.Π𝒫 ∩Φ. In particular, any root system has a base.

ii) Every base of (𝑉,Φ) is of the formΠ𝒫 for some positive system𝒫 , thus the mapΔ → Φ+Δ gives a bijection between
set of all bases of (𝑉,Φ) and the set of all sets of positive rootsΦ+𝒫 since for any positive system𝒫 withΦ𝒫 = Φ+Δ we
haveΠ𝒫 = Δ.

Proof. We establish part 𝑖) in three steps:
Step 1: We claim thatΦ+𝒫 ⊆ N.Π. The setΦ+ is totally ordered by the order given by𝒫 , so ifΦ+ is not contained
in N.Π, we may consider 𝛼 ∈ Φ+, the minimal element of Φ+ not contained on N.Π. Clearly 𝛼 ∉ Π, hence
𝛼 is decomposable and there are 𝛾1, 𝛾2 ∈ Φ+ with 𝛼 = 𝛾1 + 𝛾2. But then 𝛾1, 𝛾2 < 𝛼, so by minimality of 𝛼,
𝛾1, 𝛾2 ∈ N.Π. ButN.Π is closed under addition, so𝛼 = 𝛾1 +𝛾2 ∈ N.Π, giving a contradiction. HenceΦ+ ⊆ N.Π
as required, andΦ+𝒫 ↦ Π𝒫 is bijective.

Step 2: Next we claim that if 𝛼, 𝛽 ∈ Φ+𝒫 are distinct roots such that (𝛼, 𝛽) > 0, then at least one of them must
be decomposable. To see this, first note that ⟨𝛼, 𝛽⟩, ⟨𝛽, 𝛼⟩ > 0. Since 𝛼, 𝛽 ∈ Φ+ are distinct, they are linearly
independent, and hence by Cauchy-Schwarz, ⟨𝛼, 𝛽⟩.⟨𝛽, 𝛼⟩ ∈ {1, 2, 3}. It follows one of ⟨𝛼, 𝛽⟩ or ⟨𝛽, 𝛼⟩ = 1. By
symmetry we may assume ⟨𝛼, 𝛽⟩ = 1, and hence 𝑠𝛼(𝛽) = 𝛽 − 𝛼 ∈ Φ. But then one of 𝛼 − 𝛽 or 𝛽 − 𝛼 lies inΦ+. But
as 𝛼 = (𝛼 − 𝛽) + 𝛽 and 𝛽 = (𝛽 − 𝛼) + 𝛼, it follows that one of 𝛼 or 𝛽must be is decomposable as required.

Step 3Let𝑆beany subset of𝒫 with theproperty that if 𝑠, 𝑡 ∈ 𝑆 aredistinct, then (𝑠, 𝑡) ≤ 0. We claim that𝑆 is linearly
independent. Since by step 2,Π𝒫 has this property, and by step 1Φ+𝒫 ⊆ N.Π𝒫 , it follows from the claim thatΠ𝒫
is a base. Suppose that∑𝑠∈𝑇 𝑐𝑠.𝑠 = 0 is a linear dependence, where 𝑇 ⊆ 𝑆. Then let 𝑇± = {𝑠 ∈ 𝑇 ∶ ±𝑐𝑠 > 0}, and let
𝑧 = ∑𝑡∈𝑇+ 𝑐𝑡.𝑡 = ∑𝑠∈𝑇− (−𝑐𝑠).𝑠. Now∑𝑡∈𝑇+ 𝑐𝑡.𝑡 ∈ 𝒫 unless 𝑇+ = ∅ since 𝑇+ ⊆ 𝒫 and 𝑐𝑡 > 0 for all 𝑡 ∈ 𝑇+. But

(𝑧, 𝑧) = (􏾜
𝑡∈𝑇+

𝑐𝑡.𝑡, 􏾜
𝑠∈𝑇−

(−𝑐𝑠).𝑠) = 􏾜
𝑠,𝑡
𝑐𝑡(−𝑐𝑠)(𝑠, 𝑡) ≤ 0

hence 𝑧 = 0. But then 𝑇+ = ∅, and∑𝑠∈𝑇− (−𝑐𝑠).𝑠 = 0. Since (−𝑐𝑠) ≥ 0 and 𝑠 ∈ 𝒫 for all 𝑠 ∈ 𝑇− this implies 𝑐𝑠 = 0
for all 𝑠 ∈ 𝑇− = 𝑇, so 𝑆 is linearly independent as required.

For part 𝑖𝑖), given a baseΔ, pick an arbitrary orderingΔ𝑜𝑟𝑑 = {𝛼1, … , 𝛼𝑙}. ThenΔ𝑜𝑟𝑑 is an ordered basis of𝑉 and
hence gives a positive set𝒫 = 𝒫Δ𝑜𝑟𝑑 as in Example 7.2.10. NowΦ+Δ = N.Δ ∩ Φ ⊆ 𝒫 since Δ ⊆ 𝒫 , and hence
Φ+Δ ⊆ Φ∩𝒫 = Φ+𝒫 , and sinceΦ+Δ andΦ+𝒫 both have 1

2 |Φ| elements,Φ+Δ = Φ+𝒫 (thus the set of positive rootsΦ+𝒫
is independent of ordering ofΔwhich we chose to obtain𝒫 ).

Let 𝜌 ∈ 𝑉∗ be given by 𝜌(𝛼) = 1 for all 𝛼 ∈ Δ. If𝒫 is any positive set for whichΦ+𝒫 = Φ+Δ = N.Δ ∩ Φwe see
that 𝛿(𝛼) ∈ N for all 𝛼 ∈ Φ+𝒫 so that if 𝛼 is decomposable we must have 𝛿(𝛼) ≥ 2, while 𝛿(𝛼) = 1 if and only if
𝛼 ∈ Δ. It follows thatΔ ⊆ Π𝒫 . Since we have just seen thatΠ𝒫 is a base of𝑉 it followsΠ𝒫 = Δ. Part 𝑖𝑖) follows
immediately.

Lemma 7.2.13. Let (𝑉,Φ) be an abstract root system, and suppose that 𝛼 ∈ Φ.

1. There is a positive set𝒫 for which𝛼 is the minimal element ofΦ+𝒫 , In particular, 𝛼 ∈ Φ+𝒫 is indecomposable, and so
belongs toΠ𝒫 , a base of (𝑉,Φ).

2. IfΔ is a base and 𝛼 ∈ Δ, then if𝛽 ∈ Φ+Δ and 𝛽 ≠ 𝛼, then 𝑠𝛼(𝛽) ∈ Φ+𝒫 . Hence if we writeΦ+(𝛼) = Φ+\{𝛼} then we
have 𝑠𝛼(Φ+(𝛼)) = Φ+(𝛼)whenever 𝛼 ∈ Δ.

Proof. Pick a basis 𝐵 ⊂ Φ of 𝑉 containing 𝛼 and let 𝐵⃗ = {𝛾1, … , 𝛾𝑙} be an ordering of it in which 𝛼 = 𝛾𝑙. Let
𝐷 = {𝛿1, … , 𝛿𝑙} Let𝒫 = 𝒫𝐵⃗. Then if 𝛽 ∈ Φ+𝒫 has 𝛽 ≤ 𝛼, since 𝛽 ∈ 𝒫 and 𝑠𝐵⃗ = 𝑙, we must have 𝑠𝐵⃗(𝛽) = 𝑙 also,
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and hence 𝛽 = 𝑐.𝛼 for some 𝑐 > 0. But since 𝛼, 𝛽 ∈ Φ this implies 𝛽 = 𝛼 as required. Since 𝛽 is minimal, it must be
indecomposable, and hence 𝛽 ∈ Π𝒫 which we have seen is always a base.

Next ifΔ is a base containing 𝛼, we may take 𝐵 = Δ, so that𝒫 = 𝒫Δ⃗. If Δ⃗1 = 𝑠𝛼(Δ⃗), then𝒫Δ⃗1
= 𝑠𝛼(𝒫). But

𝑠𝛼(𝛾𝑖) = 𝛾𝑖 − ⟨𝛾𝑙, 𝛾𝑖⟩.𝛾𝑙, hence the dual basis toΔ1 = 𝑠𝛼(Δ) is𝐷1 = 𝑠⊺𝛼 (𝐷) = {𝛿1, … , 𝛿𝑙−1, −𝛿𝑙 −∑𝑖<𝑙⟨𝛾𝑙, 𝛾𝑖⟩𝛿𝑖}. It
follows that 𝑝Δ(𝑣) = 𝑝Δ1 (𝑣) for all 𝑣 ∈ 𝑉\Q.𝛼, hence 𝑠𝛼(𝒫) = 𝒫Δ⃗1

and𝒫\Q.𝛼 = 𝒫Δ⃗1
\Q.𝛼 = 𝑠𝛼(𝒫)\Q.𝛼, so that

(Φ\{±𝛼}) ∩𝒫 = (Φ\{±𝛼} ∩𝒫1 as required.

It turns out that we can recover the entire root system provided we know a base for it. Before we can show this,
we first show that any two bases ofΦ are conjugate under the action of𝑊.

Proposition 7.2.14. Suppose thatΔ1 is any base of (𝑉,Φ) and letΦ+1 be the corresponding set of positive roots. Then there
is some𝑤 ∈ 𝑊0 such that𝑤(Φ+1 ) = Φ+0 , and hence𝑤(Δ1) = Δ0.

Proof. Weprove this by induction on 𝑑 = |Φ+0 ∩Φ−1 |. If this 𝑑 = 0 thenΦ+0 = Φ+1 and henceΔ0 = Δ1 (hencewemay
take𝑤 = 𝑒 the identity element of𝑊0). Next suppose that 𝑑 > 0. Let𝒫1 be a positive set such thatΦ+1 = Φ∩𝒫1. If
Δ0 ⊆ Φ+1 , then since any element ofΦ+0 is a positive integer combination ofΔ0, it followsΦ+0 ⊆ 𝒫1 ∩Φ = Φ+1 and
henceΦ+0 ∩Φ−1 = ∅, which contradicts the assumption that 𝑑 > 0. Thus there is some 𝛼 ∈ Δ0 such that 𝛼 ∈ Φ−1 .
But then using the notation of Lemma 7.2.13 we see that

|Φ+0 ∩ 𝑠𝛼(Φ−1 )| = |𝑠𝛼(Φ+0 ) ∩ Φ−1 | = | 􏿴{−𝛼} ∪Φ+0 (𝛼)􏿷 ∩Φ−1 | = |Φ+0 (𝛼) ∩Φ−1 | = 𝑑 − 1

where the first equality holds because 𝑠2𝛼 = 1𝑉 , the second equality follows from Lemma 7.2.13, and the third from
the fact thatΦ−1 contains 𝛼 and hence not −𝛼. But then by induction there is a𝑤 ∈ 𝑊0 with𝑤𝑠𝛼(Φ1)+ = Φ+0 . Since
𝑤𝑠𝛼 ∈ 𝑊0 we are done.

Corollary 7.2.15. Suppose that 𝛽 ∈ Φ. Then there is a𝑤 ∈ 𝑊0 and an 𝛼 ∈ Δ0 such that𝑤(𝛽) = 𝛼. In particular,𝑊 is
generated by the reflections {𝑠𝛾 ∶ 𝛾 ∈ Δ0}, that is,𝑊 = 𝑊0.

Proof. For the first claim follows from the fact that every root lies in a base for (𝑉,Φ), shown in part 𝑖) of Lemma
7.2.13, together with Proposition 7.2.14.

For the final claim, note that if 𝛽 ∈ Φ then we have just shown that there is a 𝑤 ∈ 𝑊0 such that 𝑤(𝛽) = 𝛾 for
some 𝛾 ∈ Δ0. But then clearly 𝑠𝛽 = 𝑤−1𝑠𝛾𝑤 ∈ 𝑊0, and so since𝑊 = ⟨𝑠𝛽 ∶ 𝛽 ∈ Φ⟩ it follows that𝑊 ≤ 𝑊0. Since
𝑊0 ≤ 𝑊 by definition, it follows𝑊 = 𝑊0 as required.

Remark 7.2.16. In fact𝑊 acts simply transitively on the bases of (𝑉,Φ), that is, the action is transitive and, ifΔ is a
base and𝑤 ∈ 𝑊 is such that𝑤(Δ) = Δ, then𝑤 = 1. The proof (which we will not give) consists of examining the
minimal length expression for𝑤 in terms of these generators {𝑠𝛼 ∶ 𝛼 ∈ Δ0}.

7.2.2 Cartanmatrices and isomorphisms of root systems

First let us formulate the notion of an isomorphism of root systems:

Definition 7.2.17. If (𝑉,Φ) and (𝑉′, Φ ′) are root systems, we say that a linear map𝜙∶ 𝑉 → 𝑉′ is an isomorphism
of root systems if it is a isomorphism of vector spaces such that𝜙(Φ) = Φ ′ and

⟨𝜙(𝛼), 𝜙(𝛽)⟩ = ⟨𝛼, 𝛽⟩, ∀𝛼, 𝛽 ∈ Φ.

Note that𝜙 need not be an isometry: if 0 < 𝑐 < 1, then (𝑉, 𝑐.Φ) is a root systemwhich is not isometric to (𝑉,Φ), but
𝜙(𝑥) = 𝑐.𝑥 is an isomorphism from (𝑉,Φ) to (𝑉, 𝑐.Φ).

Definition 7.2.18. Let (𝑉,Φ) be a root system. The Cartan matrix associated to (𝑉,Φ) is the matrix

𝐶 = 𝐶Δ = (⟨𝛼𝑖, 𝛼𝑗⟩)𝑙𝑖,𝑗=1.
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where {𝛼1, 𝛼2, … , 𝛼ℓ} = Δ is a base of (𝑉,Φ). Since the elements of𝑊 are isometries, and𝑊 acts transitively on
the set of bases ofΦ, the Cartanmatrix is independent5 of the choice of base (though clearly determined only up to
orderings of the baseΔ).

Theorem7.2.19. Let (𝑉,Φ)bea root system. Then (𝑉,Φ) is determinedup to isomorphismby theCartanmatrixassociated
to it.

Proof. Given root systems (𝑉,Φ) and (𝑉′, Φ ′) with the same Cartan matrix, we may certainly pick a base Δ =
{𝛼1, … , 𝛼ℓ} of (𝑉,Φ) and a baseΔ′ = {𝛽1, … , 𝛽ℓ} of (𝑉′, Φ ′) such that ⟨𝛼𝑖, 𝛼𝑗⟩ = ⟨𝛽𝑖, 𝛽𝑗⟩ for all 𝑖, 𝑗, (1 ≤ 𝑖, 𝑗 ≤ ℓ). We
claim themap𝜙∶ Δ → Δ′ given by𝜙(𝛼𝑖) = 𝛽𝑖 extends to an isomorphism of root systems. SinceΔ andΔ′ are bases
of𝑉 and𝑉′ respectively,𝜙 extends uniquely to an isomorphismof vector spaces𝜙∶ 𝑉 → 𝑉′, sowemust show that
𝜙(Φ) = Φ ′, and ⟨𝜙(𝛼), 𝜙(𝛽)⟩ = ⟨𝛼, 𝛽⟩ for each 𝛼, 𝛽 ∈ Φ.

Let 𝑠𝑖 = 𝑠𝛼𝑖 ∈ O(𝑉) and 𝑠′𝑖 = 𝑠𝛽𝑖 ∈ O(𝑉′) be the reflections in the Weyl groups𝑊 = 𝑊(𝑉,Φ) and𝑊′ =
𝑊(𝑉′, Φ ′) respectively. Then from the formula for the action of 𝑠𝑖 it is clear that 𝜙(𝑠𝑖(𝛼𝑗)) = 𝑠′𝑖 (𝛽𝑗) = 𝑠′𝑖 (𝜙(𝛼𝑖)),
so since Δ is a basis it follows 𝜙(𝑠𝑖(𝑣)) = 𝑠′𝑖 (𝜙(𝑣)) for all 𝑣 ∈ 𝑉. But then since the 𝑠𝑖s and 𝑠′𝑖s generate𝑊 and𝑊′

respectively,𝜙 induces an isomorphism𝑊 →𝑊′, given by𝑤 ↦ 𝑤′ = 𝜙 ∘ 𝑤 ∘ 𝜙−1. But by Corollary 7.2.15 we have

𝜙(Φ) = 𝜙(𝑊.Δ) = (𝜙𝑊𝜙−1)(𝜙(Δ)) = 𝑊′𝜙(Δ) = 𝑊′.Δ′ = Φ ′

Finally, fixing 𝛼 ∈ Δ, clearly the linear functionals given by 𝑣 ↦ ⟨𝛼, 𝑣⟩ and 𝑣 ↦ ⟨𝜙(𝛼), 𝜙(𝑣)⟩ (𝑣 ∈ 𝑉) agree if
𝑣 ∈ Δ, hence by linearity they are equal. Hence ⟨𝛼, 𝛽⟩ = ⟨𝜙(𝛼), 𝜙(𝛽)⟩ if 𝛼 ∈ Δ and 𝛽 ∈ Φ. But since𝑊 and𝑊′ act
by isometries

⟨𝑤(𝛼), 𝑤(𝛽)⟩ = ⟨𝛼, 𝛽⟩ = ⟨𝜙(𝛼), 𝜙(𝛽)⟩ = ⟨𝑤′(𝜙(𝛼)), 𝑤′(𝜙(𝛽))⟩ = ⟨𝜙(𝑤(𝛼)), 𝜙(𝑤(𝛽))⟩,

so that since𝑊.Δ = Φ, it follows that ⟨𝛼, 𝛽⟩ = ⟨𝜙(𝛼), 𝜙(𝛽)⟩ for all 𝛼, 𝛽 ∈ Φ.

Thus to classify root systems up to isomorphism it is enough to classify Cartan matrices. It turns out that there
is amore combinatorial way to encode the information given by a Cartanmatrix, because the possible entries of the
Cartanmatrix are heavily constrained, as the next Lemma shows:

Lemma 7.2.20. Let (𝑉,Φ) be a root system and let 𝛼, 𝛽 ∈ Φ be such that 𝛼 ≠ ±𝛽. Then the Cartan integer ⟨𝛼, 𝛽⟩ ∈
{0, ±1, ±2, ±3}Moreover, the angle between 𝛼 and 𝛽 and the ratio ‖𝛼‖2/‖𝛽‖2 are determined by the pair ⟨𝛼, 𝛽⟩, ⟨𝛽, 𝛼⟩, as
the table below shows:

⟨𝛼, 𝛽⟩ ⟨𝛽, 𝛼⟩ 𝜃 ||𝛼||2/||𝛽||2
0 0 𝜋/2 undetermined
1 1 𝜋/3 1
−1 −1 2𝜋/3 1
1 2 𝜋/4 2
−1 −2 3𝜋/4 2
1 3 𝜋/6 3
−1 −3 5𝜋/6 3

Proof. By assumption, we know that both ⟨𝛼, 𝛽⟩ and ⟨𝛽, 𝛼⟩ are integers with the same sign. By the Cauchy-Schwarz
inequality, if 𝜃 denotes the angle between 𝛼 and 𝛽, then:

⟨𝛼, 𝛽⟩⟨𝛽, 𝛼⟩ = 4 (𝛼, 𝛽)2
‖𝛼‖2.‖𝛽‖2 = 4cos(𝜃)

2 < 4. (7.2.2)

Noting that cos(𝜃)2 determines the angle between the two vectors (or rather the one which is less than 𝜋) and (if
(𝛼, 𝛽) ≠ 0) ⟨𝛽, 𝛼⟩/⟨𝛼, 𝛽⟩ = ||𝛼||2/||𝛽||2 (where we write ||𝑣||2 = (𝑣, 𝑣)), it is then easy to verify the table given above
by a case-by-case check.

5This might appear to overlook something: While it is true that𝑊 acts transitively on the set of bases, so we may pick an arbitrary base in
order to compute the Cartan matrix, if𝑊Δ = {𝑤 ∈ 𝑊 ∶ 𝑤(Δ) = Δ} then𝑊Δ acts on 𝐶Δ, and thus could yield constraints on the possible
structure of the Cartanmatrix. In fact𝑊Δ is trivial, so we are not missing anything!
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Definition7.2.21. As thepreviousLemmashows, if𝐶 = (𝑐𝑖𝑗) is aCartanmatrix, its entries 𝑐𝑖𝑗 arehighly constrained:
indeed 𝑐𝑖𝑖 = 2 and if 𝑖 ≠ 𝑗, 𝑐𝑖𝑗 ∈ {0, −1, −2, −3} and {𝑐𝑖𝑗, 𝑐𝑗𝑖} = {−1, −𝑐𝑖𝑗𝑐𝑗𝑖} so that 𝑐𝑖𝑗 is determined by the product
𝑐𝑖𝑗.𝑐𝑗𝑖 and the relative lengths of the two roots (set out in the table above). As a result, the matrix can be recorded
as a kind of graph: the vertex set of the graph is labelled by the base {𝛼1, … , 𝛼𝑙}, and one puts ⟨𝛼𝑖, 𝛼𝑗⟩.⟨𝛼𝑗, 𝛼𝑖⟩ edges
between 𝛼𝑖 and 𝛼𝑗, directing the edges so that they go from the larger root to the smaller root. Thus for example if
⟨𝛼𝑖, 𝛼𝑗⟩ = −2 and ⟨𝛼𝑗, 𝛼𝑖⟩ = −1 so that ||𝛼𝑗||2 > ||𝛼𝑖||2, that is, 𝛼𝑗 is longer than 𝛼𝑖, we record this in the graph as:

𝛼𝑖• ks •𝛼𝑗

The resulting graph is called theDynkin diagram.

Definition7.2.22. Wesay that a root system (𝑉,Φ) is reducible if there is apartitionof the roots into twonon-empty
subsetsΦ1 ⊔Φ2 such that (𝛼, 𝛽) = 0 for all 𝛼 ∈ Φ1, 𝛽 ∈ Φ2. Then if we set 𝑉1 = span(Φ1) and 𝑉2 = span(Φ2),
clearly 𝑉 = 𝑉1 ⊕ 𝑉2 and we say (𝑉,Φ) is the sum of the root systems (𝑉1, Φ1) and (𝑉2, Φ2). This allows one to
reduce the classification of root systems to the classification of irreducible root systems, i,e. root systems which are
not reducible. It is straight-forward to check that a root system is irreducible if and only if its associated Dynkin
diagram is connected.

Definition 7.2.23. (Not examinable.) The notion of a root system makes sense over the real, as well as rational,
numbers. Let (𝑉,Φ) be a real root system, and letΔ = {𝛼1, 𝛼2, … , 𝛼𝑙} be a base ofΦ. If 𝑣𝑖 = 𝛼𝑖/||𝛼𝑖|| (1 ≤ 𝑖 ≤ 𝑙) are
the unit vectors in𝑉 corresponding toΔ, then they satisfy the conditions:

1. (𝑣𝑖, 𝑣𝑖) = 1 for all 𝑖 and (𝑣𝑖, 𝑣𝑗) ≤ 0 if 𝑖 ≠ 𝑗,

2. If 𝑖 ≠ 𝑗 then 4(𝑣𝑖, 𝑣𝑗)2 ∈ {0, 1, 2, 3}. (This is the reason we need to extend scalars to the real numbers – if you

want you could just extend scalars to Q(√2,√3), but it makes no difference to the classification problem).

Such a set of vectors is called an admissible set.

It is straightforward to see that classifyingQ-vector spaces with a basis which forms an admissible set is equiv-
alent to classifying Cartan matrices, and using elementary techniques it is possible to show that that the following
are the only possibilities (we list the Dynkin diagram, a description of the roots, and a choice of a base):

• Type𝐴ℓ (ℓ ≥ 1):
• • ⋅ ⋅ ⋅ • •

𝑉 = {𝑣 =
ℓ+1
􏾜
𝑖=1
𝑐𝑖𝑒𝑖 ∈ Qℓ+1 ∶ 􏾜𝑐𝑖 = 0}, Φ = {𝜀𝑖 − 𝑒𝑗 ∶ 1 ≤ 𝑖 ≠ 𝑗 ≤ ℓ}

Δ = {𝜀𝑖+1 − 𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ ℓ − 1}

• Type 𝐵ℓ (ℓ ≥ 2):
• • ⋅ ⋅ ⋅ • +3 •

𝑉 = Qℓ, Φ = {±𝜀𝑖 ± 𝜀𝑗 ∶ 1 ≤ 𝑖, 𝑗 ≤ ℓ, 𝑖 ≠ 𝑗} ∪ {±𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ ℓ},
Δ = {𝜀1, 𝜀𝑖+1 − 𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ ℓ − 1}

• Type𝐶ℓ (ℓ ≥ 3):
• • ⋅ ⋅ ⋅ • ks •

𝑉 = Qℓ, Φ = {±𝜀𝑖 ± 𝜀𝑗 ∶ 1 ≤ 𝑖, 𝑗 ≤ ℓ, 𝑖 ≠ 𝑗} ∪ {2𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ ℓ},
Δ = {2𝜀1, 𝜀𝑖+1 − 𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ ℓ − 1}

• Type𝐷ℓ (ℓ ≥ 4):
•

iiiii
i

• • ⋅ ⋅ ⋅ • •
•

UUUUUU

𝑉 = Qℓ, Φ = {±𝜀𝑖 ± 𝜀𝑗 ∶ 1 ≤ 𝑖, 𝑗 ≤ ℓ, 𝑖 ≠ 𝑗},
Δ = {𝜀1 + 𝜀2, 𝜀𝑖+1 − 𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ ℓ − 1}
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• Type𝐺2.
• _jt •

Let 𝑒 = 𝜀1 + 𝜀2 + 𝜀3 ∈ Q3, then:

𝑉 = {𝑣 ∈ Q3 ∶ (𝑣, 𝑒) = 0}, Φ = {𝜀𝑖 − 𝜀𝑗 ∶ 𝑖 ≠ 𝑗} ∪ {±(3𝜀𝑖 − 𝑒) ∶ 1 ≤ 𝑖 ≤ 3}
Δ = {𝜀1 − 𝜀2, 𝑒 − 3𝜀1}

• Type 𝐹4:
• • +3 • •

𝑉 = Q4,

Φ = {±𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ 4} ∪ {±𝜀𝑖 ± 𝑒𝑗 ∶ 𝑖 ≠ 𝑗} ∪ {
1
2 (±𝜀1 ± 𝜀2 ± 𝜀3 ± 𝜀4)}

Δ = {𝜀2 − 𝜀3, 𝜀3 − 𝜀4, 𝜀4,
1
2 (𝜀1 − 𝜀2 − 𝜀3 − 𝜀4)}.

• Type 𝐸𝑛 (𝑛 = 6, 7, 8).

• •

• • • • • • • • • • •

•

• • • • • • •
These can all be constructed inside 𝐸8 by taking the span of the appropriate subset of a base, so we just give
the root system for 𝐸8.

𝑉 = Q8, Φ = {±𝜀𝑖 ± 𝜀𝑗 ∶ 𝑖 ≠ 𝑗} ∪ {
1
2

8
􏾜
𝑖=1
(−1)𝑎𝑖𝜀𝑖 ∶

8
􏾜
𝑖=1
𝑎𝑖 ∈ 2Z},

Δ = {𝜀1 + 𝜀2, 𝜀𝑖+1 − 𝜀𝑖,
1
2 (𝜀1 + 𝜀8 − (𝜀2 + 𝜀3 +…+ 𝜀7)) ∶ 1 ≤ 𝑖 ≤ 6}.

Note that theWeyl groups of type 𝐵ℓ and𝐶ℓ are equal. The reason for the restriction on ℓ in the types 𝐵,𝐶,𝐷 is
to avoid repetition, e.g. 𝐵2 and𝐶2 are the same up to relabelling the vertices.

Remark 7.2.24. I certainly don’t expect you to remember the root systems of the exceptional types, but you should
be familiar with the ones for type𝐴, 𝐵,𝐶 and𝐷. The ones of rank two (i.e. 𝐴2, 𝐵2 and𝐺2) are also worth knowing
(because for example you can draw them!)

7.3 The Classification of Semisimple Lie algebras

Only the statements of the theorems in this section are examinable, but it is important to know these statements!

Remarkably, the classification of semisimple Lie algebras is identical to the classification of root systems: each
semisimple Lie algebra decomposes into a direct sum of simple Lie algebras, and it is not hard to show that the
root system of a simple Lie algebra is irreducible. Thus to any simple Lie algebra we may attach an irreducible root
system. By the conjugacy of Cartan subalgebras (see Remark 5.1.4) this gives a well-defined map from simple Lie
algebras to irreducible root systems. Then the following theorem shows that its image classifies simple Lie algebras
up to isomorphism.

Theorem 7.3.1. Let 𝔤1, 𝔤2 be semisimple Lie algebras with Cartan subalgebras 𝔥1, 𝔥2 respectively, and suppose now k is of
characteristic zero. Then if the root systems attached to (𝔤1, 𝔥1) and (𝔤2, 𝔥2) are isomorphic, there is an isomorphism𝜙∶ 𝔤1 →
𝔤2 taking 𝔥1 to 𝔥2.
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Thus to obtain a classification of simple Lie algebras, it remains to determinewhich irreducible root systems are
associated to a simple Lie algebra. In fact all of them are!

Theorem 7.3.2. There exists a simple Lie algebra corresponding to each irreducible root system.

Thus Theorem 7.3.1 says each irreducible root system is associated to at most one simple Lie algebra (up to iso-
morphism) and so is a kind of uniqueness theorem, while Theorem 7.3.2 shows each irreducible root system comes
from a simple Lie algebra, so is an existence theorem. Theorem 7.3.1 is not difficult given the machinery we have de-
veloped in this course. The existence statement is themore substantial result, but we developed enoughmachinery
to see the existence inmost cases: the four infinite families𝐴,𝐵, 𝐶,𝐷 correspond to the classical Lie algebras 𝔰𝔩ℓ+1,
𝔰𝔬2ℓ, 𝔰𝔭2ℓ and 𝔰𝔬2ℓ+1 – their root systems can be computed directly (as you say in the ProblemSheets). This of course
also requires checking that theseLiealgebrasare simple (orat least semisimple)but this is also straight-forwardwith
the theory we have developed.

It then only remains to construct the five ”exceptional” simple Lie algebras. This can be done in a variety ofways
– given a root systemwhere all the roots are of the same length there is an explicit construction of the associated Lie
algebra by forming a basis from the Cartan decomposition (and a choice of base of the root system) and explicitly
constructing the Lie bracket by giving the structure constants with respect to this basis (which, remarkably, can be
chosen for the basis vectors corresponding to the root subspaces to lie in {0, ±1}). This gives in particular a con-
struction of the Lie algebras of type 𝐸6, 𝐸7, 𝐸8 (and also𝐴ℓ and𝐷ℓ though we already had a construction of these).
The remaining Lie algebras can be found by a technique called “folding” which studies automorphisms of simple
Lie algebras, and realises the Lie algebras𝐺2 and 𝐹4 as fixed-points of an automorphism of𝐷4 and 𝐸6 respectively.
Appendix III gives an outline of this approach to the existence theorem, describing all the necessary constructions,
but omitting some of the details of the proofs.

There is also an alternative, more a posteriori approach to the uniqueness result which avoids showing Cartan
subalgebras are all conjugate for a general Lie algebra: one can check that for a classical Lie algebra 𝔤 ⊂ 𝔤𝔩𝑛 as above,
the Cartan subalgebras are all conjugate by an element of Aut(𝔤) ∩GL𝑛(k). This then shows the assignment of a root
system to a classical Lie algebra is unique, so it only remains to check the exceptional Lie algebras. But these all have
different dimensions, and the dimension of the Lie algebra is captured by the root system, so we are done.6

6This is completely rigorous, but feels like cheating (to me).
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Appendices

I (Multi)-linear algebra

In this appendix, k denotes an arbitrary field unless further conditions are explicitly stated.

I.1 Primary Decomposition

DefinitionI.1. Letkbeanalgebraically closedfieldand𝑉 ak-vector space. If𝑥 ∈ Endk(𝑉)and𝜆 ∈ k, thegeneralized
eigenspace for 𝑥with eigenvalue 𝜆 is

𝑉𝜆,𝑥 = {𝑣 ∈ 𝑉 ∶ ∃𝑛 ≥ 0, (𝑥 − 𝜆)𝑛(𝑣) = 0},

Thus𝑉𝜆,𝑥 ≠ {0} if and only if 𝑥 has an eigenvector 𝑣 ∈ 𝑉\{0}with eigenvalue 𝜆. The set of eigenvalues of 𝑥 is called
the spectrum of 𝑥, denoted Sp(𝑥) = {𝜆 ∈ k ∶ dim(𝑉𝜆,𝑥) > 0}. The subspaces 𝑉𝜆,𝑥 are clearly invariant under the
action of 𝑥, that is 𝑥(𝑉𝜆) ⊆ 𝑉𝜆.

The following proposition, used in a number of places in this course, is a standard result in Linear Algebra. We
provide a proof for the sake of completeness.

Proposition I.2. Let k be an algebraically closed field and𝑉 a k-vector space, and let 𝑥∶ 𝑉 → 𝑉 be a linear map. There
is a canonical direct sum decomposition

𝑉 =􏾘
𝜆∈k

𝑉𝜆,𝑥,

of𝑉 into the generalized eigenspaces of 𝑥.

Proof. Let𝑚𝑥 ∈ k[𝑡] be theminimal polynomial of 𝑥. Then if𝜙∶ k[𝑡] → End(𝑉) given by 𝑡 ↦ 𝑥 denotes the natural
map, we have k[𝑡]/(𝑚𝑥) ≅ im(𝜙) ⊆ End(𝑉). If 𝑚𝑥 = ∏𝑘

𝑖=1(𝑡 − 𝜆𝑖)𝑛𝑖 where the 𝑆(𝑥) = {𝜆𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑘} is the
spectrum of 𝑥, then the Chinese Remainder Theorem and the first isomorphism theorem shows that

im(𝜙) ≅ k[𝑡]/(𝑚𝑥) ≅
𝑘

􏾘
𝑖=1

k[𝑡]/(𝑡 − 𝜆𝑖)𝑛𝑖 ,

It follows that we may write 1 ∈ k[𝑡]/(𝑚𝑥) as 1 = 𝑒1 + … + 𝑒𝑘 according to the above decomposition. Now clearly
𝑒𝑖𝑒𝑗 = 0 if 𝑖 ≠ 𝑗 and 𝑒2𝑖 = 𝑒𝑖, so that if𝑈𝑖 = im(𝑒𝑖), thenwe have𝑉 =⨁1≤𝑖≤𝑘𝑈𝑖. Moreover, each 𝑒𝑖 can bewritten as
polynomials in 𝑥 by picking any representative in k[𝑡] of 𝑒𝑖 (thought of as an element of k[𝑡]/(𝑚𝑥)). Note in particular
this means that each𝑈𝑖 is invariant under im(𝜙).

Now the characteristic polynomial of 𝑥|𝑉𝜆𝑖 is clearly just (𝑡 − 𝜆𝑖)
𝑑𝑖 where 𝑑𝑖 = dim(𝑉𝜆𝑖,𝑥), and evidently this

divides 𝜒𝑥(𝑡) the characteristic polynomial of 𝑥 ∈ End(𝑉). But since𝑉 =⨁𝑘
𝑖=1𝑈𝑖 wemust have 𝜒𝑥(𝑡) = ∏

𝑘
𝑖=1(𝑡 −

𝜆𝑖)𝑚𝑖 , where 𝑚𝑖 = dim(𝑈𝑖) and hence 𝑑𝑖 ≤ 𝑚𝑖. Since 𝑈𝑖 ⊆ 𝑉𝜆𝑖,𝑥 we also have 𝑚𝑖 ≤ 𝑑𝑖, and hence they must be
equal, so𝑉𝜆𝑖 = 𝑈𝑖 as required.

The next Lemma is included for completeness – it readily implies that the coefficients of the characteristic poly-
nomial 𝜒𝑎 of an element 𝑎 ∈ 𝐴 of a subspace 𝐴 ⊆ 𝔤𝔩𝑉 are polynomial functions of the coordinates of 𝑎 given by
taking a basis of the subspace. This is used in the proof of the existence of Cartan subalgebras.
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Lemma I.3. Suppose that 𝑉 and 𝐴 are finite dimensional vector spaces, 𝜑∶ 𝐴 → End(𝑉) is a linear map, and
{𝑎1, 𝑎2, … , 𝑎𝑘} is a basis of𝐴. Let

𝜒𝑎(𝑡) =
𝑑
􏾜
𝑖=0
𝑐𝑖(𝑎)𝑡𝑖 ∈ k[𝑡]

be the characteristic polynomial of 𝜑(𝑎) ∈ 𝐴. Then if we write 𝑎 = ∑𝑘
𝑖=1 𝑥𝑖𝑎𝑖, the coefficients 𝑐𝑖(𝑎) (1 ≤ 𝑖 ≤ 𝑑) are

polynomials in k[𝑥1, 𝑥2, … , 𝑥𝑘].

Proof. Pick a basis of𝑉 so that we may identify End(𝑉)with Mat𝑛(k) the space of 𝑛 × 𝑛matrices. Then each 𝜑(𝑎𝑖)
is a matrix (𝑎𝑗𝑘𝑖 )1≤𝑗,𝑘≤𝑛, and if 𝑎 = ∑

𝑘
𝑖=1 𝑥𝑖𝑎𝑖, we have

𝜒𝑎(𝑡) = det(𝑡𝐼𝑛 −
𝑘
􏾜
𝑖=1
𝑥𝑖𝜑(𝑎𝑖)),

which from the formula for the determinant clearly expands to give a polynomial in the 𝑥𝑖 and 𝑡, which yields the
result.

I.2 Tensor Products

I.2.1 Definition and construction

Tensor products were studied in Part B, Introduction to Representation Theory. We review their basic properties
here.

Definition I.4. If𝑉1, 𝑉2, … , 𝑉𝑘 and𝑈 are vector spaces over a field k, let

ℳ(𝑉1, …𝑉𝑘, 𝑈) = {𝜃∶ 𝑉1 ×…×𝑉𝑘 → 𝑈 ∶ 𝜃 is 𝑘-linear}

be the vector space of all 𝑘-(multi-)linear maps on𝑉1 ×…×𝑉𝑘 taking values in a vector space𝑈. Here we say that
a function 𝜃∶ 𝑉1 × 𝑉2 × … × 𝑉𝑘 → 𝑈 is a 𝑘-linear if it is linear in each component separately, that is, if for any
𝑘-tuples of vectors (𝑣𝑖)1≤𝑖≤𝑘, (𝑢𝑗)1≤𝑗≤𝑘 ∈ 𝑉1 ×…×𝑉𝑘 and any 𝜆 ∈ k, we have for each 𝑖 ∈ {1, 2, … , 𝑘},

𝜃(𝑣1, … , 𝜆.𝑣𝑖 + 𝑢𝑖, … 𝑣𝑘) = 𝜆.𝜃(𝑣1, … , 𝑣𝑖, … 𝑣𝑘) + 𝜃(𝑣1, … , 𝑢𝑖, … 𝑣𝑘),

Pick a basis 𝐵𝑖 of𝑉𝑖 for each 𝑖 (1 ≤ 𝑖 ≤ 𝑘), and let 𝐵∗𝑖 denote the corresponding dual basis of𝑉∗
𝑖 . If 𝑏 ∈ 𝐵𝑖, let 𝛿𝑏

denote the corresponding element of the dual basis 𝐵∗𝑖 , so that 𝐵∗𝑖 = {𝛿𝑏 ∶ 𝑏 ∈ 𝐵𝑖}. Let B = 𝐵1 × 𝐵2 ×…× 𝐵𝑘
Proposition I.5. In the notation given above, the restriction to B gives an isomorphism

𝑟B ∶ ℳ (𝑉1, … , 𝑉𝑘; 𝑈) → 𝑈B = {𝑓 ∶ B→ 𝑈}

from the space of all 𝑘-multilinear maps taking values in𝑈 to the space of all𝑈-valued functions onB. Indeed 𝑟B has inverse
given explicitly by

ℱB(𝑓)(𝑣1, … , 𝑣𝑘) = 􏾜
b=(𝑏1,…,𝑏𝑘)∈B

𝛿𝑏1 (𝑣1) … 𝛿𝑏𝑘 (𝑣𝑘)𝑓(b).

Proof. Note that if we pick b = (𝑏1, … , 𝑏𝑘) ∈ B then the product 𝛿b = 𝛿𝑏1 .𝛿𝑏2 …𝛿𝑏𝑘 is a 𝑘-linear map (since mul-
tiplication distributes over addition). Since it is easy to see that 𝛿b(b′) = 𝛿b,b′ (that is, is zero unless b = b′ in
which case it is equal to 1), it is immediate that 𝑟B(ℱB(𝑓)) = 𝑓, so we must show that ℱB(𝑟B(𝜃)) = 𝜃 for any
𝜃 ∈ ℳ (𝑉1, … , 𝑉𝑘; 𝑈). Explicitly, wemust show that

𝜃 = 􏾜
b∈𝐵1×…×𝐵𝑘

𝛿b𝜃(b) (I.1)

Indeed applying 𝜃 to a 𝑘-tuple b ∈ 𝐵1 × …𝐵𝑘, we see that the coefficients on the right-hand side are uniquely
determined, so it remains to show the products 𝛿b of dual basis vectors do indeed span.

The case 𝑘 = 1 is simply the standard argument that the functions {𝛿𝑏1 }𝑏1∈𝐵1 are indeed a basis of𝑉
∗
1: if 𝑣1 ∈ 𝑉1

then we may write 𝑣1 = ∑𝑏1∈𝐵1 𝜆𝑏1𝑏1 for unique scalars 𝜆𝑏1 ∈ k. By the definition of the functions 𝛿𝑏1 , it then
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follows that 𝛿𝑏1 (𝑣1) = 𝜆𝑏1 , so that 𝑣1 = ∑𝑏1∈𝐵1 𝛿𝑏1 (𝑣1).𝑏1. Applying 𝜃 gives 𝜃(𝑣1) = ∑𝑏1∈𝐵1 𝛿𝑏1 (𝑣1).𝜃(𝑏1). But as
this holds for all 𝑣1 ∈ 𝑉1, it follows that 𝜃 = ∑𝑏1∈𝐵1 𝜃(𝑏1).𝛿𝑏1 , as required.

The general case then followsby an easy induction: Indeed for any 𝑘-tuple of vectors (𝑣𝑖)1≤𝑖≤𝑘with𝑣𝑖 ∈ 𝑉𝑖, using
the case 𝑘 = 1, wemay write 𝑣1 = ∑𝑏1∈𝐵1 𝛿𝑏1 (𝑣1).𝑏1 . But then if 𝜃 is 𝑘-linear we have

𝜃(𝑣1, … , 𝑣𝑘) = 𝜃( 􏾜
𝑏1∈𝐵1

𝛿𝑏1 (𝑣1).𝑏1, 𝑣2, … , 𝑣𝑘) = 􏾜
𝑏1∈𝐵1

𝛿𝑏1 (𝑣1).𝜃(𝑏1, 𝑣2, … , 𝑣𝑘).

But for each 𝑏1 ∈ 𝐵1, the map (𝑣𝑖)2≤𝑖≤𝑘 ↦ 𝜃(𝑏1, 𝑣2, … , 𝑣𝑘) is a (𝑘 − 1)-linear map from 𝑉2 × …𝑉𝑘 to k, hence the
result follows by induction.

Remark I.6. Note that, for 𝑘 = 1, this says that a linear map is uniquely determined by its values on a basis of𝑉1,
and the statement should be thought of as saying that a 𝑘-linearmap is similarly determined “by its values onbases”
where the statement of the question gives the precise meaning to the vague phrase in quotationmarks.

The previous Proposition gives one way of constructing the tensor product: If𝑉 and𝑊 are k-vector spaces and
we pick bases 𝐵𝑉 and 𝐵𝑊 of 𝑉 and𝑊 respectively, then by the Proposition, if we set 𝐵 = 𝐵𝑉 × 𝐵𝑊 , then for any
vector space𝑈, we have

ℳ(𝑉,𝑊;𝑈) ≅ 𝑈𝐵 ≅ Homk(𝑆(𝐵),𝑈), (I.2)

where 𝑆(𝐵) is the vector space with basis 𝐵, that is, the space of finite formal linear combinations of elements of 𝐵.
The first isomorphism above is a direct consequence of the Proposition where we take 𝑘 = 2 and𝑉1 = 𝑉,𝑉2 = 𝑊,
while the second is the case 𝑘 = 1 of the proposition with 𝑉1 = 𝑆(𝐵). Now taking𝑈 = 𝑆(𝐵) in (I.2), the identity
linear map from 𝑆(𝐵) to itself corresponds to a bilinear map 𝑡 ∶ 𝑉 ×𝑊 → 𝑆(𝐵).

Lemma I.7. The bilinear map 𝑡 ∶ 𝑉 ×𝑊 → 𝑆(𝐵) has the universal property, so that the pair (𝑆(𝐵), 𝑡) is the tensor product
of𝑉 and𝑊.

Proof. This is essentially established in thepreviousparagraph: if𝜃∶ 𝑉 ×𝑊 → 𝑈 is bilinear, thensince𝜃|𝐵 ∶ 𝐵 → 𝑈
extends to a linearmap ̃𝜃 ∶ 𝑆(𝐵) → 𝑈. Tracking how the isomorphism of Proposition I.5 identifies𝜃with the linear
map ̃𝜃 it is easy to see that this can be expressed bymeans of the bilinear map 𝑡 ∶ 𝑉 ×𝑊 → 𝑆(𝐵) as 𝜃 = ̃𝜃 ∘ 𝑡.

Remark I.8. Note that there is a natural isomorphism 𝜎∶ 𝑉 ⊗𝑊 ≅ 𝑊 ⊗𝑉 given by 𝑣⊗𝑤 ↦ 𝑤⊗𝑣. If𝑉 ≠ 𝑊, we
will normally abuse notation and identify these two spaces and thus write 𝑉 ⊗𝑊 = 𝑊 ⊗𝑉. If𝑉 = 𝑊 however,
𝜎∶ 𝑉 ⊗ 𝑉 → 𝑉 ⊗ 𝑉 is an involution on 𝑉 ⊗ 𝑉, and more generally, 𝑉⊗𝑛 = 𝑉 ⊗ … ⊗ 𝑉, the tensor product of
𝑉 with itself 𝑛 times, has an action of 𝑆𝑛 the symmetric group, which permutes the tensor factors: if 𝜏 ∈ 𝑆𝑛 then
𝜏(𝑣1 ⊗…⊗ 𝑣𝑛) ∶= 𝑣𝜏(1) ⊗…⊗ 𝜏𝜏(𝑛).

Example I.9. If𝑉 = k and𝑊 is an arbitrary k-vector space , then if 𝑠 ∶ k ×𝑊 → 𝑊 is scalar multiplication map
given by 𝑠(𝜆, 𝑤) = 𝜆.𝑤, it is clearly bilinear and it is straight-forward to check that it has the universal property so
that k⊗𝑊 ≅ 𝑊.

The following Lemmamay help give a better sense for what a “general” element of𝑉 ⊗𝑊 looks like.

Lemma I.10. Suppose that𝑉 and𝑊 are k-vector spaces, and let 𝑥 ∈ 𝑉 ⊗𝑊. Then

i) If 𝑥 = ∑𝑛
𝑖=1 𝑣𝑖 ⊗𝑤𝑖 and {𝑤1, … , 𝑤𝑚} is a maximal linearly independent subset7 of {𝑤1, … , 𝑤𝑛}, we may write 𝑥 =

∑𝑚
𝑖=1 𝑣

′
𝑖 ⊗𝑤𝑖. Moreover, if {𝑣1, … , 𝑣𝑛} is linearly independent, then {𝑣′1, … , 𝑣′𝑚} is linearly independent.

ii) Any 𝑥 ∈ 𝑉 ⊗𝑊 may be written as a sum∑𝑚
𝑖=1 𝑣𝑖 ⊗𝑤𝑖 where {𝑣1, … , 𝑣𝑚} and {𝑤1, … , 𝑤𝑚} are linearly independent

sets.

Proof. By assumption {𝑤1, … , 𝑤𝑚} is a basis of 𝑌 = ⟨𝑤1, … , 𝑤𝑛⟩k, so that if 𝑘 > 𝑚 then𝑤𝑘 = ∑𝑚
𝑖=1 𝜆

𝑘
𝑖𝑤𝑖 for some

𝜆𝑘𝑖 ∈ k. Hence∑𝑛
𝑘=𝑚+1 𝑣𝑘 ⊗𝑤𝑘 = ∑1≤𝑖≤𝑚<𝑘≤𝑛 𝜆

𝑘
𝑖 𝑣𝑘 ⊗𝑤𝑖 and

𝑥 =
𝑛
􏾜
𝑖=1
𝑣𝑖 ⊗𝑤𝑖 =

𝑚
􏾜
𝑖=1
𝑣𝑖 ⊗𝑤𝑖 + 􏾜

1≤𝑖≤𝑚<𝑘≤𝑛
𝜆𝑘𝑖 𝑣𝑘 ⊗𝑤𝑖 =

𝑚
􏾜
𝑖=1

⎛
⎜⎜⎜⎜⎜⎝𝑣𝑖 +

𝑛
􏾜

𝑘=𝑚+1
𝜆𝑘𝑖 𝑣𝑘

⎞
⎟⎟⎟⎟⎟⎠ ⊗ 𝑤𝑖.

7This can always be arranged by permuting the𝑤𝑖 appropriately
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Thus if we set 𝑣′𝑖 = 𝑣𝑖 +∑
𝑛
𝑘=𝑚+1 𝜆

𝑘
𝑖 𝑣𝑘 ∈ 𝑉 we have 𝑥 = ∑𝑚

𝑖=1 𝑣
′
𝑖 ⊗𝑤𝑖. Now if {𝑣1, … , 𝑣𝑛} are linearly independent,

then clearly {𝑣′1, … , 𝑣′𝑚}will also be linearly independent, hence 𝑖) follows.
For 𝑖𝑖) if 𝑥 = ∑𝑛

𝑖=1 𝑣𝑖 ⊗𝑤𝑖 as in the statement of 𝑖), then applying 𝑖)we obtain 𝑥 = ∑𝑚
𝑖=1 𝑣

′
𝑖 ⊗𝑤𝑖. If 𝜎∶ 𝑉 ⊗𝑊 →

𝑊 ⊗ 𝑉 is the isomorphism 𝜎(𝑣 ⊗ 𝑤) = 𝑤 ⊗ 𝑣 then 𝜎(𝑥) = ∑𝑚
𝑖=1 𝑤𝑖 ⊗ 𝑣

′
𝑖 , and applying 𝑖) to 𝜎(𝑥) ∈ 𝑊 ⊗ 𝑉 (so

that 𝑉 and𝑊 are interchanged) we see that after reordering so that {𝑣′1, … , 𝑣′𝑙 } is a maximal linearly independent
subset of {𝑣′1, … , 𝑣′𝑚}, 𝜎(𝑥) = ∑𝑙

𝑖=1 𝑤
′
𝑖 ⊗ 𝑣′𝑖 , where the set {𝑤′1, … , 𝑤′𝑙 } is also linearly independent. It follows that

𝑥 = 𝜎−1(𝜎(𝑥)) = ∑𝑙
𝑖=1 𝑣

′
𝑖 ⊗𝑤′𝑖 gives an expression for 𝑥 in the required form.

The constructionof the tensor product allowsus to replacebilinearmapswith linear ones, but one canalso relate
bilinear maps to “linear maps to spaces of linear maps” – which is really just the process of taking a function of two
variables and holding one variable fixed in order to obtain a function of one variable. Formally, we can state:

Lemma I.11. Let𝑉,𝑊 and𝑈 be vector spaces over a field k. Then we have natural isomorphisms

Hom(𝑉,Hom(𝑊,𝑈)) ≅ ℳ (𝑉,𝑊;𝑈) = Hom(𝑉 ⊗𝑊,𝑈) ≅ Hom(𝑊,Hom(𝑉,𝑈))

In particular, if𝑈 = k, this shows that Hom(𝑉,𝑊∗) ≅ ℳ (𝑉,𝑊; k).

Proof. Since there is an obvious identification betweenℳ(𝑉,𝑊;𝑈) ≅ ℳ (𝑊,𝑉;𝑈) it suffices to establish the first
isomorphism. But if 𝜃 ∈ Hom(𝑉,Hom(𝑊,𝑈)), then we letΨ(𝜃)(𝑣, 𝑤) = 𝜃(𝑣)(𝑤). The fact that 𝜃 is linear shows
thatΨ(𝜃) is linear in𝑉, while the fact that 𝜃(𝑣) lies in Hom(𝑊,𝑈) shows thatΨ(𝜃) is linear in𝑊. Conversely, if
𝑏 ∈ ℳ (𝑉,𝑊;𝑈), then we may defineΥ(𝑏)(𝑣) = [𝑤 ↦ 𝑏(𝑣, 𝑤)]. The mapΥ(𝑏) ∈ Hom(𝑊,𝑈) because 𝑏 is linear
in𝑊, while the mapΥ is linear because 𝑏 is linear in𝑉. It is clear thatΨ andΥ are inverse to each other, thus the
first isomorphism is established.

The final claim follows immediately.

Definition I.12. Let𝑈,𝑉,𝑊 be k-vector spaces. If𝜙 ∈ Hom(𝑈,𝑉) and𝜓 ∈ Hom(𝑉,𝑊), then the map (𝜓, 𝜙) ↦
𝜓 ∘ 𝜙 given by composition of functions induces a linear map

𝑐 ∶ Hom(𝑉,𝑊) ⊗Hom(𝑈,𝑉) → Hom(𝑈,𝑊).

In particular, taking𝑉 = k, we obtain a morphism 𝜗∶ 𝑈∗ ⊗𝑉 → Hom(𝑈,𝑉), and if𝑈 = 𝑉 then one also has the
composition in the opposite direction, 𝜄 ∶ 𝑉∗ ⊗𝑉 → k, where 𝜄(𝑓 ⊗ 𝑣) = 𝑓(𝑣).

LemmaI.13. Let𝑉 and𝑊 be vector spaces. Thenaturalmap𝜗∶ 𝑉∗⊗𝑊 → Homk(𝑉,𝑊) is injectivewith image the space
Hom𝑓𝑟(𝑉,𝑊) = {𝛼∶ 𝑉 → 𝑊 ∶ dim(im(𝛼)) < ∞} of linear maps of finite rank. Moreover, when𝑉 is finite-dimensional,
if 𝜄 ∶ 𝑉∗ ⊗𝑉 → k is the contraction map and 𝛼 ∈ Homk(𝑉, 𝑉), then (𝜄 ∘ 𝜃−1)(𝛼) = tr(𝛼).

Proof. To see that themap𝜃∶ 𝑉∗ ⊗𝑊 → Hom(𝑉,𝑊) is injective, suppose that 𝑡 = ∑𝑛
𝑖=1 𝛿𝑖 ⊗𝑤𝑖 ∈ ker(𝜃). By part 𝑖)

of Lemma I.10wemay assume that {𝑤1, … , 𝑤𝑛} is linearly independent. But then𝜗(𝑡) = 0 implies that for all 𝑣 ∈ 𝑉
we have 𝜗(𝑡)(𝑣) = ∑𝑛

𝑖=1 𝛿𝑖(𝑣).𝑤𝑖 = 0 and so, since the 𝑤𝑖 are linearly independent, we see that for all 𝑣 ∈ 𝑉 and
each 𝑖, (1 ≤ 𝑖 ≤ 𝑛) we have 𝛿𝑖(𝑣) = 0, that is, 𝛿𝑖 = 0. But then clearly 𝑡 = ∑

𝑛
𝑖=1 0 ⊗𝑤𝑖 = 0 as required.

To see that im(𝜗) = Hom𝑓𝑟(𝑈,𝑊) note that 𝜃(𝑓 ⊗ 𝑤) = 𝑓.𝑤 has image contained in k.𝑤, hence rank(𝜗(𝑓 ⊗
𝑤)) ≤ 1. But then a finite sum ∑𝑚

𝑘=1 𝑓𝑖 ⊗ 𝑤𝑖 can have rank at most 𝑚, so that im(𝜗) ⊆ Hom𝑓𝑟(𝑉,𝑊). To see
that Hom𝑓𝑟(𝑉,𝑊) ⊆ im(𝜗), suppose that 𝛼∶ 𝑈 → 𝑊 is finite rank so that im(𝛼) = 𝑊1 is finite-dimensional.
Pick a basis {𝑤1, … , 𝑤𝑛} for𝑊1, and let {𝛿1, … , 𝛿𝑛} be the corresponding dual basis of𝑊∗

1 so that if 𝑤 ∈ 𝑊1 then
𝑤 = ∑𝑛

𝑖=1 𝛿𝑖(𝑤).𝑤𝑖. But then if 𝑣 ∈ 𝑉, 𝛼(𝑣) ∈ 𝑊1 so that 𝛼(𝑣) = ∑𝑛
𝑖=1 𝛿𝑖(𝛼(𝑣)).𝑤𝑖. Thus 𝛼 = 𝜗(∑𝑛

𝑖=1 𝛼⊺(𝛿𝑖) ⊗ 𝑤𝑖)
lies in the image of 𝜗 as claimed.

Finally we consider the contraction map 𝜄 ∶ 𝑉∗ × 𝑉 → k. This is again composition, but now in the opposite
order, so that 𝑣∶ k → 𝑉 and 𝑓 ∶ 𝑉 → k compose to give 𝑓(𝑣) ∈ k. If {𝑒1, … , 𝑒𝑛} is a basis of𝑉 and {𝛿1, … , 𝛿𝑛} the
dual basis of𝑉∗, then 1𝑉 = ∑

𝑛
𝑖=1 𝛿𝑖.𝑒𝑖 (since they agree on the basis {𝑒1, … , 𝑒𝑛}) and so𝛼 = 𝛼 ∘ 1𝑉 = 𝛼􏿴∑

𝑛
𝑖=1 𝛿𝑖.𝑒𝑖) =

∑𝑛
𝑖=1 𝛿𝑖.𝛼(𝑒𝑖). Thus 𝜗−1(𝛼) = ∑

𝑛
𝑖=1 𝛿𝑖 ⊗ 𝛼(𝑒𝑖), and we have

tr(𝛼) =
𝑛
􏾜
𝑖=1
𝛿𝑖(𝛼(𝑒𝑖)) = 𝜄(

𝑛
􏾜
𝑖=1
𝛿𝑖 ⊗ 𝛼(𝑒𝑖)) = 𝜄 ∘ 𝜃−1(𝛼),

where the first equality is simply the definition of tr, the second follows from the the definition of 𝜄 and the third by
using the formula we just obtained for 𝜗−1(𝛼).
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Remark I.14. Since we only use the cases where𝑉 and𝑊 are finite dimensional, the reader is welcome to ignore
the generality the result is stated in and assume throughout that all vector spaces are finite dimensional. Here one
can be a bit more concrete: if {𝑒1, … , 𝑒𝑛} is a basis of 𝑉 and {𝑓1, … , 𝑓𝑚} is a basis of𝑊, then taking the dual basis
{𝛿1, … , 𝛿𝑛} of𝑉∗ it is easy to see that the images of 𝛿𝑖 ⊗ 𝑓𝑗 under𝜗 correspond to the elementary matrices 𝐸𝑖𝑗 under
the identification of Homk(𝑉,𝑊) given by the choice of bases for𝑉 and𝑊, hence 𝜗 is an isomorphism.

Remark I.15. Wewill usually abuse notation somewhat and write 𝜄 ∶ 𝑉 ⊗ 𝑉∗ → k rather than 𝜄 ∘ 𝜎where 𝜎∶ 𝑉 ⊗
𝑉∗ → 𝑉∗ ⊗𝑉 interchanges the tensor factors.

I.2.2 Linearmaps between tensor products.

Let 𝛼∶ 𝑉1 → 𝑉2 and 𝛽∶ 𝑊1 → 𝑊2 be linear maps. If 𝑣 ∈ 𝑉1, 𝑤 ∈ 𝑊1, the map (𝑣, 𝑤) ↦ 𝛼(𝑣) ⊗ 𝛽(𝑤) from
𝑉1 ×𝑊2 → 𝑉2 ⊗𝑊2 is bilinear, and so induces a linear map Hom(𝑉1 ⊗𝑊1, 𝑉2 ⊗𝑊2), which we denote by 𝛼 ⊗ 𝛽.
In fact, the map (𝛼, 𝛽) ↦ 𝛼⊗ 𝛽 is itself bilinear, and so we even obtain amap

Hom(𝑉1,𝑊1) ⊗Hom(𝑉2,𝑊2) → Hom(𝑉1 ⊗𝑉2,𝑊1 ⊗𝑊2). (I.3)

Moreover, it follows immediately from the definitions that (I.3) also respects composition. In more detail, if
𝛼2 ∶ 𝑉2 → 𝑉3 and 𝛽2 ∶ 𝑊2 → 𝑊3 are linear maps to any vector spaces 𝑉3 and𝑊3, then (𝛼2 ⊗ 𝛽2) ∘ (𝛼1 ⊗ 𝛽1) =
(𝛼2 ∘ 𝛼1) ⊗ (𝛽2 ∘ 𝛽1). Indeed, if 𝑣 ∈ 𝑉1, 𝑤 ∈ 𝑊1, then

(𝛼2 ⊗ 𝛽2) ∘ (𝛼1 ⊗ 𝛽1)(𝑣 ⊗ 𝑤) = (𝛼2 ⊗ 𝛽2)(𝛼1(𝑣) ⊗ 𝛽1(𝑤))
= (𝛼2 ∘ 𝛼1)(𝑣) ⊗ (𝛽2 ∘ 𝛽1)(𝑤)
= (𝛼2 ∘ 𝛼1) ⊗ (𝛽2 ∘ 𝛽1)(𝑣 ⊗ 𝑤).

When all the vector spaces 𝑉1, 𝑉2,𝑊1,𝑊2 are finite dimensional, the map (I.3) is actually an isomorphism,
indeed using Lemma I.13 you can check that

Hom(𝑉1,𝑊1) ⊗Hom(𝑉2,𝑊2) ≅ (𝑉∗
1 ⊗𝑊1) ⊗ (𝑉∗

2 ⊗𝑊2)
≅ (𝑉∗

1 ⊗𝑉∗
2) ⊗ (𝑊1 ⊗𝑊2)

≅ (𝑉1 ⊗𝑉2)∗ ⊗ (𝑊1 ⊗𝑊2)
≅ Hom(𝑉1 ⊗𝑉2,𝑊1 ⊗𝑊2),

where the second isomorphism simply permutes the second and third tensor factors.

Example I.16. The map 𝜄 ∶ 𝑉∗ ⊗ 𝑉 → k also describes the composition of linear maps: Suppose we have three
vector spaces 𝑉,𝑊 and𝑈. The composition gives a bilinear map from Hom(𝑈,𝑉) × Hom(𝑉,𝑊) to Hom(𝑈,𝑊),
thus it is equivalent to a linear map 𝑚̃ ∶ Hom(𝑈,𝑉) ⊗Hom(𝑉,𝑊) → Hom(𝑈,𝑊).

Hom(𝑈,𝑉) ⊗Hom(𝑉,𝑊) // (𝑈∗ ⊗𝑉) ⊗ (𝑉∗ ⊗𝑊)

qq
𝑈∗ ⊗ (𝑉 ⊗𝑉∗) ⊗𝑊 // 𝑈∗ ⊗ k⊗𝑊 // 𝑈∗ ⊗𝑊

where the first arrow is the induced by the isomorphisms provided by Lemma I.13, the second from the associativity
of tensor products, and the third arrow is 1𝑉 ⊗ 𝜄 ⊗ 1𝑉∗ . By Example I.9 scalar multiplication gives a natural isomor-
phism 𝑠 ∶ k ⊗ (𝑉 ⊗𝑊) → (𝑉 ⊗𝑊), and the final arrow swaps the first two factors and then applies 𝑠. Identifying
the term𝑈∗ ⊗𝑊 with Hom(𝑈,𝑊) this becomes the composition of linear maps. This can be checked by consid-
ering the composition of rank-one maps: if 𝑓 ⊗ 𝑣 ∈ 𝑈∗ ⊗ 𝑉 then it corresponds to the rank-one map 𝑢 ↦ 𝑓(𝑢).𝑣
(𝑢 ∈ 𝑈). Thus if we take 𝑓.𝑣 ∈ Hom(𝑈,𝑉) and 𝑔.𝑤 ∈ Hom(𝑉,𝑊) (where 𝑓 ∈ 𝑈∗, 𝑣 ∈ 𝑉, 𝑔 ∈ 𝑉∗, 𝑤 ∈ 𝑊)
then (𝑔.𝑤) ∘ (𝑓.𝑣)(𝑢) = (𝑔.𝑤)(𝑓(𝑢).𝑣) = 𝑔(𝑓(𝑢).𝑣).𝑤 = 𝑓(𝑢).𝑔(𝑣).𝑤 = 𝑔(𝑣).(𝑓.𝑤)(𝑢). On the other hand
(𝑓 ⊗ 𝑣) ⊗ (𝑔 ⊗ 𝑤) ↦ 𝑓 ⊗ 𝑔(𝑣) ⊗ 𝑤 ↦ 𝑔(𝑣).(𝑓 ⊗ 𝑤).

Remark I.17. It is sometimes useful to have the following notational convention: Given a tensor product of more
than two vector spaces, such as𝑈∗ ⊗𝑉 ⊗𝑉∗ ⊗𝑊, then it can be convenient to write 𝜄32 for the mapwhich acts via
𝜄 on the third and second factors (that is swapping the second and third factors, applying 𝜄 and the repeating the
swap) and by the identity on the remaining tensor factors.
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I.2.3 Tensor products and duality

Suppose that 𝑉 and𝑊 are finite dimensional vector spaces. We wish to understand the relationship between the
tensor product of the dual spaces𝑉∗ ⊗𝑊∗ and the dual space of the tensor product (𝑉 ⊗𝑊)∗. If 𝜂 ∈ 𝑉∗ and 𝜈 ∈ 𝑊∗

then 𝜂.𝜈 ∶ 𝑉 ×𝑊 → k given by (𝑣, 𝑤) ↦ 𝜂(𝑣).𝜈(𝑤) is a bilinear map, hence it induces a linear map which by abuse
of notationwewill also denote as 𝜂.𝜈 ∶ 𝑉 ⊗𝑊 → k. Thus (𝜂, 𝜈) ↦ 𝜂.𝜈 is amap from𝑉∗ ×𝑊∗ to (𝑉 ⊗𝑊)∗. Since it
is also bilinear it induces a linearmap 𝑑𝑉,𝑊 ∶ 𝑉∗ ⊗𝑊∗ → (𝑉 ⊗𝑊)∗. Themap 𝑑𝑉,𝑊 is injective since, if 𝑡 ∈ 𝑉∗ ⊗𝑊∗

is in ker(𝑑𝑉,𝑊) then bypart 𝑖) of Lemma I.10wemaywrite 𝑡 = ∑𝑚
𝑖=1 𝛿𝑖 ⊗𝜂𝑖where {𝜂1, … , 𝜂𝑚} is linearly independent

in𝑊∗. But then 𝑑𝑉,𝑊(𝑡) = ∑
𝑚
𝑖=1 𝛿𝑖.𝜂𝑖 = 0, and so in particular, for all 𝑣 ∈ 𝑉 wemust have∑𝑚

𝑖=1 𝛿𝑖(𝑣).𝜂𝑖 = 0, so by
the linearly independence of the 𝜂𝑖 we have 𝛿𝑖(𝑣) = 0 for all 𝑣 ∈ 𝑉, that is 𝛿𝑖 = 0, and hence 𝑡 = 0 as required.

Another way to view 𝑑𝑉,𝑊 is as follows: Let 𝑐𝑉,𝑊 ∶ 𝑉∗ ⊗𝑊∗ ⊗𝑉 ⊗𝑊 → k be the linear map given by 𝑐𝑉,𝑊 =
𝜄𝑉13 ⊗ 𝜄𝑊24, where 𝜄𝑉13 denotes the contraction map 𝜄𝑉 acting on the first and third tensor factors, and 𝜄𝑊24 similarly
denotes the ccontraction 𝜄𝑊 acting on the second and fourth factor, that is

𝑐𝑉,𝑊 􏿴𝜂 ⊗ 𝜈 ⊗ 𝑣 ⊗𝑤􏿷 = 𝜄𝑉(𝜂 ⊗ 𝑣).𝜄𝑊(𝜈 ⊗ 𝑤) = 𝜂(𝑣).𝜈(𝑤).

Now 𝑐𝑉,𝑊 yields a bilinear map 𝑡𝑉,𝑊 ∶ (𝑉∗ ⊗𝑊∗) × (𝑉 ⊗𝑊) → k which induces, by Lemma I.11, a linear map
(𝑉∗ ⊗𝑊∗) → (𝑉 ⊗𝑊)∗, and this is just the map 𝑑𝑉,𝑊 constructed above. Moreover, the linear functional 𝑐𝑉,𝑊 , by
permuting the tensor factors, can be viewed as a linear functional

𝑐𝑉,𝑊 = 𝜄𝑉14 ⊗ 𝜄𝑊23 ∶ (𝑉∗ ⊗𝑊) ⊗ (𝑊∗ ⊗𝑉) → k.

Now if we assume𝑉 and𝑊 are finite-dimensional, then (𝑉∗ ⊗𝑊) ≅ Hom(𝑉,𝑊) and𝑊∗ ⊗𝑉 ≅ Hom(𝑊,𝑉), so
that 𝑐𝑉,𝑊 gives a linear functional on Hom(𝑉,𝑊) ⊗ Hom(𝑊,𝑉). Now 1𝑉∗ ⊗ 𝜄𝑊23 ⊗ 1𝑉 corresponds to composition
of linear maps (𝑎, 𝑏) ↦ 𝑎 ∘ 𝑏 and 𝜄𝑉14 ⊗ 𝜄𝑊23 = 𝜄𝑉 ∘ (1𝑉∗ ⊗ 𝜄𝑊23 ⊗ 1𝑉), and 𝜄𝑉 ∶ 𝑉∗ ⊗ 𝑉 ≅ Hom(𝑉, 𝑉) → k gives the
tracemap. Thus 𝑐𝑉,𝑊 viewed as a linearmapHom(𝑉,𝑊)⊗Hom(𝑊,𝑉) → k is just the trace form (𝑎 ⊗ 𝑏) ↦ tr(𝑎𝑏).
As noted in the proof of Lemma 5.2.4, this description of the trace form also makes the symmetry property tr(𝑎𝑏) =
tr(𝑏𝑎) is evident.

I.3 Bilinear forms

Definition I.18. Let𝑉 be a k-vector space. A bilinear form on𝑉 is a bilinearmap𝐵∶ 𝑉 ×𝑉 → k, that is, an element
ofℳ(𝑉,𝑉; k). We will denote the vector space of all bilinear forms on𝑉 as Bil(𝑉). From the universal property of
tensor products, Bil(𝑉) ≅ (𝑉 ⊗𝑉)∗.

Let 𝑆2 = {𝑒, 𝜎} denote the symmetric group on two letters. There is a natural linear action of 𝑆2 on Bil(𝑉) given
by 𝜎(𝐵)(𝑣, 𝑤) = 𝐵(𝑤, 𝑣) (for any 𝑣, 𝑤 ∈ 𝑉). A form 𝐵 is said to be symmetric if 𝐵 = 𝜎(𝐵), that is if 𝐵(𝑣, 𝑤) = 𝐵(𝑤, 𝑣)
for all 𝑣, 𝑤 ∈ 𝑉, and skew-symmetric if 𝜎(𝐵) = −𝐵.

If 𝐵 ∈ Bil(𝑉) satisfies 𝐵(𝑣, 𝑣) = 0we say that 𝐵 is alternating. Since 0 = 𝐵(𝑣 + 𝑤, 𝑣 + 𝑤) = 𝐵(𝑣, 𝑣) + 𝐵(𝑣, 𝑤) +
𝐵(𝑤, 𝑣) + 𝐵(𝑤,𝑤) = 𝐵(𝑣, 𝑤) + 𝐵(𝑤, 𝑣), any alternating bilinear form is skew-symmetric. Conversely, if 𝐵 is skew-
symmetric, then 𝐵(𝑣, 𝑣) = −𝐵(𝑣, 𝑣) so that 2.𝐵(𝑣, 𝑣) = 0. Thus, provided that char(k) ≠ 2, the alternating and
skew-symmetry properties coincide. Moreover, if we write 𝑆2(𝑉) for the space of symmetric bilinear forms on 𝑉
andΛ2(𝑉) for the space of alternating bilinear forms on𝑉, then we have Bil(𝑉) = 𝑆2(𝑉) ⊕ Λ2(𝑉), as they are the
+1 and −1 eigenspace of the involution 𝜎. More concretely, we have 𝐵 = 𝐵+ + 𝐵−, where 𝐵+ = (𝐵 + 𝜎(𝐵))/2 and
𝐵− = (𝐵 − 𝜎(𝐵))/2where 𝜎(𝐵±) = ±𝐵±.

Wemay deal with the symmetric and skew-symmetric cases uniformly (to some extent) byworkingwith a form
𝐵which has the property that 𝐵(𝑣, 𝑤) = 𝜖.𝐵(𝑤, 𝑣) for all 𝑣, 𝑤 ∈ 𝑉, where 𝜖 ∈ {±1}.

Remark I.19. Lemma I.11 gives a natural isomorphism

Θ∶ Bil(𝑉) = ℳ (𝑉,𝑉; k) → Hom(𝑉,Hom(𝑉, k)) = Hom(𝑉,𝑉∗)

It follows that giving a bilinear form on𝑉 is equivalent to giving a linear map from𝑉 to𝑉∗. Note that the action of
𝜎 ∈ 𝑆2 gives a second isomorphismΘ1 ∶ Bil(𝑉) → Hom(𝑉, 𝑉∗), whereΘ1 = Θ ∘ 𝜎, that is,Θ1(𝐵)(𝑣)(𝑤) = 𝐵(𝑤, 𝑣).
For symmetric bilinear forms the twomaps agree, but for arbitrary bilinear forms they yield different isomorphisms.

Definition I.20. Given a bilinear form 𝐵, we set

rad(𝐵) = rad𝐿(𝐵) = {𝑣 ∈ 𝑉 ∶ Θ(𝐵)(𝑣) = 0} = {𝑣 ∈ 𝑉 ∶ 𝐵(𝑣, 𝑤) = 0, ∀𝑤 ∈ 𝑉}
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(here the subscript “𝐿” denotes “left”). Similarly, we set

rad𝑅(𝐵) = ker(Θ1(𝐵)) = {𝑣 ∈ 𝑉 ∶ 𝐵(𝑤, 𝑣) = 0, ∀𝑤 ∈ 𝑉}.

If 𝐵 is symmetric or alternating, then rad𝐿(𝐵) = rad𝑅(𝐵), but this need not be true otherwise. We say that 𝐵 is non-
degenerate if rad𝐿(𝐵) = {0}. Note that, even though ingeneral rad𝐿(𝐵) ≠ rad𝑅(𝐵), it is still the case that rad𝐿(𝐵) = {0}
if and only if rad𝑅(𝐵) = {0}.

From now on we will only work with symmetric and alternating bilinear forms. Fix such a 𝐵 ∈ Bil(𝑉) so that
𝜎(𝐵) = 𝜖.𝐵 for some 𝜖 ∈ {±1}. Then if𝑈 is a subspace of𝑉, we define

𝑈⟂ = {𝑣 ∈ 𝑉 ∶ 𝐵(𝑣, 𝑤) = 0, ∀𝑤 ∈ 𝑈} = {𝑣 ∈ 𝑉 ∶ Θ(𝐵)(𝑣) ∈ 𝑈0}.

When 𝐵 is nondegenerate, so that Θ(𝐵) is an isomorphism, this shows that dim(𝑈⟂) = dim(𝑈0) = dim(𝑉) −
dim(𝑈). The next Lemma shows that this can be refined slightly.

Lemma I.21. Let 𝑉 be a finite-dimensional k-vector space equipped with a symmetric (or alternating) bilinear form 𝐵.
Then for any subspace𝑈 of𝑉 we have the following:

i) dim(𝑈) + dim(𝑈⟂) ≥ dim(𝑉).

ii) The restriction of 𝐵 to𝑈 is nondegenerate if and only if𝑉 = 𝑈 ⊕𝑈⟂.

Proof. Let 𝜙∶ 𝑉 → 𝑈∗ be given by 𝜙(𝑣)(𝑢) = 𝐵(𝑣, 𝑢), that is 𝜙(𝑣) = (Θ(𝐵)(𝑣))|𝑈 . Clearly ker(𝜙) = 𝑈⟂, while
im(𝜙) ≤ 𝑈∗ and hence dim(im(𝜙)) ≤ dim(𝑈). The inequality in 𝑖) now follows from rank-nullity.

For the second part, note that 𝐵 is non-degenerate on𝑈 if and only if𝑈 ∩𝑈⟂ = {0}. But then the inequality in
𝑖) shows that wemust have𝑈 ⊕𝑈⟂ = 𝑉 for dimension reasons.

I.4 Classification of symmetric bilinear forms

There is a natural linear action of GL(𝑉) on the space Bil(𝑉): if 𝑔 ∈ GL(𝑉) and𝐵 ∈ Bil(𝑉) thenwe set 𝑔(𝐵) to be the
bilinear form given by

𝑔(𝐵)(𝑣, 𝑤) = 𝐵(𝑔−1(𝑣), 𝑔−1(𝑤)), (𝑣, 𝑤 ∈ 𝑉),
where the inverses ensure that the above equation defines a left action. It is clear the action preserves the subspace
of symmetric bilinear forms.

Sincewe can find a invertiblemap taking any basis of a vector space to any other basis, the next lemma says that
over an algebraically closed field there is only one nondegenerate symmetric bilinear formup to the action of GL(𝑉),
that is, when k is algebraically closed the nondegenerate symmetric bilinear forms are a single orbit for the action of
GL(𝑉).

Lemma I.22. Let𝑉 be a k-vector space equipped with a nondegenerate symmetric bilinear form 𝐵. Then if char(k) ≠ 2,
there is an orthonormal basis of𝑉, i.e a basis {𝑣1, … , 𝑣𝑛} of𝑉 such that 𝐵(𝑣𝑖, 𝑣𝑗) = 𝛿𝑖𝑗.

Proof. We use induction on dim(𝑉). The identity8

𝐵(𝑣, 𝑤) = 1
2
􏿴𝐵(𝑣 + 𝑤, 𝑣 + 𝑤) − 𝐵(𝑣, 𝑣) − 𝐵(𝑤,𝑤)􏿷,

shows that if 𝐵 ≠ 0wemay find a vector 𝑣 ∈ 𝑉 such that 𝐵(𝑣, 𝑣) ≠ 0. Rescaling by a choice of square root of 𝐵(𝑣, 𝑣)
(which is possible since k is algebraically closed) we may assume that 𝐵(𝑣, 𝑣) = 1. But if 𝐿 = k.𝑣 then since 𝐵|𝐿 is
nondegenerate, the previous lemma shows that 𝑉 = 𝐿 ⊕ 𝐿⟂, and if 𝐵 is nondegenerate on𝑉 it must also be so on
𝐿⟂. But dim(𝐿⟂) = dim(𝑉) − 1, and so 𝐿⟂ has an orthonormal basis {𝑣1, … , 𝑣𝑛−1}. Setting 𝑣 = 𝑣𝑛, it then follows
{𝑣1, … , 𝑣𝑛} is an orthonormal basis of𝑉 as required.

8Note that this identity holds unless char(k) = 2. It might be useful to remember this identity when understanding the Proposition which is
the key to the proof of the Cartan Criterion: it claims that if 𝔤 = 𝐷𝔤 then there is an element 𝑥 ∈ 𝔤with 𝜅(𝑥, 𝑥) ≠ 0. Noting the above identity,
we see this is equivalent to asserting that 𝜅 is nonzero.
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Remark I.23. Over the realnumbers, for example, there ismore thanoneorbit ofnondegenerate symmetric bilinear
form, but the above proof can be modified to give a classification and it turns out that there are dim(𝑉) + 1 orbits
(“Sylvester’s law of inertia”).

One can also classify alternating formsusing essentially the same strategy, except that if𝐵 is a non-zero alternat-
ing form on a vector space𝑉, one shows that it contains a two-dimensional space𝐻 on which 𝐵 is nondegenerate.
Then we can choose a basis {𝑒, 𝑓} of 𝑉 with 𝐵(𝑒, 𝑓) = 1 = −𝐵(𝑓, 𝑒), and then since 𝑉 = 𝐻 ⊕ 𝐻⟂ one can apply
induction. Moreover, in the alternating case, the classification holds over any field kwhere char(k) ≠ 2.

II Reminder on Representation theory

We recall here some basics of representation theory used in the course, all of which is covered (in muchmore detail
than we need) in the Part B course on Representation theory. Let 𝔤 be a Lie algebra. The main body of the notes
proves all that is needed in the course, but the material here might help clarify some arguments. We will always
assume our representations are finite dimensional unless we explicitly say otherwise.

II.1 Basic notions

Definition II.1. A representation is irreducible if it has no proper nonzero subrepresentations. A representation
(𝑉, 𝜌) is said to be indecomposable if it cannot be written as a direct sum of two proper subrepresentations. A repre-
sentation is said to be completely reducible if is a direct sum of irreducible representations.

Clearly an irreducible representation is indecomposable, but the converse is not in general true. For example k2
is naturally a representation for thenilpotent Lie algebraof strictly upper triangularmatrices𝔫2 ⊂ 𝔤𝔩2(k)and it is not
hard to see that it has a unique 1-dimensional sub representation, hence it is indecomposable, but not irreducible.

A basic observation about irreducible representations is Schur’s Lemma:

Lemma II.2. Let 𝔤 be a Lie algebra and let (𝑉, 𝜌), (𝑊, 𝜎) be irreducible representations of 𝔤. Then any 𝔤-homomorphism
𝜙∶ 𝑉 → 𝑊 is either zero or an isomorphism. In particular, ifk is algebraically closed, thenHom𝔤(𝑉,𝑊) is one-dimensional.

Proof. The proof is exactly the same as the proof for finite groups. If 𝜙 is nonzero, then ker(𝜙) is a proper subrepre-
sentation of𝑉, hence as𝑉 is irreducible it must be zero. It follows𝑉 is isomorphic to𝜙(𝑉), which is thus a nonzero
subrepresentation of𝑊. But then since𝑊 is irreducible we must have𝑊 = 𝜙(𝑉) and 𝜙 is an isomorphism as
claimed.

Thus if Homk(𝑉,𝑊) is nonzero, we may fix some 𝜙∶ 𝑉 → 𝑊 an isomorphism from 𝑉 to𝑊. Then given any
𝔤-homomorphism 𝛼∶ 𝑉 → 𝑊, composing with 𝜙−1 gives a 𝔤-homomorphism from 𝑉 to 𝑉, thus it is enough to
assume𝑊 = 𝑉. But then if𝛼∶ 𝑉 → 𝑉 is a𝔤-endomorphismof𝑉, sincek is algebraically closed, it has aneigenvalue
𝜆 and so ker(𝛼 − 𝜆) is a nonzero subrepresentation, which must therefore be all of 𝑉, that is 𝛼 = 𝜆.id𝑉 , so that
Hom𝔤(𝑉,𝑉) is one-dimensional as claimed.

II.2 Exact sequences of representations

Parallel to the notion for Lie algebras, there is also a notion of an exact sequence for representations. Let 𝔤 be a Lie
algebra.

Definition II.3. A sequence of maps of 𝔤-representations

𝑈 𝛼 // 𝑉
𝛽 // 𝑊

is said to be exact at𝑉 if im(𝛼) = ker(𝛽). A sequence of maps

0 // 𝑈 𝛼 // 𝑉
𝛽 // 𝑊 // 0

is called a short exact sequence if it is exact at each of𝑈,𝑉 and𝑊, so that𝛼 is injective and 𝛽 is surjective and im(𝛼) =
ker(𝛽). If 𝑉 is the middle term of such a short exact sequence, it contains a subrepresentation isomorphic to 𝑈,
such that the corresponding quotient representation is isomorphic to𝑊, and hence, roughly speaking,𝑉 is built by
gluing together𝑈 and𝑊. Just as for Lie algebras, an exact sequence

0 // 𝑈 𝛼 // 𝑉
𝛽 // 𝑊 // 0

is said to be split if 𝛽 admits a right inverse 𝑠 ∶ 𝑊 → 𝑉, that is, a 𝔤-homomorphism 𝑠 such that 𝛽 ∘ 𝑠 = id𝑊 .
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The next Lemma shows that the situation for representations is simpler than it is for Lie algebras9:

Lemma II.4. Suppose that 𝔤 is a Lie algebra and
0 // 𝑈 𝜄 // 𝑉

𝑞 // 𝑊 // 0
is a short exact sequence of 𝔤-representations. Then the sequence is split if and only if 𝜄(𝑈) has a complementary subrepresen-
tation𝑊′, that is,𝑉 = 𝜄(𝑈) ⊕𝑊′, and if𝑊′ exists then necessarily 𝑞|𝑊′ ∶ 𝑊′ →𝑊 is an isomorphism.

Proof. First suppose that 𝑠 ∶ 𝑊 → 𝑉 be a splitting map and let𝑊′ = 𝑠(𝑊). Since 𝑞 ∘ 𝑠 = 1𝑊 , it follows that {0} =
ker(𝑞|𝑊′ ) = ker(𝑞) ∩𝑊′ = 𝜄(𝑈) ∩𝑊′. But 𝜄(𝑈) +𝑊′ = 𝑉 since for any 𝑣 ∈ 𝑉 we have 𝑣 = (𝑣 − 𝑠 ∘ 𝛽(𝑣)) + 𝑠 ∘ 𝛽(𝑣)
where certainly 𝑠 ∘ 𝛽(𝑣) ∈ 𝑠(𝑊), and since 𝑞 ∘ 𝑠 = id𝑊 we have

𝑞(𝑣 − 𝑠 ∘ 𝑞(𝑣)) = 𝑞(𝑣) − 𝑞 ∘ 𝑠 ∘ 𝑞(𝑣) = 𝑞(𝑣) − id𝑊 ∘ 𝑞(𝑣) = 𝑞(𝑣) − 𝑞(𝑣) = 0,

hence 𝑣 − 𝑠 ∘ 𝑞(𝑣) ∈ ker(𝑞) = 𝜄(𝑈) and𝑉 = 𝜄(𝑈) ⊕𝑊′ as required.

For the converse, note that if𝑉 = 𝜄(𝑈) +𝑊′ then 𝑞(𝑉) = 𝑞(𝑊′) = 𝑊, and ker(𝑞|𝑊′ = ker(𝑞) ∩𝑊′ = 𝜄(𝑈) ∩
𝑊′ = {0}, so that 𝑞|𝑊′ ∶ 𝑊′ →𝑊 is an isomorphism, hence 𝑠 = (𝑞|𝑊′ )−1 is a splitting map.

Remark II.5. If the short exact sequence of Lemma II.4 is split andwe have a splittingmap 𝑠 ∶ 𝑊 → 𝑉, it yields an
isomorphism ̃𝑠 ∶ 𝑈 ⊕𝑊 → 𝑉 given by ̃𝑠(𝑢, 𝑤) = 𝜄(𝑢) + 𝑠(𝑤), since the proof of the Lemma shows that ̃𝑠 is a bijective
homomorphism of representations. If 𝜋1, 𝜋2 denote the projection maps from 𝑈 ⊕𝑊 onto the factors𝑈 and𝑊,
then 𝑞 = 𝜋2 ∘ ̃𝑠−1, and if we set 𝑝 = 𝜋1 ∘ ̃𝑠−1, then ̃𝑠(𝑣) = 􏿴𝑝(𝑣), 𝑞(𝑣 − 𝜄(𝑝(𝑣))􏿷 so that the splitting is also determined
by 𝑝∶ 𝑉 → 𝑈 a left-inverse to 𝜄.

Our study of the representations of a nilpotent Lie algebra 𝔫 can be interpreted as calculating, for a given 1-
dimensional representation k𝛼 of 𝔫which one-dimensional representations k𝛽 can form non-split extensions of it.

Lemma II.6. Let 𝔤 be a nilpotent Lie algebra, and let 𝛼, 𝛽 ∈ (𝔤/𝐷𝔤)∗ be distinct. Any exact sequence of 𝔤-representations
0 // k𝛼 // 𝑉 // k𝛽 // 0

splits, that is,𝑉 ≅ k𝛼 ⊕ k𝛽.

Thus non-isomorphic one-dimensional representations 𝑈 and 𝑉 of a nilpotent Lie algebra cannot be “glued
together” in any way other than by taking their direct sum. Using the above Lemma and induction, one can actu-
ally recover the theorem that any representation𝑉 of a nilpotent Lie algebra 𝔫 decomposes into a direct sum of its
isotypical subrepresentations𝑉𝛼 (where 𝛼 ∈ 𝐷(𝔫)0 ⊆ 𝔫∗).
Example II.7. To see a non-split extension, let 𝔤 = 𝔫2 be the one-dimensional Lie algebra, thought of as the (nilpo-
tent) Lie algebra of 2 × 2 strictly upper triangular matrices. Then its natural 2-dimensional representation on k2
given by the inclusion 𝔫2 → 𝔤𝔩2(k) gives a non-split extension

0 // k0
𝑖 // k2 // k0 // 0

where k0 is the trivial representation, and 𝑖 ∶ k0 → k2 is the inclusion 𝑡 ↦ (𝑡, 0). The extension cannot be trivial,
because the image of 𝔫2 is non-zero. It is fact it’s easy to see using linear algebra that for 𝔤𝔩1(k) = 𝔫2, an extension
of one-dimensional representations k𝛼 and k𝛽 automatically splits if 𝛼 ≠ 𝛽while there is, up to isomorphism, one
non-split extension of k𝛼with itself (𝛼, 𝛽 ∈ (𝔤𝔩1(k))∗). The splitting statement is a special case of the followingmore
general result, a special case of Theorem 4.3.13.

The notion of a composition series has an analogue for representations of a given Lie algebra 𝔤.
Definition II.8. Let𝑉 be a 𝔤-representation. A nested sequence of subrepresentations𝒞 = (𝑉 = 𝐹0 ⊃ 𝐹1 ⊃ … ⊃
𝐹𝑑 = 0) is said to be a composition series for𝑉 if the subquotients 𝐹𝑖−1/𝐹𝑖 are irreducible (for each 𝑖 ∈ {1, … , 𝑑}). The
isomorphism classes of the irreducibles which arise in this way are known as the composition factors of the series𝒞 .
For𝑉 finite-dimensional, it is clear that𝑉must contain proper subrepresentationswhich aremaximalwith respect
to containment among proper subrepresentations (since one can choose one of maximal dimension). From this an
inductionon dim(𝑉) it follows easily that any finite-dimensional representation has a composition series.

For an irreducible representation 𝑆, the multiplicity [𝑆 ∶ 𝒞 ]with which 𝑆 occurs as a composition factor if𝒞 is
known as its compositionmultiplicity. Thus

[𝑆 ∶ 𝒞 ] = |{𝑗 ∶ 1 ≤ 𝑗 ≤ 𝑑, 𝐹𝑗−1/𝐹𝑗 ≅ 𝑆}| .

Let us also define [𝑆 ∶ 𝑉] = min{[𝑆 ∶ 𝒞 ] ∶ 𝒞 a composition series for𝑉}.
9In the sense that there are no non-trivial semi-direct products.
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Remark II.9. A composition series𝒞 = (𝑉 = 𝐹0 > … > 𝐹𝑑 = {0}) can also be viewed as the vestige of how the
representation𝑉 was built up from its composition factor 𝑆𝑖 = 𝐹𝑖/𝐹𝑖+1. Indeed for each 𝑘 ∈ {1, … , 𝑑}we have

0 // 𝑆𝑘 = 𝐹𝑘/𝐹𝑘+1
𝛼 // 𝑉/𝐹𝑘+1

𝛽 // 𝑉/𝐹𝑘 // 0
Thus starting with 𝑆0 = 𝐹0/𝐹1, one obtains 𝐹0/𝐹2 by extending it by 𝑆1. Continuing in this way, extending 𝐹0/𝐹2 by
𝑆2 one obtains 𝐹0/𝐹3 and so on, until finally we get𝑉 by extending 𝐹0/𝐹𝑑−1 by 𝑆𝑑−1 = 𝐹𝑑−1 to obtain𝑉 itself!

A composition series for a representation𝑉 naturally induces a composition series for any subrepresentation of
𝑉 and for the image of𝑉 any homomorphism𝜙∶ 𝑉 → 𝑊.

Proposition II.10. Let 𝑉 be a representation and𝑊 ≤ 𝑉 a subrepresentation. Then if 𝒞 = (𝐹𝑘)𝑑𝑘=0 is a composition
series for𝑉, then𝒞 induces composition series𝒞𝑊 and𝒞𝑉/𝑊 for𝑊 and𝑉/𝑊 respectively. Moreover, if 𝑆 is an irreducible
representation, then [𝑆 ∶ 𝒞 ] = [𝑊 ∶ 𝒞𝑊] + [𝑆 ∶ 𝒞𝑉/𝑊].

Proof. Let𝑊𝑘 = 𝑊 ∩ 𝐹𝑘, so that (𝑊𝑘)𝑑𝑘=0 is a descending filtration of𝑊 by subrepresentations. Using the second
isomorphism theoremwe see that

𝑊𝑘/𝑊𝑘+1 = 𝑊𝑘/𝑊𝑘 ∩ 𝐹𝑘+1 ≅ (𝑊𝑘 + 𝐹𝑘+1)/𝐹𝑘+1 ⊆ 𝐹𝑘/𝐹𝑘+1. (II.1)

Next, let 𝑞 ∶ 𝑉 → 𝑉/𝑊 be the quotient map, and let𝑄𝑘 = 𝑞(𝐹𝑘), so that (𝑄𝑘)𝑑𝑘=0 is a descending filtration of𝑉/𝑊.
Now ker(𝑞|𝐹𝑘 ) = 𝑊 ∩ 𝐹𝑘 = 𝑊𝑘, hence by the first isomorphism theorem 𝐹𝑘/𝑊𝑘 ≅ 𝑞(𝐹𝑘). Under this isomorphism
𝑞(𝐹𝑘+1) ≤ 𝑞(𝐹𝑘) is identified with (𝐹𝑘+1 +𝑊𝑘)/𝑊𝑘, hence by the 3rd isomorphism theorem

𝑄𝑘/𝑄𝑘+1 = 𝑞(𝐹𝑘)/𝑞(𝐹𝑘+1) ≅ 𝐹𝑘/𝑊𝑘⁄(𝐹𝑘+1 +𝑊𝑘)/𝑊𝑘 ≅ 𝐹𝑘/(𝐹𝑘+1 +𝑊𝑘) (II.2)

Now 𝐹𝑘+1 ≤ 𝐹𝑘+1 +𝑊𝑘 ≤ 𝐹𝑘, hence as 𝐹𝑘/𝐹𝑘+1 is irreducible, 𝐹𝑘+1 +𝑊𝑘 must be one of 𝐹𝑘 or 𝐹𝑘+1. But it follows
from (II.1) and (II.2) that in the former case𝑊𝑘/𝑊𝑘+1 ≅ 𝐹𝑘/𝐹𝑘+1 and𝑄𝑘 = 𝑄𝑘+1, while in the latter,𝑊𝑘 = 𝑊𝑘+1
and𝑄𝑘/𝑄𝑘+1 ≅ 𝐹𝑘/𝐹𝑘+1.

Thus if we let 𝐽 = {𝑘 ∶ 0 ≤ 𝑘 ≤ 𝑑, 𝐹𝑘+1 +𝑊𝑘 = 𝐹𝑘} and 𝐾 = {𝑘 ∶ 0 ≤ 𝑘 ≤ 𝑑, 𝐹𝑘+1 +𝑊𝑘 = 𝐹𝑘+1}, and set
𝒞𝑊 = (𝑊𝑗)𝑗∈𝐽 and𝒞𝑉/𝑊 = (𝑄𝑘)𝑘∈𝐾 (ordered so as to form a descending chain) it follows that𝒞𝑊 is a composition
series for𝑊 and𝒞𝑉/𝑊 is a composition series for𝑉/𝑊. Moreover if 𝑗 ∈ 𝐽 then the composition factor 𝐹𝑗/𝐹𝑗+1 of𝒞
corresponds to a composition factor of 𝒞𝑊 , while if 𝑗 ∈ 𝐾 it corresponds to a composition factor of 𝒞𝑉/𝑊 , which
readily implies the multiplicity equation.

This result allows one to give a quick proof of the Jordan-Hölder theorem for 𝔤-representations.10

Corollary II.11. For any finite-dimensional representation𝑉 of a Lie algebra 𝔤 and any irreducible representation 𝑆, the
multiplicity with which 𝑆 occurs in a composition series for 𝑉 is independent of the choice of composition series for 𝑉, and
hence equals [𝑆 ∶ 𝑉].

Proof. For 𝑖) we use induction on the minimal length 𝑛(𝑉) of a composition series for 𝑉. If 𝑛(𝑉) = 1 then 𝑉 is
irreducible and (𝑉 > 0) is its unique composition series. If 𝑛 = 𝑛(𝑉) > 1 then take a composition seriesℳ =
(𝑀𝑖)𝑛𝑖=0 of𝑉 with length 𝑛 and set𝑈 = 𝑀1. Since (𝑀𝑖+1)𝑛−1𝑖=0 is a composition series for𝑈, we have 𝑛(𝑈) ≤ 𝑛 − 1.
Now if𝒞 = (𝐹𝑖)𝑑𝑖=0 is any composition series for𝑉, by Proposition II.10, it induces composition series𝒞𝑈 and𝒞𝑉/𝑈
of𝑈 and𝑉/𝑈 respectively. Thus if 𝑆 is irreducible, by the final sentence of Proposition II.10 we have

[𝑆 ∶ 𝒞 ] = [𝑆 ∶ 𝒞𝑈] + [𝑆 ∶ 𝒞𝑉/𝑈] = [𝑆 ∶ 𝑈] + [𝑆 ∶ 𝑉/𝑈]

where the second equality follows by induction since 𝑛(𝑉/𝑈) = 1 and 𝑛(𝑈) ≤ 𝑛 − 1. Thus [𝑆 ∶ 𝒞 ] = [𝑆 ∶ 𝑉] is
independent of𝒞 . Part 𝑖𝑖) now follows immediately from the final sentence of Proposition II.10.

Remark II.12. Note that Proposition II.10 and Corollary II.11 together show that [𝑆 ∶ 𝑉] = [𝑆 ∶ 𝑊] + [𝑆 ∶ 𝑉/𝑊] for
any subrepresentation𝑊 ≤ 𝑉.

10The same proof works for representations of groups or finite-dimensional algebras.
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II.3 Semisimplicity and complete reducibility

Definition II.13. A representation (𝑉, 𝜌) is said to be semisimple if any subrepresentation𝑈 has a complement, that
is, there is a subrepresentation𝑊 such that 𝑉 = 𝑈 ⊕𝑊. A representation is said to be completely reducible if it
is a direct sum of irreducible representations. Note that Lemma II.4 shows that𝑉 is semisimple if and only if every
short exact sequence

0 // 𝑈 // 𝑉 // 𝑊 // 0
splits. Indeed this follows from Lemma II.4: the image of a splitting map 𝑠 ∶ 𝑊 → 𝑉 gives a complement to the
image of𝑈, and 𝑠 is determined by its image.

The following simple Lemma is one reasonwhy exact sequences of representations are easier to workwith than
exact sequences of Lie algebras.

Lemma II.14. Let 𝔤 be a Lie algebra and suppose that we have a short exact sequence of 𝔤-representations:
0 // 𝑈 𝑖 // 𝑉

𝑞 // 𝑊 // 0
Then dualizing we obtain a sequence

0 // 𝑊∗ 𝑞⊺ // 𝑉∗ 𝑖⊺ // 𝑈∗ // 0
which is again a short exact sequence. It follows that a short exact sequence splits if and only if there is a map 𝑡 ∶ 𝑉 → 𝑈 such
that 𝑡 ∘ 𝑖 = 1𝑈 .

Proof. The injectivity of 𝑞⊺ follows from the surjectivity of 𝑞. To see that the 𝑖⊺ is surjective, any functional 𝛿 on𝑈
extends to one on𝑉. But this is easy – simply pick a complement𝑇 to𝑈 and define 𝛿(𝑇) = 0. Finally wemust show
that im(𝑞⊺) = ker(𝑖⊺). Since 𝑞 ∘ 𝑖 = 0, we have 𝑖⊺ ∘ 𝑞⊺ = 0, so that im(𝑞⊺) ⊆ ker(𝑖⊺). The equality then follows by
considering dimensions.

For the final sentence, note that is 𝑝∶ 𝑉 → 𝑈 is amap satisfying 𝑝 ∘ 𝑖 = 1𝑈 , then 𝑖⊺ ∘ 𝑝⊺ = 1𝑈∗ , and hence 𝑝⊺ is a
splitting of the dual short exact sequence. But then𝑉∗ ≅ 𝑈∗ ⊕𝑊∗, and hence taking duals and using the canonical
isomorphism it follows that𝑉 = 𝑈 ⊕𝑊 so that our original sequence was split.

Lemma II.15. If𝑉 is a semisimple representation, then any subrepresentation or quotient representation of𝑉 is semisimple.

Proof. Supose that 𝑞 ∶ 𝑉 → 𝑊 is a surjectivemap, and that𝑉 is semisimple. We claim that𝑊 is semisimple. Indeed
if𝑊1 is a subrepresentation of𝑊, then 𝑞−1(𝑊1) = 𝑉1 is a subrepresentation of 𝑉, which has a complement 𝑉2.
Then we claim that𝑊2 = 𝑞(𝑉2) is a complement to𝑊1 in𝑊: indeed since 𝑞 is surjective clearly𝑊 = 𝑊1 +𝑊2,
and if 𝑤 ∈ 𝑊1 ∩ 𝑊2 then there exist 𝑣2 ∈ 𝑉2 with 𝑞(𝑣2) = 𝑤 ∈ 𝑊1. But then 𝑣2 ∈ 𝑞−1(𝑊1) = 𝑉1 hence
𝑣2 ∈ 𝑉1 ∩𝑉2 = {0} and𝑤 = 𝑞(𝑣2) = 0 as required.

Next, if𝑈 is a subrepresentation of𝑉, then picking a complement𝑈′ to𝑈, so that𝑉 = 𝑈 ⊕𝑈′, the correspond-
ing projection map 𝜋∶ 𝑉 → 𝑈 with kernel 𝑈′ shows that 𝑈 is isomorphic to a quotient of 𝑉, and hence is also
semisimple.

Lemma II.16. Let (𝑉, 𝜌) be a representation. Then the following are equivalent:

i) 𝑉 is semisimple,

ii) 𝑉 is completely reducible,

iii) 𝑉 is the sum of its irreducible subrepresentations.

Proof. To see 𝑖) implies 𝑖𝑖), use induction on dimension: if 𝑈 is a non-zero subrepresentation of 𝑉 of minimal di-
mension, 𝑈 must be simple. If 𝑈 = 𝑉 then we are done, otherwise 𝑈 has a non-zero complement 𝑊 with
dim(𝑊) = dim(𝑉) − dim(𝑈) < dim(𝑉). By induction𝑊 = ⨁𝑚

𝑘=1 𝑆𝑘 where each 𝑆𝑘 is simple, and thus setting

𝑈 = 𝑆𝑚+1 we see𝑉 =⨁𝑚+1
𝑘=1 𝑆𝑘.

Certainly 𝑖𝑖) implies 𝑖𝑖𝑖) so it is enough to show that 𝑖𝑖𝑖) implies 𝑖). For this, suppose that 𝑉 is the sum of its
irreducible subrepresentations and that𝑈 is a subrepresentation of𝑉. Let𝑊 be a subrepresentation of𝑉 which is
maximal (with respect to containment) subject to the condition that𝑈 ∩𝑊 = {0}. We claim that𝑉 = 𝑈 ⊕𝑊. To
see this, suppose that𝑈 ⊕𝑊 ≠ 𝑉. Then by our assumption on𝑉 theremust be some irreducible subrepresentation
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𝑋with𝑋 not contained in𝑊 ⊕𝑈, and hence𝑋 ∩ (𝑊 ⊕𝑈) = {0}. But thenwe certainly have11 (𝑋 ⊕𝑊)∩𝑈 = {0},
which contradicts the maximality of𝑊, so we are done.

Remark II.17. If 𝔤 is nilpotent, and𝑉 a 𝔤-representation, then for any one-dimensional representation 𝜆, the iso-
typical subrepresentation (or 𝜆-weight space)𝑉𝜆 is a direct summand of𝑉, i.e. it has a complementary subrepre-
sentation. Since this is true for all 𝜆we obtain a direct sum decomposition𝑉 =⨁𝜆∈(𝔤/𝐷(𝔤))∗ 𝑉𝜆.

If 𝔤 is semisimple, then the representations of 𝔤 are semisimple, so any subrepresentation has a complement. It
follows that if 𝑉 is a 𝔤 representation and 𝜒 is an irreducible representation, the isotypical subrepresentation 𝑉𝜒
has a complement, so 𝑉 = 𝑉𝜒 ⊕ 𝑈. Inductively it therefore follows that 𝑉 = ⨁𝜒 𝑉𝜒 where the sum is over the
irreducible representations of 𝔤 that occur in 𝑉. Since any semisimple representation is completely reducible, the
subrepresentations𝑉𝜒 are just a direct sum of copies of 𝜒, that is,𝑉𝜒 = 𝑉𝑠

𝜒, i.e. 𝑉𝜒 is equal to its socle.
In particular, the isotypic summand of𝑉 corresponding to the trivial representation𝜒0 is𝑉𝜒0 = 𝑉𝔤, the invari-

ants of𝑉. A consequenceof the complete reducibility is that𝑉𝔤 shouldbe adirect summandof𝑉. In fact in theproof
ofWeyl’s theorem,we showed this by proving that𝑉 = 𝑉𝔤 ⊕ 𝔤.𝑉, and then deduced semisimplicity from this. Note
that for any Lie algebra 𝔤 and 𝔤-representation 𝑉, the quotient 𝑉/𝔤.𝑉 is the largest quotient of 𝑉 on which 𝔤 acts
trivially. If𝑉 is semisimple, and𝑉 =⨁𝜒 𝑉𝜒 is its decomposition into isotypical summands, then if𝑈 ≤ 𝑉 is any

subrepresentation, we can similarly decompose𝑈 = ⨁𝜒𝑈𝜒, and hence𝑉/𝑈 ≅ ⨁𝜒 𝑉𝜒/𝑈𝜒. It follows that𝑉/𝑈
is invariant for the action of 𝔤 if and only if𝑈𝜒 = 𝑉𝜒 for all nontrivial 𝜒, and hence 𝔤.𝑉 = ⨁𝜒≠0 𝑉𝜒. Thus if𝑉 is
semisimple, wemust have𝑉 = 𝑉𝔤 ⊕ 𝔤.𝑉, that is, the subrepresentationwe used as the candidate for a complement
to𝑉𝔤 in our proof ofWeyl’s theoremwas in fact forced on us.

11Since both𝑋 ∩ (𝑊 ⊕𝑈) = {0} and (𝑋 ⊕𝑊) ∩𝑈 = {0} are both equivalent to the sum𝑋 +𝑊 +𝑈 being direct.
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III *On the construction of simple Lie algebras

The classification of semisimple Lie algebras, as discussed in §7.3, relies on two key results: an Isomorphism theorem,
and an Existence theorem: the former ensures that the root system captures enough information to determine the Lie
algebra up to isomorphism,while the latter ensures that every abstract root systemarises as the root systemof some
semisimple Lie algebra.

This sectionoutlinesoneapproach to theexistence theorem. Clearly it is enough toconstruct a simpleLie algebra
for each indecomposable root system, so we will assume throughout the remainder of this section that (𝑉,Φ) is
indecomposable. We will establish the existence theorem in two steps. In the first step we consider the case where
all the roots in Φ have the same length, and in the second step deduce from this the general case. An alternative
elementary approach is described in [Gec17].

III.1 The simply-laced case

Definition III.1. Let (𝑉,Φ) be an (indecomposable) root system. We say that (𝑉,Φ) is simply-laced if all the roots
inΦ have the same length.

IfΔ is a set of simple roots forΦ, sinceΦ = 𝑊.Δ (where𝑊 is theWeylgroup) it is equivalent to the condition that
all the roots in Δ have the same length. Since (𝑉,Φ) is indecomposable, this in turn is equivalent to the condition
that ⟨𝛼, 𝛽⟩ = ⟨𝛽, 𝛼⟩ for all 𝛼, 𝛽 ∈ Δ, that is, the Cartan matrix is symmetric. By Lemma 7.2.20, this is equivalent to
the condition that for all𝛼, 𝛽 ∈ Φ the Cartan integer ⟨𝛼, 𝛽⟩ ∈ {0, −1}. If we normalize the inner product on𝑉 so that
the roots have length √2, then the Cartan integers are precisely the values of the inner product on pairs of simple
roots.

From the classification of abstract root systems, one can check that the simply-laced indecomposable root sys-
tems are those of types𝐴,𝐷 and 𝐸.

To construct a Lie algebra from such a root system, we need one additional ingredient: Let 𝜖 ∶ 𝑄 ×𝑄 → {±1} be
a bimultiplicative function, that is, for all 𝛼, 𝛽, 𝛾 ∈ 𝑄,

𝜖(𝛼 + 𝛽, 𝛾) = 𝜖(𝛼, 𝛾).𝜖(𝛽, 𝛾),
𝜖(𝛼, 𝛽 + 𝛾) = 𝜖(𝛼, 𝛽).𝜖(𝛼, 𝛾).

and suppose also that it satisfies
𝜖(𝛼, 𝛼) = (−1)(𝛼,𝛼)/2, ∀𝛼 ∈ 𝑄 (III.1)

(note that since (𝛼, 𝛼) = 2 for all roots𝛼 ∈ Φ, wemust have (𝛽, 𝛽) ∈ 2Z for any 𝛽 ∈ 𝑄). Such a function is called an
asymmetric function. Since (𝛼, 𝛽) ∈ Z for any𝛼, 𝛽 ∈ 𝑄we can replace𝛼 by𝛼+ 𝛽 in the second condition (III.1) for an
asymmetric function to obtain:

𝜖(𝛼, 𝛽)𝜖(𝛽, 𝛼) = (−1)(𝛼,𝛽). (III.2)

Note that the bimultiplicativity property means it is determined by its values on a baseΔ andmoreover the second
condition (III.1) requires 𝜖(𝛼𝑖, 𝛼𝑖) = −1 for any 𝛼𝑖 ∈ Δ. To construct such a function on the rest ofΔ×Δ, orient the
edges of theDynkin diagram,whose vertices are labelled by the baseΔ = {𝛼1, … , 𝛼𝑙}, arbitrarily, and then define for
𝛼𝑖 ≠ 𝛼𝑗

𝜖(𝛼𝑖, 𝛼𝑗) = 􏿼
−1 if there is an edge going from 𝛼𝑖 to 𝛼𝑗,
+1 otherwise.

It the follows from this definition that Equation (III.2) holds for all roots in our base, and thus extending this 𝜖 bi-
multiplicatively, we obtain an asymmetric function on all of𝑄.

We can now give a construction of the Lie algebra 𝔤𝑄 associated to our root system: Let 𝔥∗ denote the extension
of scalars from Q to our field k of𝑉, and similarly we can extend our inner product to a symmetric bilinear form on
𝔥∗. Let 𝔥 be the dual of 𝔥.

Definition III.2. Let 𝔤𝑄 = 𝔥 ⊕⨁𝛼∈Φ k.𝑒𝛼 as a vector space, and let ℎ𝛼 be the image of 𝛼 under the isomorphism
between 𝔥 and 𝔥∗ given by the nondegenerate symmetric bilinear form on 𝔥∗ induced from the inner product on𝑉.
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We define

[ℎ, ℎ′] = 0, ∀ℎ, ℎ′ ∈ 𝔥;
[ℎ, 𝑒𝛼] = 𝛼(ℎ)𝑒𝛼;

[𝑒𝛼, 𝑒𝛽] =

⎧⎪⎪⎨
⎪⎪⎩

−ℎ𝛼, if 𝛼 + 𝛽 = 0;
𝜖(𝛼, 𝛽).𝑒𝛼+𝛽 if 𝛼 + 𝛽 ∈ Φ;

0 otherwise.

We also extend the symmetric bilinear form on 𝔥 (obtained by identifying it with 𝔥∗) to all of 𝔤𝑄 by setting (𝑒𝛼, 𝑒𝛽) =
−𝛿𝛼,−𝛽, andmaking 𝔥 orthogonal to⨁𝛼∈Φ k.𝑒𝛼. (Note theminus signs in the definition of the invariant form and in
the bracket [𝑒𝛼, 𝑒−𝛼] are consistent.)

Proposition III.3. The definition above gives a Lie algebra which has 𝔥 as a Cartan subalgebra and root systemΦ, and the
form on 𝔤𝑄 is invariant.

Proof. (Sketch): Wemust show that 𝔤𝑄 is a Lie algebra, that is, wemust check that the bilinearmap [, ]defined above
is a Lie bracket. To see that it is alternating, note that if {𝛼, 𝛽, 𝛼 + 𝛽} ⊆ Φ then, since the root system is simply-
laced, (𝛼, 𝛽) = −1, and hence (III.2) shows that 𝜖(𝛼, 𝛽) = −𝜖(𝛽, 𝛼). It remains to check that [.] satisfies the Jacobi
identity. It is enough to check this on three basis elements, 𝑥, 𝑦 and 𝑧. If at least one of our basis elements is in 𝔥 this
is easy (the properties of the bimultiplicative function beyond the one already used for the alternating property are
not involved). For example, if 𝑥 = ℎ ∈ 𝔥, 𝑦 = 𝑒𝛼, 𝑧 = 𝑒𝛽 then (setting 𝑒𝛼+𝛽 = 0 if 𝛼 + 𝛽 ∉ Φ)

[ℎ, [𝑒𝛼, 𝑒𝛽]] + [𝑒𝛼, [𝑒𝛽, ℎ]] + [𝑒𝛽, [ℎ, 𝑒𝛼]]

= 𝜖(𝛼, 𝛽) 􏿴(𝛼 + 𝛽)(ℎ)𝑒𝛼+𝛽 − 𝛽(ℎ)𝑒𝛼+𝛽 − 𝛼(ℎ)𝑒𝛼+𝛽􏿷
= 0.

If 𝑥, 𝑦, 𝑧 are of the form 𝑒𝛼, 𝑒𝛽, 𝑒𝛾 then there are a number of cases to check. Firstly, if none of 𝛼 + 𝛽, 𝛼 + 𝛾, 𝛽 + 𝛾
lie inΦ∪ {0}, then the Jacobi identity holds trivially. Thus let us suppose that 𝛼+ 𝛽 ∈ Φ∪ {0}. Note that 𝛼± 𝛽 ∈ Φ
if and only if (𝛼, 𝛽) = ∓1. Moreover, it follows that 𝜖(𝛼, 𝛼) = −1 and 𝜖(𝛼, 𝛽)𝜖(𝛽, 𝛼) = −1.

There are four cases: 1) 𝛼 ± 𝛾 ∉ Φ∪ {0}; 2) either 𝛼 + 𝛾 or 𝛼 − 𝛾 = 0; 3) 𝛼 + 𝛾 ∈ Φ and; 4) 𝛼 − 𝛾 ∈ Φ. Cases 1)
and 2) are easy to check, case 3) follows from

𝜖(𝛾, 𝛼)𝜖(𝛾 + 𝛼, −𝛼) = (𝛼, 𝛼).

In this fashion one can reduce to the case where 𝛼 + 𝛽, 𝛼 + 𝛾 and 𝛽 + 𝛾 all lie inΦ. But then (𝛼, 𝛽) = (𝛼, 𝛾) =
(𝛽, 𝛾) = −1 and so (𝛼 + 𝛽 + 𝛾, 𝛼 + 𝛽 + 𝛾) = 0 so that 𝛼 + 𝛽 + 𝛾 = 0. In this case the Jacobi identity

[𝑒𝛼, [𝑒𝛽, 𝑒𝛾]] + [𝑒𝛽, [𝑒𝛾, 𝑒𝛼]] + [𝑒𝛾, [𝑒𝛼, 𝑒𝛽]] = 0

reduces to

𝜖(𝛽, 𝛾)𝜖(𝛼, 𝛽 + 𝛾) + 𝜖(𝛾, 𝛼)𝜖(𝛽, 𝛼 + 𝛾) + 𝜖(𝛼, 𝛽)𝜖(𝛾, 𝛼 + 𝛽) = 0

which can be checked using the properties of 𝜖.
It is similar, thoughmore straight-forward, to check that the symmetric bilinear formwe have defined is invari-

ant.

III.2 The non-simply-laced cases

One can also use the construction of the simply-laced Lie simple Lie algebras to give a construction of all simple
Lie algebras: We do this as follows: Given a simply-laced Dynkin diagram𝐷, a admissible diagram automorphism is
a graph automorphism 𝜎∶ 𝐷 → 𝐷 with the property that the orbit of a vertex is discrete, that is, there is no edge
between a vertex 𝑖 and 𝜎𝑘(𝑖) for any 𝑘 ∈ Z.

Given such anautomorphism,we claim that𝜎 induces an automorphismof 𝔤𝑄 the associated simple Lie algebra.
To see this, note that we can pick the orientation of our Dynkin diagram so that it is invariant under the diagram
automorphism (we will check this shortly for the automorphisms we need). Clearly 𝜎 induced an isometry of𝑉 to
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itself preserving the rootsΦ (it clearly preserves𝑄 and henceΦ sinceΦ is the set of norm 2 vectors in𝑄). Moreover,
it preserves thebimultiplicative function 𝜖because it preserved theorientationof ourDynkindiagram(byour choice
of orientation).

Defining𝜎 on 𝔤𝑄 by letting𝜎(𝑒𝛼) = 𝑒𝜎(𝛼) and letting it act on 𝔥 by extension of scalars of its action on𝑉, it is then
clear that 𝜎 is a Lie algebra homomorphism. It follows that its fixed point set is a sub-Lie algebra.

Theorem III.4. The Lie algebra 𝔤𝜎𝑄 is a simple Lie algebra with Dynkin diagram𝐷𝜎 given as follows: the vertices of𝐷𝜎 are
the orbits of 𝜎 on the vertex set of𝐷, and, for any two orbits, they are joined if there were edges joining a vertex in one orbit to
a vertex in the other, etc..
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