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Index of Notation
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Mat,, ,, (k)
Mat,, (k)
N

Ny(a)
rad(B)

rad(g)
(V,®)
sl(V)

(X)r

the derived series of a Lie algebra g.

for any subset X of an abelian group A (e.g. a vector space) this denotes the set of all sums of the
form ), -y where Y is a finite subset of X and 11, € IN.

yeY ny
the Lie algebra of all endomorphisms of a vector space V equipped with the commutator bracket.
I is an ideal in g, that s, I is a linear subspace and forallx € gand a € I, we have [a,x] € ]

the Killing form, an invariant symmetric bilinear form on a Lie algebra g given by:
x(x,y) = try(ad(x)ad(y)).

the lower central series of a Lie algebra g.

an alternating bilinear map satisfying the Jacobi identity, known as a Lie bracket.
the space of 11 X m matrices with entries in a field k.

the space of 1 X 17 matrices with entries in a field k.

the natural numbers.

the normalizer of a subalgebra ain a Lie algebra g.

the radical of a symmetric bilinear form B, consisting of allv € V which satisfy B(v, w) = 0 for all
weV.

the maximal solvable ideal in a Lie algebra g.
an abstract root system.

the Lie subalgebra {a@ € gly, : tr(a) = 0} of traceless endomorphisms of V, known as the special
linear Lie algebra associated to V.

if X is a subspace of a k-vector spaces V and F < k s a subfield of k, then the F-linear span of X in
V, i.e. the intersection of all F-subspaces of V containing X is denoted by either (X)r or span(X).
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Modifications

General: The content of Chapters 5 and 6 rebalanced by putting the material on Cartan subalgebras together with the
Cartan criteria. Most of the symbols used now should have hyperlinks that link to when the term was first defined
in the notes (but there is still an index of notation at the start for paper copies).

@

(id)

(ii)

(iv)

\Y)

(vi)

(vii)

Background material: Added a few more details about the examples discussed in lecture 1, but this is just for
curiosity (none of the material in the background section is examinable).

Chapter 1: Clarified the definition of a k-algebra to tidy up the unital and non-unital cases: the current version
gives a definition of a k-algebra structure on a k-vector space A with or without a unit. In the case where A
has a unit, then the definition becomes equivalent to the existence of a homomorphism of rings k — A whose
image lies in the centre of A.

Chapter 2: afew more details have been added on things like dual representations. All of these basic properties
work exactly the same way for Lie algebras as they did for groups once you figure out how the Lie algebra acts,
soinlecturesI1did not review this material in great detail, butit may be useful to have it written down carefully
for reference purposes.

Chapter 3 explains that the same idea one uses for finite groups — composition series — can be used to show
how an arbitrary (finite-dimensional) Lie algebra can be built up from atomic or “almost simple” Lie algebras.
The proofs of Jordan-Holder etc. in §3.1 are (still) non-examinable, but they are neater than in the previous
version of the notes.!

Chapter 4 has been reordered to cover first the “structural results” on solvable and nilpotent Lie algebras and
then the representation theory of both. Some typographical error have been corrected. Two key results of this
chapter are Lie’s theorem and the theorem that if (V, p) is a g-representation such that p(x) is nilpotent for
allx € gthen the image p(g) of g is nilpotent subalgebra of gly, —in the terminology of these notes, if (V, p) is
a nilpotent representation then p(g) is a nilpotent Lie algebra. The chapter ends with a (fairly coarse) classi-
fication of the representations of a nilpotent Lie algebra: they decompose into “generalised weight spaces” in
the same way that a vector space decomposes into a direct sum of generalised eigenspaces. The old version of
the notes had a mistake in the proof of Proposition 5.3.19. The updated notes replace Proposition 5.3.19 with
Lemma 4.3.10, as was done in the lectures, but deduces the main result in slightly neater way to the way it was
done in lectures.

Chapter 5: Now starts with the Cartan decomposition. (The proof that ) = gy some how seems to have been
cut from the previous online notes, but it is now part of Lemma 5.1.2). Section 5.2 discusses trace forms, and
has a few more remarks which may help to connect it more clearly to Part A Linear Algebra. The proof of
Cartan’s criterion for solvability is also a little cleaner than the proof given in lectures.

Chapter 6 discusses the solvable radical, semisimple Lie algebras and the Cartan criterion for semisimplicity.
The criterion is then used to show semisimple Lie algebras are a direct sum of simple Lie algebras, as done
in lectures. The Jordan decomposition is a pretty easy consequence of the fact that a semisimple Lie algebra
is a direct sum of non-abelian almost simple Lie algebras, as this shows any derivation is inner. The proof of
Weyl theorem is now modelled as closely as possible on the startegy of proof of Maschkhe’s theorem for finite
groups. (There should also be video lectures for these two topics online now — check the Moodle site).

Chapter 7 analyses the Cartan decomposition in the semisimple case. It has slightly cleaner proofs than the
previous set of notes. The material on abstract root systems is also slightly cleaner and shorter.

1And neater than in most textbooks, which, for reasons that I can only assume are historical, pointlessly fixate on phrasing the result as the
existence of a permutation of the composition factors on one composition series giving you the composition factors of a second composition
series. While it is true such a permutation exists, the content of the theorem is that, for a given simple object S, the number of composition
factors in a composition series which are isomorphic to S is independent of the composition series.
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*Background

In this section I use some material, like multivariable analysis, which is not necessary for the main body of the course, but if
you know it, or are happy to rely on notions from Prelims multivariable calculus for which you have not been given a rigorous
definition, it will help to put the material of this course in a broader context. For those worried about such things, fear not, it
is non-examinable.

From group actions to group representations

In mathematics, group actions give a way of encoding the symmetries of a space or physical system. Formally these
are defined as follows: an action of a group G on a space” Xisamapa: G x X — X, written (¢.x) — a(g, X) or more
commonly (g, X) > g.x which satisfies the properties

1. e.x = x,forallx € X, where e € G is the identity;

2. (glgz).x = gl.(gz.x) for allgl,gz € Gandx € X.
Natural examples of group actions are that of the general linear group GL,(IR) on IR”, or the action of the group of
rigid motions SO5 on 52, the unit sphere {x € R? : ||x|| = 1} in R3.

Whenever a group acts on a space X, there is a resulting linear action (a representation) on the vector space of
functions on X. Indeed if Fun(X) denotes the vector space of real-valued functions on X, then the formula

g(f)(x) = f(g7lx), VgeG,feFun(X)xe€X,

defines a representation of G on Fun(X). (The inverse is necessary for Fun(X) is to be a left, rather than right, rep-
resentation.) If X and G have more structure. e.g. that of a topological space or smooth manifold, then this action
may also preserve the subspaces of say continuous, or differentiable functions.

Infinitesimal symmetries

Lie algebras arise as the “infinitesimal version” of group actions, which loosely speaking means they are what we get
by trying to differentiate group actions.

Example. Take for example the natural action of the circle S' by rotations on the plane IR?. This action can be
written explicitly using matrices:
_ [ cos(t) —sin(t)
8(t) = ( sin(f)  cos(t)

where we have smoothly parametrized the circle S' using the trigonometric functions. Note that for this
parametrization, g(t)™! = g¢(~#). The induced action on Fun(IR?) restricts to an action on & *(IR?) the space of
smooth (i.e. infinitely differentiable) functions on IR?. Using our parametrization, it makes sense to differentiate this

action at the identity element (i.e. att = 0) to get an operation v: & °(R?) — & *(IR?), where if z = ( ; ) € R?,

then v is given by

2I’'m being deliberately vague here about what a “space” is, X could just be a set, but it could also have a more geometric nature, such as a
topological space or submanifold of R".



d
v(f) = = (f&(-1)2),_ = -Df:°8'0).)

- —sin(t) —cos(f) X
= ( &Yf 8yf )( cos(t)  —sin(f) )lt:O( y )
= (yo”x - xay)(f)

[t=0

The operator we obtained in this example, v = ydy —xd, isa &> (IR?)- linear combination of d, and dy. Opera-
tors of this form encode “infinitesimal symmetries”. The next definition formalises its key properties. We will work
with the space IR” for the rest of this section, but everything we say also applies, mutatis mutandis to the context of
smooth manifolds.

Definition. For any positive integer 7, an IR-linear operator v: *°(R") — # *(IR") is said to be a derivation if,

forany f1, fo € Z*°(IR") it satisfies
v(f1-f2) = v(f1)-f2 + f1.v(f2)- (0.0.1)

The next Lemma (which follows readily from a version of Taylor’s theorem for functions on IR” for example)
shows that the previous, somewhat formal, definition, actually results in a class of objects with a very concrete de-
scription. When working in IR” we will denote the partial derivative of f in the direction of the i-th standard basis
vector by d; f (in preference to the notation d f/dx; you may have seen more often).

Lemma. Ifv: Z(R") — Z*(R")is a derivation, and 4; = v(xj) € Z*(R"), thenv = E}Ll ajaj, that s, for all
f € °(R") we have

v(f) = 2 a19)(f)-
j=1

Thus to give a derivation is the same as to give an n-tuple of functions (4, ..., 4,,), or in other words a smooth
functiona: R" — R".

Definition. A vector field on X = R" is a (smooth) function v: R” — R". To any vector field v = (4;)/L; one
can associate the derivation 8, = Y,._. a;d; which one can think of as giving the infinitesimal direction of a flow

j=1"7"]
(e.g. of afluid, or an electric field say). Thus the space of vector fields Ogn on IR" acts on & *°(IR"), and thus in-
herits a nonassociative product [.,.] where 0y, ,,; = [0,,,0,,]. Explicitly, if vi = (a;)i_y, v, = (b]-);?:l then

n
[vi,v2] = (Qvl (b)) - 6,, (a,-))izl. Such fields can be made to act on functions f: X — R by differentiation. If
n

v = (ay,4ay, ...,a,) in standard coordinates (here a; : R" — R), then set v(f) = X,

Lemma, this yields a bijection between vector fields and derivations on 7 (IR").

a;d;(f). By the previous

Heuristically, we think of the infinitesimal version of a group action as the collection of derivations on smooth
functions obtained by “differentiating the group action at the identity element”. (For the circle the collection of
vector fields we get are just the scalar multiples of the vector field v, but for actions of larger group this will yield a
larger space of derivations).

Note that if we compose two derivations v; © v, we again get an operator on functions, but it is not given by a
vector field, since it involves second order differential operators. However, it is easy to check using the symmetry of
mixed partial derivatives thatif v1, 1, are derivations, then [v1, V5] = V1 o V5 — 15 o 1] is again a derivation. Thus the
space @y of vector fields on X is equipped with a natural product® [.,.] which is called a Lie bracket. The derivatives
of a group action give subalgebras of the algebra @ x: the fact that the commutator product preserves them is a sort
of infinitesimal remnant of the group multiplication®.

Example. Consider the action of SO3(IR) on IR3. This is the group of orientation-preserving linear isometries of
IR3. It is well-known that any element of ¢ € SO3(IR) is a rotation by some angle, say 0, about an axis L through the
origin. Then there is a continuous path ) in SO3(IR) from the identity to ¢ which, for ¢ € [0,1] is the rotation by ¢.0
about that axis.

3This is in the weakest sense, in that it is a bilinear map @y X @x — Oyx. It is not even associative — the axiom it does satisfy is discussed
shortly.
4To be a bit more precise, it comes from the conjugation action of the group on itself.
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This path is smooth and extends to ¢ in an open interval containing ¢ = (, so it makes sense to associate to it the
derivation f > E( f(y(—t)(x)). Picking an orthonormal basis {e1, €,, e3} which is positively oriented, with e; lying
along the axis of rotation of ¢ and e; and e, on the plane perpendicular to e3, then a calculation almost identical to
the one above in the case of the circle shows that v is a scalar multiple of x,d; — x5, where the scalar depends on
the angle 6.

But since, for each g € SO3(IR), the derivation Vv, we obtain in this way, is determined up to scaling by the axis of
rotation, and if we conjugate g by an element of i € SO3(IR), then hgh_1 is a rotation by the same angle around the
axis (L) and hy(t)h ! is a path from the identity to hgh!. Applying the chain rule as for the case of a circle, noting
that a linear map is its own derivative, it follows that the derivation obtained from using the rotation hgh_l in place
of ¢ is obtained from that for ¢ simply by applying /. It follows from this that the linear span of all such derivations
is in fact a 3-dimensional vector space g = ({xd, — ydy, yd; —zd,, zd, — xd,})r, and moreover it is then not hard
to check that g is closed under the bracket operations [+, -]. (This also gives a non-trivial example of a 3-dimensional
Lie algebra).
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Chapter 1

Lie algebras: Definition and basic notions

1.1 Definitions and Examples

The definition of a Lie algebra is an abstraction of the example of the product on vector fields given. It is purely
algebraic, so it makes sense over any field k. We begin, however, with an even more basic definition:

Definition 1.1.1. Let R be a commutative ring'. An R-algebra is a pair (A, *) consisting of an R-module A and an
R-bilinear map *: AX A — A, thatis,forallay,a,,b;,b, € Aandr € R, the operation * satisfies:
(r.ay +az) »by = r.(ag *by) + (ap + by),
aq * (r.b1 + bz) = 7’.((11 * bl) + (ﬂl * bz)
We say that (A, *) is unital (or has a unit) if thereis an element1, € Asuchthatly*a=a=14 = aforalla € A.
Note that if it exits, the multiplicative unit is unique. We say that (A, #) is associative if a = (b * ¢) = (a * b) = ¢ for all

a,b,c € A. When A is associative, we will normally suppress the operation * and so, for any a, b € A, write abrather
than g * b for the value of the bilinear map on the pair (a, b).

Note that an associative Z-algebra (i.e. letting R = Z the integers) is just a ring. In this course we will usually
assume that R is a field, which we will denote by k.

Definition 1.1.2. A Lie algebra over a field k is a k-algebra (g, [., .]) which satisfies the following axioms:

1. [.,.]4is alternating, i.e. [x, x], = Oforallx € g.
2. The Lie bracket satisfies the Jacobi Identity: that s, for all x, 1y, z € g we have:

[x, [y, zlgly + [y, [z, X114 + [z, [x, y]glg = O.

Remark 1.1.3. 1. Note that by considering the bracket [x + Y, x + y], it is easy to see that the alternating con-
dition implies that for all x, y € L we have [x,y], = —[y, x],, thatis [., ], is skew-symmetric. If char(k) # 2,
the alternating condition is equivalent to skew-symmetry.

2. If gis a Lie algebra, then the alternating property implies that g cannot have a unit. Itis also almost never the
case that an associative product will satisfy the conditions to be a Lie bracket. Thus, viewed a Lie algebra is
(usually) a non-commutative, non-associative, and non-unital algebra.?

3. We will normally write [., .] for the Lie bracket on any Lie algebra and decorate it only for emphasis or where
there is the potential for confusion.

Definition 1.1.4. Let(gy,[.,.]1) and (9y, [., .]o) be Lie algebras. A k-linear map ¢: g; — g5 is said to be a homomor-
phism of Lie algebras if it respects the Lie brackets. That is:

¢([a,b]1) = [¢(a), p(0)],  Ya,b € g;.

An isomorphism of Lie algebras is a bijective homomorphism, since, just as for group homomorphisms and linear
maps, the (set-theoretic) inverse of a Lie algebra homomorphism is automatically itself a Lie algebra homomor-
phism.

1All commutative rings in this course will have a multiplicative identity.
2This makes them sound awful. However, as we will see this is not the way to think about them!



Example 1.1.5. i) If dimy(g) = 1, then the alternating condition forces the Lie bracket to vanish. Thus, up to

i)

iii)

vi)

vii)

viii)

isomorphism, there is a unique 1-dimensional Lie algebra over k, that is, any 1-dimensional Lie algebra g is
isomorphic to k equipped with the zero Lie bracket.

If a is any vector space then setting the Lie bracket [., .] to be zero, i.e. setting [a,b] = Ofor alla, b € a, we get
a (not very interesting) Lie algebra. Such Lie algebras are called abelian Lie algebras.

If Ais an (associative) k-algebra, then A can be given the structure of a k-Lie algebra, whereifa, b € A thenwe
set [a,b] = a.b — b.a, the commutator of a and b. The commutator bracket is clearly alternating, and checking
the Jacobi identity is a fundamental calculation. Indeed we have

[x, [y, zI] = x(yz — zy) — (yz — zy)x = xyz — xzY — yzx + ZYx
= (xyz — yzx) + (zyx — yzx)

where,in the final expression, we have paired terms which can be obtained from each other by cycling x,  and
z. Since the terms in these pairs have opposite signs, itis then clear that adding the three expressions obtained
by cycling x, v and z gives zero. We will write g4 for the Lie algebra (A4, [.,.]) obtained from an associative
algebra in this way.

For amore down-to-earth example, recall that the space of n-by-n matrices Mat,, (k) with entries in k becomes
an associative algebra under matrix multiplication. We therefore obtain a Lie algebra, which we will denote
by gl,,(k), by equipping Mat,, (k) with the commutator bracket

[X,Y]=X.Y-Y.X.

If the field k is clear from context we will just write gl,,. Slightly more abstractly, if V is a k-vector space,
then we will write gly, for the Lie algebra obtained from the associative algebra End, (V) = Hom,(V, V) by
equipping it with the commutator bracket.’

If dim(V) = 1 then gl = gl; = k: the action of scalars gives an injective map k — End(V) for any nonzero
vector space V which is anisomorphismif dim(V) = 1. We will therefore write gl; for k viewed as a Lie algebra
with zero Lie bracket.

If g is a Lie algebra and s < g is a k-subspace of g on which the restriction of the Lie bracket takes valuesin s,
so that it induces a bilinear operation [.,.]s: s X s — s, then (5, [.,.]s) is clearly a Lie algebra, and we say s is
a (Lie) subalgebra of g. If 5is a Lie subalgebra of g then the inclusion map i: s — ¢is a homomorphism of Lie
algebras.

Let sl, = {X € gl, : (X) = 0} be the space of n X n matrices with trace zero. It is easy to check that
sl,, is a Lie subalgebra of gl,, (even though it is not a subalgebra of the associative algebra Mat, (k) provided
n > 1). Similarly we define sl to be the Lie subalgebra of gl constisting of endomorphisms of trace 0. These
are called special linear Lie algebras. More generally we say any Lie subalgebra of gly, for a vector space Vis a
linear Lie algebra.

If g is a k-Lie algebra and x € g, then the map ¢, : gl;(k) — g given by ¢, (t) = t.x is a Lie algebra homomor-
phism, because the alternating property means that a Lie bracket vanishes on any 1-dimensional subspace of
a Lie algebra. This gives a bijection between Lie algebra homomorphisms ¢: gl;(k) — g and the elements of
g whereif x € gweletx — ¢, : glj(k) — g as above, while given ¢: gly(k) — g we associate toit (1) € g.

If 91, g, are Lie algebras, then we may form their direct sum g1 @ g, which is the direct sum of g1 and g, as a

vector space, with Lie bracket given by [(x1, X2), (y1, ¥2)] = ([x1, y1], [x2, y2]) for allxy, 11 € g1, %0, 15 € 9p.
We may define the direct sum of k > 2 Lie algebras in the same way.

If a is an abelian Lie algebra then if we chose a basis {e;, ..., €} of a, then we obtain an isomorphism

0: gly(k)® — awhere O(ty, ..., t) = Zf:l tie;. Indeed the Lie bracket on both a and gl (k)®* is zero, hence
we need only check that 6 is an isomorphism of vector spaces, which is clear by construction.

The following definition should be understood as the infinitesimal analogue of an automorphism of a k-algebra.

3Ifitis not clear from context which field k the vector space V is over, we will write gl, (V).



Definition 1.1.6. Generalising the example of vector fieldsin the previous chapter, if Aisak-algebraand6: A — A
is a k-linear map, then we say 0 is a k-derivation if it satisfies the Leibniz rule, that is, if:

5(ab) = 5(a).b +a.6(b), Va,be A.

Itis easy to see by a direct calculation that if Der, (A) denotes the k-vector space of k-derivations on A, then Der (A)
is stable under taking commutators, that is, if

[61,02] = 610062 = 650 01.
then [01,0,] € Dery(A). Indeed
(61009 — 0 0 071)(a.b) = 01 (02(a).b + a.05(b)) — 05 (01(a).b + ad, (b))
= 0105(a).b + 05(a).61(b) + 01(a).05(b) + a.0,(61(D))
= 0201(a).b = 61().02(b) — 62(a).01(b) — a.6261(D))
= [61, 62](a).b + a.[61, O5](D).

Example 1.1.7. i) If Aisan associative k-algebra, then if a € A the operation of taking commutator with a is a
derivation. Thatis,if ,: A — Ais givenby 0,(b) = [a,b] for any b € A, then d, € Dery(A). Indeed

0,(b).c + b.0,(c) = (ab— ba)c + b(ac — ca) = a.(bc) — (bc).a = 6,(b.c)

The map A: g4 — Dery(A) given by A(a) = J, is a homomorphism of Lie algebras, that is, A([a,b]) =
[04, 0p]. In fact slightly more is true: if J € Der,(A) and b € A then [d, 5] = 0. (Applying this to d = 0,
gives the compatibility with commutators). Indeed for all ¢ € g we have

[9,851(c) = A(be — cb) — (bI(c) — A(c).b) = I(b).c - c.Ib) = 6,(c).

ii) Given a Lie algebra g we let Der,(g) = {¢ € gl; : ¢([x, y]) = [¢(x),y] + [x, (y)]}. Itis a Lie subalgebra of g,
(indeed the proof above that Der, (A) is a Lie algebra only requires the product on A to be bilinear).

iii) One way of interpreting the Jacobi identity is that, assuming the alternating property, it is equivalent to the
condition that, for any x € g, the operation ad(x) € gl given by ad(x)(y) = [x, y] lies in Der(g). Indeed

ad(x)([y, z]) = [ad(x)(y), 2] + [y, ad(x)(2)]
=[x [y 21l =[xyl 2] + [y, [x, 2]
=[x [y 2l -y, v, 2l =[x, y], 21 = 0
=[xy 2zl + [y [z x]] + [z [yl = 0
where the equivalence between the third and fourth equalities follows from the alternating property of a Lie

bracket.

iv) The Jacobi identity is also equivalent, again assuming the alternating property, to the fact thatad: g — glyis
a homomorphism of Lie algebras: Indeed, for all x, 1y, z € g we have

[ad(x), adW)](2) = [x, [y, z]] - [y, [x, z]]
=[x [y zll + [y, [z x]]

=z, [x, y]]

ad([x, yD)(2).

where the second and fourth equality uses the alternating property, and the third the Jacobi identity.

v) If (A, #)is any k-algebra then A°P is the k-algebra with product *°P, where a *°? b = b a. If A is commutative,
then A°P is isomorphic to A. In the case of a Lie algebra g then g°P is the Lie algebra (g, —[.,.]). In fact gis
canonically isomorphic to g°P: if we let m: g — g°P be the map m(x) = —x, then

m([xl ]/]) = _[x/ ]/] = []// x] = [x/ ]/]OP = [_xl —y]°p = [m('x)/ m(]/)]/ x/]/ €4g.
hencem: g — g°P is an isomorphism from g to g°P.

*Remark 1.1.8. Combining iii) and iv) in the above example we see that the adjoint representation x — ad(x)isin
fact a Lie algebra homomorphism from g to Der, (g). This is, in a sense, where the Jacobi identity comes from: very
roughly, the conjugation action of G on itself yields a group homomorphism G — gl (since conjugation preserves
the identity e € G) whose image lies in Aut(g). The adjoint representation of g is then the derivative of this action
yields the adjoint representation ad which hence should have image in Der, (g).



1.2 Ideals and isomorphism theorems

As one might expectif a Lie algebra is suppose to be an “infinitesimal” version of a Lie group, most notions for groups
have analogues in the context of Lie algebras. It might be worth noting, however, that the linear structure of a Lie
algebra comes from the basic properties of the derivative: it is the Lie bracket which reflects the “infinitesimal” ver-
sions of properties of a group. The existence of both the linear structure and the Lie bracket means that many of the
notions we consider for a Lie algebra also have natural analogues for a ring (which is an algebra object equipped
with an addition and an (associative) multiplication.

Definition 1.2.1. An ideal in a Lie algebra (g, [.,.],) is a subspace a such that for all x € ganda € a we have
[a,x]4 € a. Itis easy to check thatif ¢ §; — @p is a homomorphism, then

Ker(¢) = (a € g1 : p(a) = 0)

is an ideal of g;. We will write [<Jg to indicate that I is an ideal in g.

Remark 1.2.2. Notice that because a Lie bracket is alternating, the condition that, for all x € g and a € a one has
[a, x] € q,is equivalent to the condition that [x,a] € aforallx € g,a € a. Thus, similarly to commutative rings, the
notions of a left, right or two-sided ideal in a Lie algebra are all the same.

Just as for rings, in fact any ideal is the kernel of a Lie algebra homomorphism:

Theorem 1.2.3. (The first isomorphism theorem:) Let a be an ideal in a Lie algebra g, and let g: § — g/a be the quotient
mayp of vector spaces. Then there is a unique Lie bracket on g/a with respect to which q is a homomorphism of Lie algebras, that
is, forallx,y € g

[9(x), g)] = q([x,y]), ie [x+ay+a]=[xy]l+a
Moreover, if : ¢ — tis a Lie algebra homomorphism such that (a) = 0, then ¢ induces a homomorphism ¢: g/a — t
suchthat o q = ¢, sothatker(p) = ker(¢p)/a. Inparticular, ifweset a = ker(¢p) then we see that ¢ induces an isomorphism

(i_): a/ker(¢p) — im(p).

Proof. The proof is almost identical to the proof in the case of rings. The key point is to see that the coset [x, y] + a
is independent of the choice of representative for the cosets x + a, ¥ + a, and the condition that ais an ideal ensures

this. O

Definition 1.2.4. If V, W are subspaces of a Lie algebra g, then write [V, W] for the linear span of the elements
{[v,w] : v € V,w € W}. Notice thatif I, | are ideals in g then so is [I, J]. Indeed to check this, note that by part 8) of
Example 1.1.5,ifz € g, x € I,y € ] then we have

[z, [x, 1l = ad(2)([x, y]) = [ad(2)(x), y] + [x, 2d(z)(y)] € [L, ]]
since ad(z)(x) = [z, x] € I ifx € g, and similarly ad(z)(y) = [z,y] € ].

Remark 1.2.5. If ] and | are ideals in a Lie algebra g then it is easy to check that their intersection I N | is again an
idealin g,and we have[I, ] C IN]. (Thus[I, []is the Lie algebra analogue of the product of ideals in a commutative
ring.) Similarly, it is easy to see that the linear sum I + ] of I and | is also an ideal®.

Definition 1.2.6. Let g be a Lie algebra and let a < g be a subalgebra. The normalizer of ain gis
Ny(a) == {x € g:ad(x)(a) C a} = {x € g:ad(a)(x) € a,Ya € a}.

This is a subalgebra of g, as one can check using the formulation of the Jacobi identity given in Definition 1.2.4. It is
the largest subalgebra of g within which ais an ideal.

Definition 1.2.7. If a nontrivial Lie algebra has no nontrivial ideals we say that it is almost simple. It itis in addition
not abelian, i.e. the Lie bracket is not identically zero, then we say that it is simple.

Just as for groups and rings, one can deduce the usual stable of isomorphism theorems from the first isomor-
phism theorem.

“Note however that the linear sum of two subalgebras is not necessarily a subalgebra.



Theorem 1.2.8. i) IfYisasubalgebraof g and I isanidealin g thenl) + I is a subalgebra of g (containing I as an ideal)
b NIisanidealin, and

(O +D/I=b/(bNI).

ii) If] €1 C gareideals of g then we have:
/D) = o/l

Proof. The proofs are identical to the corresponding results for groups. We give a proof of if) as an example. Since
J € I the quotientmap §: § — ¢/, which has kernel I, induces a map g: g/ — g/I. The kernel of this map is by
definition {x + | : x + [ = I}, thatis, I/]. The result follows. O



Chapter 2

Representations of Lie algebras

Just as for finite groups (or indeed groups in general) one way of studying Lie algebras is to try and understand how
they can act on other (usually more concrete) objects. For Lie algebras, since they are already vector spaces over k, it
is natural to study their action on linear spaces, or in other words, “representations”.

2.1 Definition and examples

Definition 2.1.1. A representation of a Lie algebra g is a vector space V equipped with a linear action of g, thatis, a
homomorphism of Lie algebras p: g — gly. In other words, p is a linear map such that

p([x, y1) = p(x) e p(y) = p(y) ° p(x)

where o denotes composition of linear maps. We also refer to arepresentation of g as a g-representation or g-module.
A representation is faithful if ker(p) = 0. When there is no danger of confusion we will normally suppress p in our
notation, and write x(v) rather than p(x)(v), forx € g,v € V.

If (V, p) and (W, 0) are g-representations, we say that ¢: V — W is a g-homomorphism (or homomorphism
of g-representations) if ¢ o p(x) = 0(x) o ¢ for all x € g. We will write Rep(g) for the collection' of representations
of g.

We will study representation of various classes of Lie algebras in this course, but the following give some basic
examples.

Example 2.1.2. i) If Visak-vector space, then the identity map gly, — gl gives a representation of gl on V|
which is known as the vector representation. Clearly any subalgebra g of gy, also inherits V as a representation,
where then the action map p is just the inclusion map.

ii) Let a be an abelian Lie algebra. If (V, p) is a representation of a, then the image p(a) of a is a commutative

subalgebra of Endy (V): ifa,b € athen 0 = p([a, b]) = p(a)p(b) — p(b)p(a), so that
p(a)p(b) = p(b)p(a), ¥ a,b € a.

iii) Given an arbitrary Lie algebra g, there is a natural representation ad of g on g itself known as the adjoint repre-
sentation. The homomorphism ad: g — gl from g to gl is given by

ad(x)(y) = [xly]/ Vx,y €4g.

Indeed, as noted in iv) of Example 1.1.7, the fact that this map is a homomorphism of Lie algebras is just a
rephrasing? of the Jacobi identity. Note that while the vector representation is clearly faithful, in general the
adjoint representation is not. Indeed the kernel is known as the centre of g:

39)={xeg:[x,y]=0,Yyeg}

Note that if x € 3(g) then for any representation p: ¢ — gl(V) the endomorphism p(x) commutes with all
the elements p(y) € End(V) forally € g.

UIf you take the Category Theory course, Rep(g) is a category whose objects are representations of g and whose morphisms are g-
homomorphisms. The term “collection” is used because of set-theoretic subtleties which we can essentially ignore in this course.
2It’s also (for some people) a useful way of remembering what the Jacobi identity says.



iv) If gis any Lie algebra, the pair (k, 0) consisting of the vector space k together with the zeromap 0: g — glj is
a g-representation. This representation is called the trivial representation. It is the Lie algebra analogue of the
trivial representation for a group (which send every group element to the identity map 1, € GL(V)).

v) 1f (V, p) is a g-representation, then the sum of all subrepresentations of V isomorphic to (k, 0) is a natural
subrepresentation

Vi={veV:pkx)(v)=0,Vxeg)
known as the g-invariantsin V.

vi) If(V, p)is arepresentation of a Lie algebragand §: [) — gis ahomomorphism of Lie algebras, then we define
the pull-back of (V, p) to the representation of ) given by (V, p o 0). The most common example of a pull-back
is restriction, when b is a subalgebra of g (and thus 6 is the inclusion map from ) to g).

The following definitions are useful when studying the the structure of Lie algebra representations:

Definition 2.1.3. A representation is said to be irreducible if it has no proper non-zero subrepresentations, and it is
said to be completely reducible if it is isomorphic to a direct sum of irreducible representations. A representation V
is said to be indecomposable if, whenever we have V' = U @ U, with Uy, U, subrepresentations, either U; = V or
U, =V (and U, = 0, U; = 0 respectively).

It is easy to show (by induction on dimension) that any finite-dimensional representation is a direct sum of
indecomposable subrepresentations.

Example 2.1.4. In this example, we classify the representations of the simplest Lie algebra gl;: a representation
(V, p) of gl is given by a Lie algebra homomorphism p: gl; — gly. But we saw in vii) of Example 1.1.5, that there
is a natural bijection between such homomorphisms and elements x € gly, given by p + p(1). Through this cor-
respondence the problem of classifying gl; -representations up to isomorphism becomes the problem of classifying
vector spaces equipped with an endomorphism up to conjugacy.

If we assume k is algebraically closed this classification of linear endomorphisms is given by the Jordan canonical
form. Itis a useful exercise to translate statements about linear maps into statements about representations of glj.
For example, the irreducible representations of gl are the one-dimensional ones, and correspond to eigenvectors of
p(1). What do the indecomposable representations correspond to?

Example 2.1.5. Now suppose that gis any finite-dimensional Lie algebra and that (L, 1) is a one-dimensional rep-
resentation of §. The canonical identifications gl; = k = gl;(k) given in v) of Example 1.1.5 identifies A with a
homomorphism [A]: g — gl;. Butsince k = gl; has the zero Lie bracket, this is just an element of §* which vanishes
on D(g), that is, an element of D(g)° = (g/D(g))*. The homomorphism [A] clearly identifies (L, A) up to isomor-
phism, and given any € D(g)°, we obtain (k, 1) a canonical representative of this isomorphism class, which we
will denote by k;,. In particular,if A =0 € D(g)” then kg is the trivial representation of g.

2.2 Subrepresentations, quotients, duals, and composition series

There are anumber of standard ways of constructing new representations from old, all of which have their analogues
in the context of group representations. We begin with some definitions.

Definition 2.2.1. Let V be a k-vector space and U < V a subspace. Writei: U — V for the inclusion map and
p: V — V/U for the quotient map. Let

by={xegly:x(U)cU}={xegly:poxeci=0}

The wehavelinearmapsi*: by — End(U) andp,: by — End(V/U) givenbyi*(x) = xoi,andp,: by — End(V/U)
is given by p.(x)(v + U) = p(x(v)) = x(v) + U forany x € by, v € V.

Lemma 2.2.2. Ifp: g — gly is a g-representation and p(g) C by for some subspace U < 'V, then U and V/U become
g-representations with action mapsi* o p and p, o p respectively.

Proof. Itisclearthatb; isan associative subalgebra of Endy (V') and bothi* and p, are homomorphisms of associative
algebras, hence they are also homomorphisms of the associated Lie algebras. The Lemma follows immediately. [J

It will be useful later to have the following definition:



Definition 2.2.3. Let V be a vector space, and let.# = (Fz‘)i’(:o be aflagin V| thatis
F =(V=FDF D>F,>..0F =0)

is a nested sequence of subspaces with dim(F;,1) < dim(F;) for1 <i < k. If.7 ! and .7 2 are flags in V then we say
that .7 2 is a refinement of F ! if every subspace in .Z ! occurs in .7 2. If dim(F;) = i for all i (so that dim(V) = k)
then .7 is called a complete flag (as it cannot be refined any further). Itis clear (since any linearly independent set
can be extended to a basis) that any flag can be refined to a complete flag.

Weletbs = () ;4 br, = {x € gly : x(F;) € F;}. This is an associative subalgebra of End(V'), and hence
a Lie subalgebra. If (V, p) is a g-representation, the elements of the flag are subrepresentations of V if and only if
p(g) Sbs.

Definition 2.2.4. If V is a k-vector space and a4 € gly/, then a induces alinearmapa™ : V* — V* which we call the
adjoint (or transpose) of a, given by a™ (f)(v) = (f o a)(v). However, ifa, b € gly, v € V,

(@b)"(f)(©) = (f e (@ab))(v) = ((f e @) 2 b)(v) = b (f e a)(v) = bT e a™ (f)(v),

sothata +— a' is an algebra anti-homomorphism from End (V) to End, (V*)°P (see 1.1.5 (v))), so that itis also a Lie
algebra homomorphism glyy — gly-". But, again by 1.1.5 (v)) the map x > —x is an isomorphism from g — g°
for any Lie algebra, it follows that x > —x is an isomorphism of Lie algebras from gl to gly~. For x € gly,, we will
write X* = —x". Moreover, if (V, p) is a g-representation, then we may define p*(x) = (p(x))*, so that p*: g — gly-
is a Lie algebra homomorphism and hence (V*, p*) is a g-representation, the dual representation to (V, p).

Recall that the annihilator of a subspace U < V is the subspace of V* given by
U={feV*: fu)=0,Yuell.

By considering a basis of V and the corresponding dual basis of V*, it is easy to see that dim(U) + dim(U°) =
dim(V), and the correspondence U +> U is order-reversing for containment, that s, if U; < U, then U < UY.

Lemma 2.2.5. If(V, p) is a g-representation with dual representation (V*, p*), then the map U +—> U gives an order-
reversing correspondence between the subrepresentations of V and V™ respectively. Since V is finite-dimensional, (V*)* is
canonically isomorphic to V, and via that canonical identification, this correspondence is an involution, that is, (U°)° = U.

Proof. We need only check thatif U is a subrepresentation of V then U is a subrepresentation of V*. But notice that
the adjoint of the inclusion map ' : V* — U* haskernel U°, and the adjoint of the quotientmap p ™ : (V/U)* — V*
has image UP. Moreover p" is clearly injective, and i" is surjective since any functional on U extends to one on V
(as you can easily see using e.g. dual bases).

Now b0 ={y € gly- : LT oyopT = 0}. Butif x € gl then
iTo()opt ==(ToxTopT)=—(poxei).

Hence x* € byjo if and only if p o x o7 = 0, that s, if and only if x € by;. It follows that if p(g) € by (V) if and only if
p*(8) € b0(V™) asrequired.

O

Definition 2.2.6. If (V, p) is a finite-dimensional g-representation, then we say thataflag@ = (V = Fy > F; >
. > F; = {0}) in V is a composition series for V if each F; is a subrepresentation of V and F;/F;,4 is an irreducible
representation of g.

The Jordan-Hoélder theorem for finite-dimensional representations of g shows that the isomorphism classes of the
irreducible g-representations Fj/Fj,1 are independent of the choice of composition series, as is the number of times
agiven simple occurs. (See Appendix II for a proof.) If S is a simple g-representation and (V, p) any g-representation,
we write [S : V] for the number of composition factors in a composition series for V which are isomorphicto S. The
next definition will be crucial later in the course, when hopefully it will appear more natural.

Definition 2.2.7. Letgbe a Lie algebra and suppose that (V, p) is a g-representation. We define a symmetric bilin-
ear form ty : g X g — kby setting ty (%, y) = try(p(x) o p(y)). Clearly t;, depends only on the isomorphism class of
V,thatis, if V1 = V; as g-representations then fy, = ty,.



Lemma 2.2.8. Let (V, p) be a finite-dimensional representation of g and let x, y € g. Then

t(vy) = Y, [S:Vlts(xy)

S irreducible

Proof. Picking a composition series @ = (V = Fy > F; > ... > F; = {0}), the image p(g) of g in gly is contained in
be and since by is an associative algebra, if p(x), p(y) € b then p(x)p(y) € bz . Thus the Lemma follows if we can
show thatforalla € by

-1
try(a) = E try, (%)
k=0

where & is the linear map induced by @ on Wy = Fy/Fy,.1 (where W;_; = F;_1/F; = F;_1). But this is easy to
check by picking a basis B for V compatible with the composition series (in the sense that, foreach k,0 < k < d, the
intersection B N F}. is a basis for Fj).

O

Lemma 2.2.9. Suppose that V is a g-representation and that {S; : 1 < i < k} are its composition factors. Then V* has
composition factors (S} : 1 < i < k} and moreover [S; : V] =[S; : V*].

Proof. Let & = (V = Fy > F; > .. > F; = {0}), and suppose that F;/F;,; = Sy sothat[S; : V] = [ (@)).
Then V* has a filtration by subrepresentations given by the annihilators & = (V* = Fg > Fg—l > ... > F) ={0}).
Now F?+1 = (V/F;y1)" via the transpose of the quotient map q;,1: V — V/F;q, and F} = V"/F? via the transpose
of theinclusion p;: F; = V. Itfollows that (F;/F;,1)" & F?H/F?, and hence F?H/F? = S;(i) is simple, so that & is a
composition series for V*, with composition factors S} with the simple S} having multiplicity [S} : V*] = |7 71(i)| =

[S; : V] as required. O

Definition 2.2.10. If V is a g-representation, we let V*® = ZS v S the socle of V, be the sum of all irreducible
subrepresentations of V. This is a semisimple subrepresentation of V' and hence it can be written as the direct sum
of irreducible subrepresentations of V. It is maximal among semisimple subrepresentations of V in the partical
order given by containment.

2.2.1 Direct sums and Hom-spaces

Now suppose that V = V7 @ V), is a k-vector space. Forj = 1,2, we have natural inclusion maps tj:V; > Vand
projectionmaps p;: V' — V; (with kernel V3_;). We claim, for any vector space U, we have natural isomorphisms

i) Hom(V,U) = Hom(V{, U) @ Hom(V,, U)

2.2.1
ii) Hom(U, V) = Hom(U, V) ® Hom(U, V>). 2.21)

In the case of i), the map simply takes the restriction of ¢ € Hom(V, U) to V; and V, respectively. In terms of
our inclusion and projection maps, for 7 = 1,2 we have ¢y = ¢ © (,. To see that this map is an isomorphism, note
that any v € V can be written uniquely asv = v; + v, withv; € V; andv, € V,. Indeed v, = (, © p,(v), hence

O©) = P(1g © ];1 (V) + 1 0p5(v)) = Ele(qb o 1) o p,(v). In other words, the inverse to ¢ > (¢ © 1,),=1 » is the map
(¢r)r:1,2 = Zrzl lprpr'

In the case of if), the morphism simply takes, for ¢ € Hom(U, V), the components of ¢(u) in V; and V; respec-
tively, thatis ¢ > (ps © ()s=1,». Clearly the inverse of this map is given by (1]5)s=1,2 = 2i_1 5 ls © 15

Now consider End(V) = Hom(V, V) where V = V| @ V,. We may use i) and ii) (twice) to obtain

2 2 2 2
Hom(V, V) = () Hom(V,, V) = @ P Hom(v,, vy | = EB Hom(V,, V)
r=1

r=1 s=1 r,s=1

by ¢ — (¢b7) where ¢; = ps o ¢ o 1, € Hom(V,, V;). This decomposition is just that of a matrix into block subma-
trices, so it can be useful to arrange it in that form:



o1 3 Hom,(V4, V1) = gly. Homy (V>, V1)
End(V) =gly 2 ¢ — € 1 2.2.2
nd(V) =aly 2 ¢ ( I ¢ Homy (Vy, V3) Hom, (V5, V) = gly, @2.2)

This shows that gly, @ gly, is naturally isomorphic to a subalgebra of gly = gly,qv,, and hence V| & V5 is
a representation of gly, @ gly,. More interestingly, the summands Hom(Vy, V) and Hom(V5, V1) are clearly all
preserved by the action of gly,, @ gly,, so that in particular, Hom(V1, V;) is a representation of gly, @ gly,, where if
x = (x1,x2) € gly, ®gly, and ¢ € Hom(Vy, V), then x(¢p) = x50 p —poxy.

It follows that if (V3, p1) and (V;, p,) are g-representations, then Hom(V, V) is a g-representation, via

A P19©p2
g adg gly, @ gly, —— gl(Hom(V, V3))

where A: g — ¢ @ g is the diagonal map A(x) = (x,x). Explicitly, if x € g and ¢ € Hom(V, W) then x(¢) =
p2(X) e =P o pr(%).

Remark 2.2.11. Note thatthe previous example actually includes the example of dual spaces: if V is a k-vector space
then V* = Hom(V/, k) becomes a gly, @ gl; -representation, and then simply using the inclusion glyy — gl @ gl; we
see that V* becomes a gl -representation, and indeed we obtain the same action: for any f € V* and x € gl we

have x(f) := (x, 0)(f) = 0o f — f ox = ~x"(f).

. .. k . .
Remark 2.2.12. For any direct sum decomposition V = V., have natural inclusion maps (¥ : V, — V and
y p r=1 r p T r
Vo =

projection maps py : V. — V,, where ker(p,) = @s# V. Itis easy to see that 1y, = Zl;:l Y opY andp =
k
0ysly, . The above discussion then generalises readily to the case where we have k-vector spaces V' = @r: 1 V, and

1
W = @5:1 W. By considering, for any ¢ € Hom(V, W) theidentity ¢ = 1}y o ¢p o1}/, we see that

Qb = (P;N ° ¢ ° i;/)r,s and (¢3)r,5 = 2 L;N ° CPE ° PIV
7,

are mutually inverse and give isomorphisms between Hom(V, W) and @rs Hom(V,, W;) which again is just the

decomposition of Hom(V, W) into “block matrices” corresponding to the direct sum decompositions of V and W
respectively.

2.3 Tensor products

First we note a general Lemma:

Lemma 2.3.1. Let 01, 9y be Lie algebras over k and let § = 01 @ g be their direct sum (so each of 81, 8y is an ideal in g). If
(U, p) is a representation of 6, and we set p; = p\y., then each p; is a representation of §; fori = 1,2, and [p1(x), p2(y)] = 0
forany x € a1,y € @y. Conversely, if p;: §; — gl are Lie algebra homomorphisms fori = 1,2 and [p1(x), p2(y)] = O for
allx € 91,y € @, then p(x,Y) = p1(x) + po(y) is a Lie algebra homomorphism from g to gly;.

Proof. Given arepresentation (U, p) of g, the asserted properties of p1, p, are immediate. For the converse, note that

if (xl.xz), (y1/]/2) €q, where X1.Y1 €0 and X2,Y2 € gy, then

[p(x1,x2), p(y1, y2)] = [p1(x1) + p2(x2), p1(Y1) + p2(¥2)]
= [p1(x1), p1(y)] + [p1(x1), p2(y2)] = [p1 (Y1), p2(x2)] + [p2(x2), p2(y2)]
= [p1(x1), p1(y)] + [p2(x2), p2(y2)]
= p((x1,%2), (1, ¥2))

so that p is a homomorphism as required. O

Now gly, and glyy are naturally subalgebras of gly g, via the embeddings iy, and i}y respectively, where iy, () =
a®1ly and iy (B) = 1y ® B respectively. Since for any « € gly, € glyy we have

iw(B)oiv(e) = (ly @p)e(a®ly) =a®f = (a®@1y)e (ly ® ) = iv(a) o iw(p)

it follows by Lemma 2.3.1 thatd: gly, @ glyy — glygw given by

d(x,y) = iy () +iw(y) =x@ 1w +1y @y
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is a Lie algebra homomorphism, and hence V' ® W is naturally a gly, @ gly-representation. It follows immediately
thatif (V, p) is a representation of g; and (W, 0) is a representation of g, then V ® W is a representation of g; ® g
viado (p®0)andif g1 = g = gthen V ® W is a representation of g viad o A, where A(x) = (x,x) € g@ g. More
explicitly, if (V, p) and (W, 0) are g-representations then V ® W is a g-representation with

xwew)=px)@w+v®c(w), YveV,weW. (2.3.1)

2.3.1 Tensoring with one-dimensional representations

If (V, p) is any g-representation, then by Example 1.9, we have an isomorphism of vector spaces V ® ky — V given
by the map v ® A = A.v. Via this map, one can think of the g-representation V ® k; as the same vector space V but
now equipped with a new action p, of g, where p;(x) = p(x) + A(x).ly (where we write I}, for the identity map.)
Note that, in particular, if A, 4 € D(g)° then this shows that k) ® ky = ki

2.3.2 Homomorphisms, g-homomorphism, and tensor products

The properties asserted of the maps described in this section are proved in detail in Appendix 1.2.

Examining the formula (2.3.1) for the action on a tensor product of representations given above we see that, just
as for group representations, if V and W are g-representations, then the isomorphismo: VW — W ® V given
byc(v®w) = w®ov, (v € V,w € W) is compatible with the action of g and hence induces an isomorphism of
g-representations. In the case V = W, 0 becomes an involution on V ® V' commuting with the g-action. In other
words, Sy, the symmetric group on two letters acts on V ® V and the isotypic decomposition of V ® V under this
action, (equivalently the (+1)- and (—1)-eigenspaces of 0) shows that V ® V is the direct sum of the subrepresenta-

tions of symmetric tensors and skew-symmetric tensors, thatis V@ V = Symz(V) @ Altz(V) where
2 1
Sym*(V) = span, 5(?]1 ®Uy+ U, ®01) 01,03 €V,
2 1
Alt" (V) = span, E(vl Uy -1, ®Vq1) 01,0 €V o,

Let V and W be k-vector spaces. There is a natural linear map 6: V*® W — Hom(V, W), given by O(f ® w) =
f.w where (f.w)(v) = f(v).wforallv € V,f € V*andw € W. This map is injective, and its image is precisely
the space of finite-rank linear maps® from V to W. In particular, if dim(V) < oo then we have End(V) = V*® V.
Similarly, there is anaturalmap m: V*® W* — (V @ W)*, where

m(f®gwew) = fv).gw), YveV,weW,feV', geW"

The map m is also injective and hence, by considering dimensions, it is an isomorphism when V and W are finite-
dimensional. This tensor product description of End(V) = Hom(V, V) gives a natural description of the trace map:
Notice that we have a natural bilinear map V* X V — k given by (f,v) — f(v). By the universal property of the
tensor product, this induces a linear map (: V* ® V' — k. Under the identification with Hom(V/, V) this map is
identified with the trace of a linear map.

Remark 2.3.2. Itis worth noticing that this gives a coordinate-free way of defining the trace, and also some expla-
nation for why one needs some finiteness condition in order for the trace to be defined.

Remark 2.3.3. If gis a Lie algebra and V and W are g-representations, then it is also easy to check from the defi-
nitions that the natural map 6: V*®@ W — Hom(V, W) defined in Lemma 1.13 is also a map of g-representations,
as is the contractionmap t: V*® V — k, where we view k as the trivial representation of g. For example, for t we
have:

(x(f ®0)) = (X)) ®v+ f®x(v)) = —f(x(v)) + f(x(2)) =0, YxegoveV,feV.

Thus all the maps between tensor products of vector spaces discuss in Appendix 1.2 yield maps of g-representations.

The following example will be very useful in a number of places later in the course.

3That s, the linear maps from V to W which have finite-dimensional image.
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Example 2.3.4. If gis a Lie algebra and (V/, p) is a g-representation, then p induces a natural bilinear map ay: g%
V — V,namely (x, v) — p(x)(v). By the universal property of tensor products this yields a linear map &, P g®V —
V. We claim this map is a homomorphism of g representations (where g is viewed as the adjoint representation). To
see this, first notice that the bilinear map 4,: g X V' — V'isequaltoay o (p X 1y) where ay : gly XV — Visthe
natural action of glyy on V, (¢, v) = ¢(v). Thus it suffices to check the claim for gl and its vector representation V.
Letdy : gly ® V — V bethelinear mapinduced by ay. Thenifx, y € gly andv € V wehave x(dy (y ®v)) = x(y(v)),
while

ay(x(y®v)) = [x,y] @ v +y ®x(0) = (xy - yx)(v) + yx(v) = xy(v) = x(ay (y ®0)) (2:32)

hence as iy was arbitrary we have @y o x = x o @y for all x € gly so that 4y € Homgy, (gly ® V, V) as required.

Remark 2.3.5. Infactone canalso deduce that 7, is a homomorphism of §-representations by observing thatunder
the identification gly = V" ® V the map &, corresponds to the linearmap 113: V' ® V®V — V, thatis, the linear
map which is the identity on the 2nd tensor factor and is the contraction map ¢ on the first and third factors:* so that
((f1 ®v; ®v3) = f1(v3).v, where v,,v3 € V, f1 € V*. Since ( is a homomorphism of g-representations, it follows

a,is also.

“Here, as usual, we are also identifying k ® V with V equipped with the scalar multiplication map, s: k X V' — V, thatis s(A,v) = A.v.
(Recall that a tensor product V ® W is a vector space and a bilinearmap VX W — V@ W.)
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Chapter 3

Classifying Lie algebras

The goal of this course is to study the structure of Lie algebras, and attempt to classify them. The most ambitious
“classification” result would be to give a description of all finite-dimensional Lie algebras up to isomorphism. In very
low dimensions this is actually possible: For dimension 1 clearly there is a unique (up to isomorphism) Lie algebra
since the alternating condition demands that the bracket is zero. In dimension two, one can again have an abelian
Lie algebra, but there is another possibility: if g has a basis {¢, f} then we may set [e, f] = f, and this completely
determines the Lie algebra structure. All two-dimensional Lie algebras which are not abelian are isomorphic to this
one (check this). Itis also possible to classify three-dimensional Lie algebras, but it becomes rapidly intractable to
do this in general as the dimension increases.

This reveals an essential tension in seeking any kind of classification result for mathematical objects: a classifi-
cation result should describe all such objects (or at least those in a natural, and likely reasonably “large” class) up
to some notion of equivalence. Clearly, using a stricter notion of equivalence will mean any classification theorem
you can prove will provide finer information about the objects you are studying, but this must be balanced against
the intrinsic complexity of the objects which may make such a classification (even for quite small classes) extremely
complicated. Hence it is likely reasonable to accept a somewhat crude notion of equivalence in order to be have any
chance of obtaining a classification theorem which has a relatively simple statement.

3.1 Classification by composition factors

Our approach will follow the strategy often used in finite groups: In that context, the famous Jordan-Hoélder theorem
shows that any finite group can be given by gluing together finite simple groups, in the sense that we may find an
decreasing chain of subgroups

G= GODG1 > .. Gn—l ‘>Gn = {E},

where, foreach i, (1 < i < n), the subgroup G;isanormalin G;_1 and S; = G;_1/G; is simple. That such a filtration of
G exists s easy to prove by induction. The non-trivial part of the theorem is that, for any fixed finite simple group H,
the number of S; which are isomorphic to H is independent of the choice filtration. This is usually phrased as saying
that the multiplicity with which a composition factor S; occurs in the sequence {G;_1/G; : 1 < i < n} is well-defined.

One can thus give a somewhat crude classification of finite groups, where one considers two finite groups to
be equivalent if they have the same composition factors, by giving a classification of finite simple groups. But even
the question of classifying finite simple groups is not at all obviously tractable, and answering it was one of the
spectacular mathematical achievements of the second half of the twentieth century.

For Lie algebras, we can attempt something similar. In fact, it turns out that, at least in characteristic zero, we
obtain a far more complete answer about the structure of an arbitrary finite-dimensional Lie algebra than one could
hope to obtain in a Part C course on finite group theory. One aspect of this finer information will reveal a sharp
distinction between gl; and the non-abelian Lie algebras which have no proper ideals, which is one reason for the
following definition:

Definition 3.1.1. A non-zero Lie algebra g is said to be almost simple' if it has no proper ideals. If g is almost simple
and dim(g) > 1 then we say that g is simple. Equivalently, an almost simple Lie algebra is simple if it is non-abelian.
Thus the only almost simple Lie algebra which is not simple is gly.

IThis is not standard terminology, but it is convenient to use here.
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The Jordan-Hélder theorem for Lie algebras shows that the almost simple Lie algebras that occur as composition
factors of a composition series are in fact independent of the choice of composition series. As we will see later, Car-
tan’s criteria will give stronger results (though only in when working over fields of characteristic zero), so this result
is only included for completeness. (Only the statements are examinable.)

Definition 3.1.2. A composition series for a finite dimensional Lie algbera g is a chain
Z=(@=g>g>.>g=0)

of subalgebras such that, for 1 < i < 7, the subalgebra g; is an ideal in g;_; and the quotient g;/g;_1 is almost simple.
The quotients g;/g;_ are called the composition factors of the composition series. (Note that the g; are not necessarily
idealsin g.)

Itis straight-forward to check by induction on dim(g) that any finite-dimensional Lie algebra has a composition
series: given a Lie algebra g, pick a proper ideal a whose dimension is maximal among proper ideals. Then by the
maximality of a the quotient g/a has no non-trivial proper ideals and hence is almost simple. But dim(a) < dim(g),
hence by induction a has a composition series, say (ai)?zl, wherea = a; > a; > .. > a; = 0. But then if we set
g = ggand g; = q; fori > 1, it follows easily that (g;) is a composition series for g.

Definition 3.1.3. If sis an almostsimple Lie algebraand & = (g;)_, is a composition series for a finite-dimensional
Lie algebra g, define the multiplicity of sin & to be

[s, 7] =#lie(l, ..} :s=q.4/a;)

The following Lemma shows that a composition series for a Lie algebra g induces one on any ideal or quotient of
g.

Proposition 3.1.4. Suppose that § has a composition series & = (§ = gy I> 81 > ... > 0, = 0) and let a be an ideal of g.
Then & induces a composition series &, for o, and a composition series %g/ag for the quotient g/a. Moreover, for any almost
simple Lie algebra s we have [s 1 €] = [s: G ] + [5: €]

Proof. Consider the sequence (a;)i_, where a; = a N g;. Note that its terms, while nested, need not be strictly de-
creasing. Since ais anidealin g, theintersection a; = a N g; is anidealin g; and, by the second isomorphism theorem,
its image under the quotient map p;;1: 8; = §;/8;11 is

ai/ a1 = (0 + 8i11)/8i41 = Pisa(a;) (3.11)

Similarly, we may consider the sequence (4(g;))., where 4: g — g/a is the quotient map, then §(g;;1) is an ideal
in g(g;), and by the second isomorphism theorem g(g;) = g;/3; N a = g;/a;. Under this identification, g(g;,1) is
isomorphic to (g;,1 + q;)/a;, and hence

9(8:)/q(0i41) = (Qi/ai)/(9i+1 +a7)/0; = /(841 + ;). (3.12)

Thus since g;/g;,1 is almost simple, and g;;7 € ¢;41 + @; C g;, we must either have g;;1 + a; = g;, in which case
Equations (3.1.1) and (3.1.2) show that g(g;) = q(9;+1) and a;/a;;1 = @;/8;41, or 8j11 + @; = §;41, in which case
a; = a;41 and 7(8:)/q(8i+1) = 8i/i41-

Thus removing repetitions from the sequences (a;) and (q(g;)) yields composition series %, and &, for a and
g/arespectively, and the composition factors of & correspond to a composition factor of precisely one of %, or .

O

The previous proposition gives one natural way to prove the Jordan-Hélder theorem:

Corollary 3.1.5. (Jordan-Hélder theorem for Lie algberas): Let § be any (finite-dimensional) Lie algebra § and let & be a
composition series for §. If  is an almost simple Lie algebra, then the multiplicity with which s occurs as a composition factor

of & isindependent of & and hence equals [s : V.

Proof. We use induction on the minimal length #(g) of a composition series for g. If n(g) = 1 then V is irreducible
and (g > 0) is its unique composition series. If n = 11(g) > 1 then take a composition series .Z = (m;)/., of g with
length 7 and set ) = m;. Since (mi+1)?:_01 is a composition series for I), we have n(h)) < n—1. Nowif & = (gi);jzo is
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any composition series for g, by Proposition I1.10, it induces composition series %b and gg/b of b and g/} respectively.
Thus if 5 is almost simple, by the final sentence of Proposition 3.1.4 we have

[s:ET=1[s: ] +[S: Cypl =[s: ]+ [s: g/b]

where the second equality follows by induction since #(g/l)) = 1 and n(h) < n—1. Thus[s : ] = [s : g]is
independent of . O

As noted above, it will turn out that in characteristic zero, the simple Lie algebras will all occur at “the top”
of the composition series of a finite-dimensional Lie algebra, as a direct sum. The almost simple Lie algebra gl;,
however, can be glued to itself in non-trivial ways. Thus our study of the structure of Lie algebras therefore begins
by examining Lie algebras which have only one isomorphism class of composition factor, namely gl;. Before we do
that, however, it seems useful to introduce the formalism of exact sequences:

3.2 Exact sequences of Lie algebras

Definition 3.2.1. We say that the sequence of Lie algebras and Lie algebra homomorphisms
i q
0 —>8—>0
is exact at g if im(i) = ker(g). A sequence of maps

i q
0 6 ——=g 1)) 0

is called a short exact sequence if it is exact at each of g1, g and gy, so that i is injective, § is surjective and im(i) = ker(g).
In this case, we say that g is an extension of g, by g;. The existence of a composition series for a finite-dimensional Lie
algebra shows that any such Lie algebra is constructed through successive extensions by almost simple Lie algebras.

Two kinds of extensions of Lie algebras will arise naturally in this course:

3.2.1 Split extensions

Definition 3.2.2. An extension of Lie algebras
i q
0 91 g 9 0

is said to be split if there is a homomorphism of Lie algebras s: g, — gsuch thatgos = idg,.

Notice that in this case the image s(g,) of the splitting map s is a subalgebra of g which is isomorphic to g, and
is complementary to i(g;), in the sense that g = i(g;) ® s(g,) as vector spaces. Indeed the homomorphism s is
determined by s(g,) its image, because it is the inverse of gj(q), the restriction of g to that image. Moreover, since
i(g1) is an ideal of g, the adjoint action of g preserves i(g7), and so it restricts to give an action of 5(g,) on i(g ). This
completely describes the Lie bracket on g: For any X, € g, there are unique X1,; € ¢1 and Xp,¥, € @p such that

x = i(x1) +5(xp), ¥ = i(y1) + 5(y2). Then
[x, y] = [i(x1) + 5(x2), i(y1) + 5(y2)]
= i([x1, %o]) + ad(s(x2))(i(y1)) — ad(s(y2))(i(x1)) + s([x2, y2 -
This motivates the following definition:

Definition 3.2.3. Suppose thatg, [) are Lie algebras, and we have ahomomorphism ¢: g — Der,(h), the Lie algebra
of derivations® on ). Then it is straight-forward to check that we can form a new Lie algebra [) > g, the semi-direct
product® of g and ) by ¢» which as a vector space is just § ® b), and where the Lie bracket is given by:

[(x1, Y1), (2, y2)] = ([x1, 2] + P (Y1) (x2) = ¢(W2)(x1), Y1, y2D),

where X1, x5 € ), 1,15 € g. The Lie algebra ), viewed as the subspace {(x, 0) : x € b} of h > g, is clearly an ideal of
b > g. Since it does not intersect b, the quotient map q: h > g — (b >t g)/h induces an isomorphism g — (b > g)/b,
hence b > g is a split extension of g by b. It is not difficult to check that any split extension is of this form.

ZRecall that the derivations of a Lie algebra are the linear maps a: b —  such that a([x, y]) = [a(x), y] + [x, a(y)].
3This is the Lie algebra analogue of the semidirect product of groups, where you build a group H > G via a map from G to the automorphisms
(rather than derivations) of H.
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Remark 3.2.4. In general, there may be many ways to split an exact sequence of Lie algebras (see Problem Sheet1).

Example 3.2.5. Let %, be the 2-dimensional Lie algebra with basis {x, ¥} and Lie bracket given by [x, y] = y. Then
k.yisanidealin s,, and $,/k.y is 1-dimensional, hence we have a short exact sequence:

0 gI] i S i 911 0

where i(A) = A.y and g(ax + by) = a,foralla,b, A € k. Now the map s(1) = A.x is a Lie algebra homomorphism,
hence the extension is split. Note that Der,(a) = g, for an Abelian Lie algebra a, and so Der,(al;) = gly, = gk,
and the map from gl; to Der(gl;) describing s, as a semi-direct product corresponds to the identity map under this
identification.

Remark 3.2.6. A short exact sequence of the form
i q
0 0 —>g gly 0

is automatically split. Indeed if we pick any x € g with g(x) = 1 € gl;(k) then setting s(A) = A.x itis immediate
that g os = id. But since a Lie bracket is alternating, it always vanishes on any line, and hence s is a Lie algebra
homomorphism. It follows that g is a semidirect product g; > gl; (k).

Remark 3.2.7. Thereis a close analogy with the notion of a short exact sequence of groups which you have seen in
a previous course: here one has a sequence

1 G ——>G—1~3, 1

where we write 1 for the trivial group (rather than O for the trivial Lie algebra). Exactness at G means thatim(i) =
ker(g), and similarly at G; and Gy, so that 7 is injective and 4 is surjective. In Part A Groups you show that this
sequence is split, that is, there exists a splittingmap s: G, — G suchthatgos = idg,,ifand only if G = G1 > G,.

3.2.2 Central extensions

Another type of extension which plays an important role in our study of Lie algebras is a central extension. In this
case, the Lie algebra g7 in the sequence of Definition 3.2.1 is assumed to be central in g, thatis g; C 3(g), and hence
in particular g; is Abelian. Picking a linear splitting s: g, — g, we can write any X, € @ uniquely in the form
x =i(x1) +5(x),y = i(x2) + s(y), respectively. Thus, as i(g; ) is central, the Lie bracket on g is given by

[x, y] = [i(x1) +5(x), i(x2) + s(y2)] = [s(x2), s(y2)] = ia(xz, ¥2)) + s([x2, y21)
where a(x, y) = ([x,y]);, thatis, i(a(x,, ¥)) is the component of [s(x;), s(y2)] in i(gy).
Definition 3.2.8. Let gbe a finite-dimensional Lie algebra and let 3 be a vector space. A 2-cocycle on g taking values
in the vector space 3isamap a: g X g — 3 satisfying the conditions:
i) a(x,x) =0,Yx € g (ie aisalternating)
i) alx, [y, z]) +a(y, [z, x]) +az, [x,y]) =0, Vxyzeaq.

Given such a cocycle, one can define a Lie algebra structure on the vector space 3 @ g by setting

[(z1,x1), (22, %2)] = (a(x1, X2), [x1, X,)).-

The resulting Lie algebra is a central extension of g. Picking a vector-space basis of 3, say {ey, ... , €}, and writing & in
terms of its components with respect to this basis, thatis, a(x,y) = }._; @;(x, y).¢; one can immediately reduce the

]
study of general 2-cocycles to the study of k-valued 2-cocycles.

Example 3.2.9. Itis straight-forward to understand central extensions of a Lie algebra g by gl; in low dimensions.
If g is 1-dimensional, then the fact that « is alternating forces it to vanish, and hence the only central extension of

gly by gl is the abelian Lie algebra g11®2.
If dim(g) = 2, then if g is abelian then condition (ii) is automatically satisfied, and there is a unique non-zero
alternating bilinear form up to isomorphism: if g has basis {x, y}, then a(x,y) = 1 = —a(y, x), defines a central

extension of g. This is the smallest non-abelian nilpotent Lie algebra, known as the Heisenberg Lie algebra. It can be
realised as the strictly upper triangular matrices 13 C gl (k).

Remark 3.2.10. Split and central extensions are in a loose sense complementary to each other: An extension of g,
by g; which is both central and split s just the direct sum g; @ g,, where g; = gIleak and k = dimy (g;).
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Chapter 4

Gluing gl;: Solvable and nilpotent Lie
algebras

Conventions: From this point onwards in these notes, we will assume that all Lie algebras and all representations are finite-
dimensional over the field k, unless the contrary is explicitly stated, and from $§4.3 onwards, k will be algebraically closed of
characteristic zero.

We now begin to study particular classes of Lie algebras. The first class we study, solvable Lie algebras, in terms
of the discussion on classification of Lie algebras in the previous section, can be given as the class of Lie algebras
which can be built using only gl;, the simplest Lie algebra! which possesses only the structure of the base field k and
the trivial Lie bracket.

4.1 Solvable Lie algebras

Definition 4.1.1. ALie algebra g is solvable if its only composition factor is gl; (k). This is equivalent to the condition
that g has a nested sequence of subalgebras

§4=00201 2 .. 295 = {0},

where gy, 1 is anidealin g and g;/gy, 1 is abelian for each k (0 < k < d —1). Indeed if such a sequence of subalgebras
exists, any refinement of it to a composition series will have gl; (k) as its only composition factor, and conversely, a
composition series with gl; (k) as its only composition factor is an example of such a sequence of subalgebras.

Ifg=99D 8 D..D4a, = {0}isacomposition series for g with g;/g;,; = gl; foreachk € {0,1,...,n—1},s0
that dim(g) = 1, then we have g,,_; = gl;, and, foreach k € {0,1, ..., — 1}, we have a short exact sequence

Ik Tk
0 Ops1 —— O aly 0

where (1 is the inclusion map and g the quotient map. Thus g;_1 is an extension of gl; by g;. By Remark 3.2.7, this
short exact sequence must split, and so gy is a semidirect product of g;_; by gl (k), and so solvable Lie algebras are
precisely the Lie algebras one obtains from the zero Lie algebra by taking iterated semidirect products with gly (k).

Example 4.1.2. Example 3.2.5 shows that $,, the 2-dimensional non-abelian Lie algebra, is solvable.

Definition 4.1.3. We can rephrase the condition that a Lie algebra g is solvable in terms of a decreasing sequence
of ideals in g: The derived subalgebra® D(g) of g is defined to be [g, g] (an ideal in g since g is). Inductively we define
D*(g) = D(D*'(g)) = [D¥"(q), D*"!(g)] for each k > 1. The sequence of ideals (D¥(a))s( is called the derived
series of §. Note that, since g is an ideal in g, it follows by induction on k that D¥(g) = [D¥"1(g), D*"1(g)] is an ideal
ing.

Lemma 4.1.4. Let § be a Lie algebra. Then D(Q) is the smallest ideal in § such that §/D(g)is abelian. In particular, g is
solvable precisely when the derived series (D*(8))s1 satisfies D¥(g) = O for sufficiently large k.

Hence starting with nothing...
20ddly, it is not known as the derived ideal, even though itis indeed an ideal.
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Proof. For the first claim, suppose that [ is an ideal for which g/I is abelian. Then, for all X,y € g, we must have
[x,y] € I, and hence D(g) C I. Since this also shows g/D(g) is abelian, the claim follows.

Next note that we have a short exact sequence

0 D(g) g 9/Dg 0

thatis, g is an extension of the abelian Lie algebra g/D(g) by D(g). It follows that if D¥(g) = {0} for some k, then g has
a filtration by ideals for which the subquotients are abelian, so it is certainly solvable. Conversely, if g is solvable, so
that we have a nested sequence of subalgebras g = gg D g1 D ... D g, = {0}, where g;,; is an ideal in g; and g;/a;41
is abelian. But then D(g;) = [g;, 8;] C 8i41, and so since § = gy, by induction it follows that D*(g) C g, and hence
for k > n-we have D¥(g) = 0.

O

Remark 4.1.5. Because the terms of the derived series are ideals in g, it follows that if g is solvable, then there is a
filtration of g whose terms are ideals in g not just subalgebras each of which is an ideal in the previous term of the
filtration. In particular, if g is solvable, it follows g has an non-trivial abelian ideal, since the last non-zero term of the
derived series must be such an ideal. This also shows that solvable Lie algebras can be viewed as those Lie algebras
which can be obtained from the trivial Lie algebra by successive extensions by abelian Lie algebras.

Remark 4.1.6. If g is an arbitrary finite dimensional Lie algebra, then the derived series (D*(g))is is a decreasing
sequence of ideals in g, hence it must stabilize, i.e. there is a unique integer N such that DN(g) = D"(g) for all
m > N, while DN~1(g) 2 DN(g). We will denote this final term of the derived series by D®(g). It is a perfect Lie
algebra, thatis, D*(g) = D(D*(g)).

Recall the notion of a flag.# = (V = Fy > ... F; = {0}) from Definition 2.2.3

Lemma 4.1.7. Let V be a finite dimensional vector space andlet ¥ = (V = Fy D F1 D ... D F; = {0}) beaflaginV,
andset F,, = {0} ifn > d. Le, foranyr € Z s,

(77 :{XEQIV:x(Fi)gFiH‘IViIOSiSd}-

() Ifk,1> 0, then [65-, 0] C b5F.

(i) If F is a complete flag, and b & = bgw, then D(b) C b<197 and moreover b & is solvable.

Proof. First note that b C bS- if r > s, and thatif x € b,y € b, then clearly x o y and y o x lie in B¥¥. 1¢
follows that the b"- form a descending sequence of associative subalgebras of Endy (V'), where the b’- for ¥ > 0 are
two-sided ideals in b = b%-, since b-.b%- C b'X*. But this immediately implies (i), thatis, [0/, b%-] C B
If # is a complete flag, and x, )y € b, then for any 7, (1 < i < d), x and y induce linear maps on F;/F; 1, and,
since .7 is complete, dim(F;/F;;1) = 1, so that gl r, , is abelian, and thus the map induced by [x, y] on F;/F;,; is
zero. But this exactly says that [x, y] € bly, and hence D(b#) C b}g. But then D¥(b ) C Dk_l(bly), and using (i)
and induction D*1 (b}jj) c b’zjéfl, which is {0} if 261 > d = dim(V’), and hence b > is solvable.
O

We will see shortly that, in characteristic zero, any solvable linear Lie algebra g C gly,, where V is finite di-
mensional, is a subalgebra of b for some complete flag .# . We next note some basic properties of solvable Lie
algebras. We establish them using the characterization of solvability in terms of the derived series, but it is also
straight-forward to show them using composition series.®

Lemma 4.1.8. Let g be a Lie algebra, ¢: § — b a homomorphism of Lie algebras.

(i) We have ¢(Dkg) = Dk(qb(g)). In particular ¢(g) is solvable if g is, thus any quotient of a solvable Lie algebra is
solvable.

(i1) If g is solvable then so are all subalgebras of g.

3If one uses composition series to prove this Lemma, note that if & = (gk)f=0 is a composition series with all composition factors g;/gr41
isomorphic to gly. Nowif a C gis a subalgebra, then a N g; 2 a N gi,1 and for dimension reasons, this containment is either an equality, or the
quotient is isomorphic to gly, so that ais solvable. Note that if g is an arbitrary Lie algebra and ) is a subalgebra, the composition factors of ) do
not have to be composition factors of g.
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(iii) Ifim() and ker() are solvable then so is §. Thus if I is an ideal and I and g/ are solvable, so is g.

Proof. It is immediate from the definitions that ¢(D(g)) = D(¢(g)), and hence by induction we have qﬁ(Dk(g)) =
Dk(qb(g)), from which (i) follows immediately. If ) C g is a subalgebra, then clearly D(h)) C D(g), and again by
induction we see that D¥(h) C D¥(g), which certainly implies that if g is solvable, then b is solvable.

Finally, for (iii), the second sentence follows from the first applied to the quotient map q: g — g/I. To establish
the first sentence, note that if im(¢) is solvable, then for some N we have DNim(¢p) = {0}, so that by part (i) we have
DN(g) ker(¢), hence applying (ii) we see that DN(g) is solvable since ker(¢) is. But since the derived series of
DN(g) is a tail of that of g, it follows g is solvable. O

4.2 Nilpotent Lie algebras

In this section we continue our study of Lie algebras which are built from gl;, but now by using central extensions
rather than arbitrary extensions.

Definition 4.2.1. A Lie algebra gis said to be nilpotent if it can be obtained from 0, the trivial Lie algebra, by iterated
central extensions. If g can be obtained by precisely k iterated extentions, we say g is k-step nilpotent. Thus, for
example, a Lie algebra is 1-step nilpotent if and only if it is abelian.

To make this more concrete, suppose that g is a nilpotent Lie algebra. Then, for some k > 0 there are Abelian Lie
algebras (c,«)i‘:0 and, for each i > 1 a short exact sequence

pi qi
0 G —g 3i1 0

where gy = ¢y and ¢; C 3(g;), thatis, g; is a central extension of g;_; by ¢;. and g = gy. It follows thatg;: g = g —
0k-1, and if we set Q; = gj1 © Jj41 © - © Gk, then Q;: g — g; exhibits g; as a quotient of g. Set q; = ker(Q);), so that

~

if we set qp = g, then (qi)ifzo gives a descending sequence of ideals in g, and q;/q;_; = ¢; is central in g/g;_1. The
sequence of central extensions constructing g can thus be reconstructed from the sequence of ideals (qi)i‘(:o-

Definition 4.2.2. For g a Lie algebra, let C%(g) = g, and C/(g) = [, C""'(g)] for i > 1. This sequence of ideals of g
is called the lower central series of g.

Remark 4.2.3. Notice that Cl(g) = [g, g] is the derived subalgebra* of g and, as we have seen, this is also denoted®
D(g) and sometimes g’.

Proposition 4.2.4. Suppose that g is nilpotent and (q,«)i":0 the sequence of ideals associated to a realization of § as an
iterated sequence of central extensions. Then

(i) Foreachi > 0we have C'(g) C o; and hence Ck(g) = 0.

(i) Conversely, if § is such that, for some N > 0 we have CN(q) = 0, then g is at most N -step nilpotent.

Proof. Suppose g is any Lie algebra, and b C a are ideals in g. If a/b is central in g/b, then for any x € gandy € a
we must have [x, ] € band hence [g, a] C b. Since a/[g, a] is certainly central in g/[g, a] it follows that [g, a] is the
smallest ideal of g contained in a for which a becomes central in the quotient algebra.

Applying this observation to C(g) inductively yields (i). For (ii), the converse, observe that the previous para-
graph also shows that

0 —— CK(g)/CH*1(g) —— g/C**1(g) —— ¢/C*(g) ——0

shows that g/C*1(g) is a central extension of g/Ci(g). It follows that if CN(g) = 0 for some N then g is at most
N-step nilpotent. O

Lemma 4.2.5. Let g be a Lie algebra. Then

(1) If g is nilpotent, any subalgebra or quotient of § is nilpotent.

(ii) If g is nilpotent, then the centre 3(g) is non-zero if § is. Moreover, 9/3(g) is nilpotent if and only if g is.

40ddly, not as the derived ideal even though it is an ideal.
SPpartly just to cause confusion, but also because it comes up a lot, playing slightly different roles, which leads to the different notation. We’ll
see it again shortly in a slightly different guise.
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Proof. For (i) we use induction on dim(g). If g is Abelian, the result is trivial, so we may suppose that g is a central
extension

0 ¢ g q 0

where ¢ is central. If f) is a subalgebra, then we obtain an induced short exact sequence

0 cNh b B+ c)jce——0

But since dim(q) < dim(g), by induction (f) + ¢)/c) is nilpotent as it is a subalgebra of g/c = g. Hence } is nilpotent
also (as itis either isomorphic to () + ¢)/c or it is a central extension of it).

Part (ii) is trivial since a non-trivial central extension always has a non-trivial centre. (Alternatively, as
Ck(q)/C**1(g) is central in g/C¥*1(q), clearly the last non-zero term of the lower central series is central.) O

Remark 4.2.6. Notice that if a is an arbitrary ideal in g, and a and g/a are nilpotent it does not follow that g is
nilpotent. Indeed recall from Example 3.2.5 the non-abelian 2-dimensional Lie algebra s,, with basis {x, y} where
[x,y] = y. Then k.y is a 1-dimensional ideal in $, but itis not central. Indeed 3(5,) = 0 so s, is not nilpotent, even
though the ideal k.iy and the quotient s,/k.y are (since they are both abelian). Note that this shows that $, cannot
be written as a central extension of gl; by itself.

Remark 4.2.7. The characterisation of the property of nilpotence in terms of the lower central series is similar to
the characterisation of solvable Lie algebras in terms of the derived series. This is one reason it is commonly used.
There is, however, another nature nested sequence of ideals which can be used to characterize nilpotence: If g is
any Lie algebra, set Z(g) = g, and, assuming Z(g) is defined, let gr: g — a/Z¥(g) be the quotient map, and set
ZH(g) = q,:l (3(ax))- This process yields an increasing sequence of ideals of g known as the upper central series. If it
exhausts g, that s, if for some #7 > 0 we have Zk(g) = gfor all k large enough, the g is nilpotent. If g is not nilpotent,
the upper central series will stabilize at a maximal nilpotent ideal of g.

In terms of the adjoint representation, the centre of a Lie algebra g can be viewed as ker(ad), the kernel of the
adjoint action, but it can also be viewed as the invariants in g, thatis

g8 ={zeg:ad(x)(z) =0,Vxe g}

Using either the upper or lower central series, it is easy to see that the only composition factor of (g, ad) is the trivial
representation.

We now wish to show that the notion of a flag in a vector space gives us a large supply of nilpotent Lie algebras.
In the next Lemma we use the notation of Lemma 4.1.7.

Lemma 4.2.8. Suppose that .7 is a (not necessarily complete) flag in a finite-dimensional vector space V. Then the Lie
algebrang = bly C gly is nilpotent.

Proof. By (i) of Lemma 4.1.7, [N, 5] € b2-, and by induction [, C¥(ns)] € bgl, so that Ck(g) C bg, and
hence CK(n) = 0if b];— = 0, which is true whenever k > d = dim(V). O

Example 4.2.9. When .7 is a complete flag, so that dim(V') = d, if we pick a basis {e1, €5, ..., €4} of V such that
Fr = ({exs1, 62, -, €4}, then the matrix A representing an element X € 1y with respect to this basis is strictly
upper triangular, thatis, 4; = 0 for all i > j. Butthenifny; C gl; denotes the space of strictly upper-triangular

matrices, itis easy to see thatdim(1;) = (g) When d = 2 we just get the 1-dimensional Lie algebra gly, thus the first

nontrivial case is when # = 3 and in this case 13 is the 3-dimensional 2-step nilpotent Lie algebra we constructed
previously as a central extension.

On the other hand, if b; C gl; denotes the upper-triangular matrices, i.e. b; corresponds to the subalgebra b &
of gly/, and we set t; to be the set of diagonal matrices in b,;, then it is straight-forward to show by considering the
subalgebra t,, of diagonal matrices in b,, that [t;, ny] = 1y, so that, asb; = t; ® 1y, it follows that b, is not nilpotent.

Remark 4.2.10. Note thatin Example 4.1.7, unlike in Lemma 4.2.8, it is essential that .# is a complete flag. If 7
is not a complete flag the corresponding subalgebra b & will not be solvable (since, for example, if dim(F;/F;1) > 1,

then there is a surjective homomorphism bg — glpr,,,, which is not solvable.)

Remark 4.2.11. Note that the subalgebrat; C gl; of diagonal matrices is abelian, and hence nilpotent, but the only
nilpotent endomorphism of k? that lies in t; is 0. Thus a nilpotent linear Lie algebra need not consist of nilpotent
endomorphisms. It turns out that, in some sense, the example of t; is the only way in which a nilpotent Lie algebra
1 C gl can fail to consist of nilpotent endomorphisms. We will make this precise in 4.3.2.
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4.2.1 Nilpotent representations

Definition 4.2.12. Let g be a Lie algebra and (V, p) a representation of g. We say that (V, p) is nilpotent if, for all
X € g, the endomorphism p(x) € gly is a nilpotent linear map (thatis, for somen > 1, p(x)" = 0).

Lemma 4.2.13. Let A be an associative algebra, and suppose a,b € A are nilpotent i.e. for somen > 0, we have a”* =
b" = 0. Then if a and b commute, a + b is also nilpotent.

Proof. This follows from the binomial theorem: Indeed we have

Ry (’Z)akbm—k.

k=0

But now if m > 2n, then we must have either k > 7 or m — k > n, hence in either case, each of the terms on the
left-hand side vanishes, hence so does the right-hand side, and hence a + b is nilpotent as required. O

Lemma 4.2.14. Suppose § is a Lie algebra and (V, p) and (W, 0) are representation of g.
i) Ifx € gissuch that both p(x) and o(x) are nilpotent, then the action of x on V. ® W is also nilpotent. Moreover, the

action of x on V™ is also nilpotent. Thus if V and W are nilpotent, so are V*, V ® W and Hom(V, W) = V*® W.

ii) IfV isnilpotent, then any subrepresentation and any quotient representation of V is also nilpotent.

Proof. By definition, the action of x on V ® W is given by p(x) ® 1}y + 1y ® o(x). Since the two terms in this sum
commute, the claim follows from Lemma 4.2.13 (taking A = End(V ® W).)

To see that x acts nilpotently on V*, note thatif f € V*, then
X)) = ()" f(px)") (@) = £f(0) =0, YoeV, feV

For part if) if U is a subrepresentation of V then, as in Lemma 2.2.2, p(g) € by = {x € gly : x(U) € U}. But
by; is an associative subalgebra of End(V') and the maps i* and p, from b; to End(U) and End(V//U) are also maps
of associative algebras, hence if p(x) € by; is nilpotent, its images in End(U) and End(V/U) are also. O

The next proposition is the key result in this section. For the proof we will need the notion of the normalizer N(a)
of a subalgebra a of a Lie algebra g given in Definition 1.2.6. We have

Ny(a) ={xeg:[x,al€a Vaea},
so that N (D) is the largest subalgebra of g in which a is an ideal.

Proposition 4.2.15. Let g be a Lie algebra, and let (V, p) be a nilpotent representation of .

i) The invariant subspace

Vi={veV:px)(v)=0,Vxeg)
is non-zero.

ii) Thereis a completeflag F in 'V such that § C N . In particular, the image p(g) is a nilpotent Lie algebra.

Proof. To provei), we useinduction ond = dim(g), the cased = 1being clear. Now if p is not faithful, i.e. ker(p) # 0,
then dim(p(g)) < dim(g), and we are done by induction applied to the image p(g), hence we may assume p gives an
embedding of g into gly, as a subalgebra, and we may thus identify g with its image in the rest of this proof.

Nowlet . = {b C g : Dis a proper subalgebra of g} denote the set of proper subalgebras of g, and pick a € .%.
Now by Lemma 4.2.14,a & g C gl = V* ® V are all nilpotent representations of a, since the restriction of (V, p) to
ais. But then, by the same Lemma, g/a is also a nilpotent representation, and since dim(a) < dim(g), it follows by
induction that the a-invariants (g/a)" form a non-zero subrepresentation. Let x € g be such that0 # x + a € (g/a)".
Then ad(a)(x) € aforalla € q, or equivalently, since ad(a)(x) = —ad(x)(a), for all a € a, we have ad(x)(a) € q, that
is, x € Ny(a). Thus the normalizer of ais a subalgebra of g which is strictly larger than a.
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Thus if we take a € .5 of maximal dimension, we must have Ng(a) = g, thatis ais an ideal in g. But then if
Z € g\q, itis easy to see that k.z @ a is a subalgebra® of g, hence again by maximality, we must have g = k.z @ a. By
induction, we know that V® = {v € V : a(v) = 0,V a € a} is a nonzero subspace of V. We claim that z preserves
V. Indeed
a(z(v)) = [a,z](v) + z(a(v)) =0, VYaeauveV",
since [4, z] € a. But the restriction of z to VV* is nilpotent, so the subspace U = {v € V' : z(v) = 0} is nonzero. Since
U = V9 we are done.

Forii),lee® = (V = F,, > F,,_1 > .. > F; > Fy = {0}) be a composition series for V. It suffices to show
that each of the composition factors are trivial. Butif1 < k < m, then F} is a subrepresentation of V and hence itis
nilpotent. Similarly Qy = Fi/Fi,1, as a quotient of Fy must be nilpotent. But then by part (1), its invariants Q} are a
non-zero subrepresentation of Q, and since Oy, is simple it follows that Qy is the trivial representation as required.

O

Corollary 4.2.16. (Engel’s theorem.) A Lie algebra g is nilpotent if and only if ad(x) is nilpotent for every x € g, i.e the
adjoint representation is nilpotent.

Proof. If g is nilpotent, then since by definition ad(x)(Ci(g)) C C™*1(qg), we see that ad(x)k = Oforallx € gifgis
k-step nilpotent. Now suppose that ad(x) is nilpotent for all x € g. Then (g, ad) is a nilpotent representation, and
hence by part ii) of Proposition 4.2.15, we see that ad(g) is nilpotent. But since ad(g) = ¢/3(g) it follows that g is
nilpotent as required. O

4.3 Representations of solvable Lie algebras

In this section we will assume that our field k is algebraically closed of characteristic zero.

4.3.1 Lie’s theorem

Our first goal is the following theorem:

Theorem 4.3.1. (Lie’s theorem) Let § be a solvable Lie algebra and V is a §-representation. Then there is a homomorphism
A g — gly(k) and a nonzero vector v € V such that x(v) = A(x).v forall x € §. Equivalently, any finite-dimensional
irreducible representation of a solvable Lie algebra is one-dimensional.

We first explain the equivalence asserted in the last sentence of the statement. Note that the existence of a non-
zero ¥ € V such thatx(v) = A(x).vfor all x € gis equivalent to the assertion that the line k.v is a subrepresentation
of V. Thus the statement of the theorem shows that any representation contains a one-dimensional subrepresen-
tation, and hence any irreducible representation must itself be one-dimensional. Since any representation contains
an irreducible representation, the equivalence follows.

The crucial observation that is needed to prove Lie’s theorem is given in the following Lemma:

Lemma 4.3.2. (Lie’s Lemma) Let § be a Lie algebra, let] C g beanideal, andlet V be a finite dimensional §-representation.
Suppose that A: I — gly(k) is a homomorphism of Lie algebras for which the subspace V,; = {v € V : h(v) =
A(h).v, ¥ h € I} is nonzero. Then A vanishes on [§,1] C I, and V) | is a -subrepresentation of V.

Proof. Fixx € gandv € V), ;\{0}. Foreachm € N, let W, = ({0, x(0), ..., x"(0)})x. The W,, form an increasing
sequence of subspaces of V with dim(W,,,.1/W,,) < 1, from which it is easy to see that there is some d with W_; :=
{0} < Wy < Wy < ... < W;_1 = Wy, where x(W,;) C W,,.

Claim:

h(x™(v)) € A(W).X"(0)+ W1, Yhel,m>0
Proof of claim: This obvious for m = 0 and if m > 1, since [k, x] € I, by induction we have
hx™ () = xhx™ 1 (v) + (hx — xh)x"™ 1(v)
€ x (A(D) X" (0) + W) + A(Th, X])x" 1 (0) + W, s (4.3.1)
C A(h)x™(v) + W,,_1,

©One way to see this is to note that k.z @ a is a line—i.e. one-dimensional subspace— of g/a and any such subspace is a subalgebra, because, by
the alternating property, the Lie bracket vanishes on lines. Note in particular that the direct sum is one of vector spaces, not Lie algebras.

22



since X(W,,,_p) C W,,_1and [k, x] € I.

It follows that W, is stable under the action of I and x, and thatif # € I, then the matrix of the action of

on W, with respect to the basis {0, x(v), ..., x*~1(v)} is upper-triangular with each diagonal entry equal to A(%). In
particular, tr(fyy,) = A(h).dim(W,) = A(h).d. But then

0 = t([l, x]) = A((h, x]).d,

and since d > 0 and char(k) = 0, it follows that A([}, x]) = 0. But now considering (4.3.1) with m = 1 we see that
A([h, x]) = 0 implies that hx(v) = A(h).x(v), so that x(v) € V, ;if v € V), | as required.

O

Completion of the proof of Lie’s Theorem:

Use induction on dim(g). Since gis solvable, D(g) is a proper ideal in g, and by induction the theorem holds for D(g).
But thenlet A: D(g) — k be a homomorphism of Lie algebras such that

W ={veV:h(w)=Ah).v, Yh € D(g)} # {0}.

But then by Lemma 4.3.2, W is a g-subrepresentation, and if we let p: g — glyy, then p(g) € glyy has A(D(g)).Iy =
p(D(g)) = D(p(g)). But D(glyy) = sI(W), and since char(k) = 0, k.Iyy N sI(W) = {0}, so that as D(g7) C sl(W) N
k.Iyw = {0}. 1t follows that the action of g on W factors through g/D(g), which is abelian, and the result is then clear,
since commuting linear maps on a non-zero vector space always have a common eigenvector.

Remark 4.3.3. The proof of Lemma 4.3.2 relies on a trick which permeates the course, namely that one can often
compute a trace in two different ways to obtain important information. One way will be by observing that one is
computing the trace of a commutator, which is therefore zero. The other will, in one fashion or another, follow from
consideration of the generalised eigenspaces of the linear map in question.

Corollary 4.3.4. Let g be a solvable Lie algebra and let (V, p) be a g-representation. Then there is a complete flag F =
(V = Fy D F; D .. D F; = {0}) where each F; is a g-subrepresentation, so that p(g) C b . In particular, if g is solvable,
then it has a composition series each of whose terms is an ideal in all of g.

Proof. Take any composition series.7 for V. Since Lie’s theorem shows that the irreducible representations of g are
all one-dimensional, the resulting chain of subrepresentations will form a complete flag and p(g) € b . The final
sentence follows by applying this to the adjoint representation (g, ad), since I C g is an ideal if and only if it is a
subrepresentation of the adjoint representation. O

Definition 4.3.5. Recall from Example 2.1.5 that the isomorphism classes of one-dimensional representations of
a Lie algebra g are given by the elements of (3/D(g))* = D(g)%: a homomorphism A: g — glj is just a linear map
A: g — kwhichvanishes on D(g). Recall that we write k, for the representation (k, A). We will refer to an element of
D(g)° (equivalently, an isomorphism class of 1-dimensional g-representations) as a weight of g. In the case where gis
solvable, Lie’s theorem shows that the weights are exactly the isomorphism classes of irreducible g-representations.

Remark 4.3.6. Notethat, sinceitis a k-vector space, D(g) is an abelian group. This abelian group structure can also
be seen from the point of view of one-dimensional representations: since the tensor product of 1-dimensional vector
spaces is 1-dimensional, the tensor product restricts to an operation on 1-dimensional vector spaces. This gives
the set of isomorphism classes of one-dimensional representations the structure of an abelian group: the operation
is commutative because the map o: L1 ® L, — L, ® L; given by 0(v1 ® v5) = v, ® v7 is an isomorphism of g-
representations (for any two g-representations Lq,L,) and if L is any one-dimensional representation then L® L* =
kg via the evaluation (or contraction) map induced by the natural bilinear pairing L X L* — k.

Since a direct calculation shows that k) ® k,, = kj,,, this abelian group structure becomes the vector addition
under the identification of the set of isomorphism classes of 1-dimensional representations with (g/D(g))".

4.3.2 Representations of nilpotent Lie algebras

In this section we assume that K is an algebraically closed field of characteristic zero.

23



Definition 4.3.7. Let g be a Lie algebra and let .5 be a set of irreducible representation of g. Let

Rep ..(g) = {V € Rep(9): [T : V] > Oifand onlyif S € ./, T = S}
Rep (g, V) ={W < V: W € Rep .(9)}.

If & = {S} then we will write Rep¢(g), Repg(g, V) rather than Rep{s}(g), Rep{s}(g, V) respectively.

Proposition 4.3.8. Let g be a Lie algebra and (V, p) a representation of 8. If & is a set of irreducible §-representation
then Rep (8, V) has a unique element V o which is maximal with respect to containment, that is V.- € Rep (9, V) and
ifU € Rep (9, V) thenU < V.

Proof. First note thatif it exists, such a maximal element is automatically unique, since if Wy, W, are both maximal
with respect to containment we must have Wy < W, < W; and hence W; = W;.

Next note thatif V1, V, € Z5 then V] + V, € 7. Indeed by the second isomorphism theorem, (V1 + V,)/V; =
V,/(V1 N V5), so that any composition factor of V; + V, must be a composition factor of V7 or of V,/(V{ N V),
and hence is a composition factor of V7 or V5. Now pick W € 75 with dim(W) > dim(U) for all U € Z{g) (such
a W exists if V is finite-dimensional, as we always assume). We claim that W is maximal for containment. Indeed
if U € 7 then we have just shown that W + U € 7§, hence dim(W) < dim(W + U) < dim(W) by our choice
of W, and hence U < W and W is maximal for containment as required. Thus W = V is the unique maximal
subrepresentation in 7. O

Definition 4.3.9. Recall that the isomorphism classes of 1-dimensional representations of g can be identified with
D(g)° C g, and given A € D(g)?, we write k, for the 1-dimensional representation (k, A). Given a g-representation
(V, p), we will write V and Rep (g, V) instead of V| and Rep, | (8, V). When A € D(g)° we will refer to V, as the

A-weight space of V.7 If V is a finite-dimensional representation of a Lie algebra g, let
Wy, = {A € D(g)° : Ais a composition factor of V}

Thus Wy, is the finite set of the one-dimensional representations of V which occur as composition factors of V. If g
is solvable and char(k) = 0 then by Lie’s Theorem Wy, contains all the composition factors of V.

Ifg: gy — gpand (V, p)is arepresentation of gy, then (V, ¢*(p)) is a representation of g1, where ¢*(p) = po .
Since ¢(D(a1)) € D(ay), the transpose ¢ 7 : g3 — g restricts to giveamap ¢ : D(g,)° — D(g;)°, and Vo) =
@7 (Wy). Nowifx € gandi,: gl; — gisthe homomorphismi,(f) = t.x (Yt € k = gl;),and A € D(g)° theni (A) =
A(x). The weights of the gl; -representation p o i, are just the eigenvalues of p(x), as in Example 2.1.4, it follows that
the eigenvalues of p(x) are {A(x) : A € Wy}, and the u-generalised eigenspace of p(x) is @/\va:/\(x):y V.

Lemma 4.3.10. Suppose that §is a Lie algebra and A, |1 € D(g)° are weights of . If V and W are g-representations then

) Vi®W, C (VW)

ii) Ifp: V. — W isa homomorphism of g-representation, then p(V ;) € W.

Proof. For part (i), we may assume that V' = V, and W = W/, hence there are composition series (Fi)j=o and
(G1)j=g, where Fi/F 1 = k, for each k, and G)/Gyy = kg, foralll € {0,1,...,r}and k € {0,1..,s}. Pick bases
e 0 <i<r-1fand{f; : 0 <j < s—1}of V and W respectively such that Fy = ({e; : i > k}), and G; =
{fj 1] = . fwesetHy = 3 F, ®G;, then Hy is a subrepresentation of V ® W and we have x(¢;) ® f) =
Ax)e, ® f1+ Fri1 ® Grand e, ® x(f)) = pi(x).ex ® f; + Fx ® G4 hence

x(er ® f1) = x(ex) ® f1+ e ®x(f1) € (A + p)(ex ® f1) + Hiria (432)

dim(Hj)—dim(Hy.1)

and thus Hy/Hjq = k“#

. Itfollows V' ® W hask, , , as its unique composition factor.
For part (ii), since V; € Rep,(9), and ¢(V;) = V,/ker(¢yy,) is isomorphic to a quotient of V, it lies in
Rep, (g, W) and so by the maximality of W it follows that p(V ) C W,. O
P, y y of W, B by

The adjoint representation of a nilpotent Lie algebra g has the trivial representation as its only composition fac-
tor, thatis, g = gp. This has the following important consequence:

"This is somewhat nonstandard — the A-isotypical subrepresentation of V, is usually called the A-generalised weight space of V, with its socle,
V3 being the A-weight space.
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Proposition 4.3.11. Let g be a nilpotent Lie algebra, Y) C g be a subalgebra of 8, and (V, p) a representation of 3. Then
if u € (b/D(H))* = D®)°/5° < g*/p° = b* is a weight of ), and V', is the pi-isotypic subrepresentation ofResg(V), the
restriction of V to 1), then VP is a §-subrepresentation of V. In particular, takingh) = k.x for x € g\{0}, any generalised
eigenspace V',  of p(x) is a g-subrepresentation.

Proof. Since g is nilpotent, we have g = g as an h-representation. But then by Lemma 4.3.10, we have g ® Vy =
90®V, € (3®V),, and since themap @,: §® V' — V given by @,(x ® v) = p(x)(v) is a homomorphism of })-
representations by Example 2.3.4, it follows that (g ® V) = p(g)(V,) € V, thatis, V, is a g-subrepresentation
as required. O

Definition 4.3.12. Let g be a nilpotent Lie algebra and let (V, p) be a representation of g. Say x € gis V-genericif,
forall A, u € Wy, we have A(x) = u(x)ifand onlyif A = p.

Dy = {A-u: A u € WyNO}, then x is V-generic if and only if x ¢ UveDV ker(v). If k is infinite,® it
is an elementary exercise to show that a nonzero k-vector space cannot be written as the union of finitely many
hyperplanes, hence V -generic elements of g exist for any finite-dimensional g-representation V.

Theorem 4.3.13. Let § be a nilpotent Lie algebra and (V, p) a finite-dimensional representation of g. For each A €
(o/Dg)", let
Wi =\ Vawe Vi = {0 € V : 3n > 0such that (p(x) - A(x))"(2) = 0}.

x€g

Ifxg € gis V-generic, then we have V() x, = V) = W, and hence V = @A V' is the direct sum of its (generalised)
weight spaces.

Proof. Since g is nilpotent, it is solvable, hence for any g-representation (U, 0) its composition factors all lie in W
and, as in Definition 4.3.9, if x € g then 0(x) has spectrum {A(x) : A € W;}. In particular, taking U = V we see
that p(x)y, has A(x) as its sole eigenvalue, thatis, V) € V() ,. It follows that V; € W,.

Nowifx € g,wehave V = @A(x):/\e\llv V\(x),x and by Proposition 4.3.11 each V) ()  is a g-subrepresentation of
V, hence taking U = V(4 , we see that if k, is a composition factor, then v(x) = A(x). It follows that if we take X
to be V-generic, the generalised eigenspace V() x, has A as its unique composition factor, so that V() v, € V.

Hence V) (1)), = V1 =Wiand V = @AE‘PV V.

O

8 Any field k with char(k) = 0 contains a copy of Q and so is infinite. Alteratively, any algebraically closed field is infinite — e.g. take the 71-th
roots of some i € k* where 71 is taken coprime to char(k).
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Chapter 5

Cartan subalgebras, trace forms and
Cartan’s criteria

5.1 Nilpotent Lie algebras as measurements: Cartan subalgebras

In this section we work over an algebraically closed field k. In particular, K is infinite.

Let g be a Lie algebra. Recall from Definition 1.2.6 that if ) is a subalgebra of g then the normalizer N(b) of ) in
gis Ny(b) = {x € g : [x,h] €D, YV h € b}, the largest subalgebra of g in which b is an ideal.

Definition 5.1.1. A subalgebra | is said to be a Cartan subalgebra if it is i) nilpotent and ii) self-normalizing, that is,
Ny(b) = b. We will call a pair (g, h) a Cartan pair if I) is a Cartan subalgebra of a Lie algebra g.

Lemma 5.1.2. If(g, D) isa Cartan pair and g = @ae o, S0 is the decomposition of § into Y-isotypical subrepresentations
where @y C by is the finite subset of h-weights for which g, # {0}, then 0 € @y and gy = b.

Proof. Consider g/b as an )-representation: if x € Ny(D), thenx + € (a/b)? of (a/b), the invariants of g/h. Thus if
b = Ng(b) is self-normalising, then (a/h)? = (a/H)y = 0, hence (g/h)g = {0}. On the other hand, since }) is nilpotent,
b C go, O

Itis not clear from this definition whether a Lie algebra necessarily contains a Cartan subalgebra. We will for the
moment assume this result, in order to show how they provide a powerful tool to study the structure of an arbitrary
finite-dimensional Lie algebra.

5.1.1 The Cartan Decomposition

Definition 5.1.3. Let(g, h)be a Cartan pairandlet (V, p) be a g-representation. Then, by Theorem 4.3.13, restricting
V and g, the adjoint representation, to ), we may write them as a direct sum of their isotypic subrepresentations:

g=he @ 9., andV = @ Vi (5.1.1)

acd AeWy

is the weight-space decomposition of V. The elements of @ are called the roots of g and the elements of Wy, are called
the weightsof V.

For g, as noted in the Lemma above, gy = b, sowe let ® = {a € D(q)°\{0} : g, # {0}}. If we alsoset W}, = {A €
D(g)? : V; # {0}, then the Cartan decomposition of g is

Remark 5.1.4. When k is algebraically closed with char(k) = 0 it is known that the set of all Cartan subalgebras
of a k-Lie algebra g form a single orbit under the group of inner automorphisms of g. This shows that the Cartan
Decomposition of g is unique up to automorphisms of g.

The following simple Lemma will, along with Cartan’s criterion for semisimplicity, be the key to the classification
of semisimple Lie algebras. It shows that the §)-weights of g give a kind of grading of g and its representations.
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Lemma 5.1.5. Foranya € {0} U @ and A € W, we have p(9,)(V ) C V114 In particular, if (V, p) = (g, ad) then for
any a, p € {0} U @ we have [g,,, g/;] C Gaipe

Proof. This follows using the techniques of the proof of Proposition 4.3.11: the action map p induces a homomor-
phism of h-representations f: g® V — V. Now by part (i) of Lemma 4.3.10 we see §, ® V; C (3® V)44, and then
part (ii) shows that its image under p lies in V), ,. But by definition p(g, ® V;) = p(g8,)(V ), and so the proof is
complete. O

5.1.2 Existence of Cartan subalgebras

Note that, if f) is a Cartan subalgebra of g, then the Theorem 4.3.13 shows that there is an x; € }) such that ) = 90,x-
This motivates the following definition:

Definition 5.1.6. If x € g, let g, , be the generalized 0-eigenspace of ad(x). Note that we always have x € g, so
that dim(gg ,) > 1. We say that x € gis regular if g , is of minimal dimension.

Proposition 5.1.7. Let § be a Lie algebra over a field k.

i) Ifx € gisany element, then Qg . is a self-normalizing subalgebra of g.

ii) Ifx € gisaregular element, then Q) , is a nilpotent and so a Cartan subalgebra of g.

Proof. Parti) is straight-forward: It follows immediately from Lemma 4.3.11 applied to the adjoint representation
thath = g, is a subalgebra of g. To see that [) is a self-normalizing in g. Indeed if z € N (D) then [x,z] € D (since
certainly x € D), so that for some 11 we have ad(x)"([x, z]) = 0, and hence ad(x)"*1(z) = 0 and z € ) as required.

To establish part ii), assume that x is regular, and let ) = gy ,.. To see that }) is nilpotent, by Engel’s theorem it
suffices to show that, for each y € b, the map ad(y) is nilpotent as an endomorphism of b). To see this, we consider
the characteristic polynomials of ad(y) on g, b and g/b: Since D is a subalgebra of g, the characteristic polynomial
XY(t) € k[t] of ad(y) on g is the product of the characteristic polynomials of ad(y) on ) and g/b, which we will write

as )(% (t) and )(Z (t) respectively.

We may write }Y(t) = EZ:O Ck(y)tk, where n = dim(g). Pick {hy, hy, ..., h,} a basis of [) (so that dim(h) = 7).
Then if we write y = E::I yih;, the coefficients {c(y)}}_, of x¥(t) are polynomial functions of the coordinates {y; :
1 <i < r}. Similarly we have

K = Y dwE, xon= Y ewb
i=0 =0

where the d;, ¢; € k[xy, ..., x,,] are polynomials and d;(y) = d;(y1, ..., y») where y = E?:l y;h;. Since ad(x)(x) = 0,
wehavex € gp . Butad(x)isinvertible on g/, since all its eigenvalues are non-zero on g/h, hence x5 (t) hase(x) # 0,
and thus the polynomial ¢ is nonzero.

Now lets = min{i : d;(xq, ..., x,;) # 0}. Then we may write ﬁ(t) =t EIZ;SO dy (), and hence

XY@t =t5(ds +dgqt + . )(eg + et +..) = dgep + ...,

For any endomorphism of a vector space, the dimension of its A-generalised eigenspace is the largest power of
(t = A) dividing its characteristic polynomial. In particular this implies that, for any y € b, we have dim(gory) =
min{i : ¢;(y) # 0}. Butsince eg.d; € k[xy, ..., x,] is nonzero, there is some z € ) such that dy(z).eg(z) # 0, and
hence dim(gg ,) = s. Now by definition s < r = dim(gg ,), hence since x is regular, we must have s = r, and hence
)({(t) = t’, for ally € b. Hence every ad(y) is nilpotent on b, so that [ is a Cartan subalgebra as required.

O

In the course of the proof of the above Proposition we used the fact that the coefficients of the characteristic poly-
nomial were polynomial functions of the coordinates of y € h) with respect to a basis of I). This was crucial because,
whereas the product of two arbitrary nonzero functions may well be zero, the product of two nonzero polynomials
(over a field) is never zero. Lemma 1.3 in Appendix [ establishes a slightly more general statemetn which applied to
V =g, A = hand @ = ad gives a proof of this polynomial property.!

1If this all seems overly pedantic then feel free to ignore it.
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5.2 Trace forms and Cartan’s criterion for Solvability

In this section we introduce certain symmetric bilinear forms, which will play an important role in the rest of the
course. A brief review of the basic theory of symmetric bilinear forms? is given in §1.3 in Appendix 1 of these notes.

5.2.1 Invariant bilinear forms
Let Bil(V) be the space of bilinear forms on V, that s,
Bil(V) = {B: V XV — k : Bbilinear}.

From the definition of tensor products it follows that Bil(V) can be identified with (V ® V)*. The involution o: V X
V — V X V given by (v,w) + (w, v) induces an involution (which we will also denote by ¢) on Bil(V') and on
V ® V. We say that a bilinear form B is symmetricif B c ¢ = B, thatis, if B(v, w) = B(w, v) forallo,w € V.

If V is a g-representation, the identification of Bil(V) with (V ® V)* shows that Bil(V) also has the structure of

g-representation: explicitly, if B € Bil(V), then it yields a linear map b: V ® V' — k by the universal property of
tensor products, and if y € g, it acts on B as follows:

y(B)(v,w) = y(b)(v @ w)
= -by(v®w))
= -b(y(v) ®w + v @ Yy(w))
= -B(y(v), w) - B(v, y(w)).

Notice that the involution ¢ € End(V ® V) commutes with the action of g (this is a special case of the fact that, for
any two g-representations, themap 7: VW — W ® V given by 7(v ® w) = w ® v is a g-homomorphism). It
follows that the action of g preserves the space S?(V) of symmetric bilinear forms.

Definition 5.2.1. We say that a bilinear form B € Bil(g) is invariant if it is an invariant vector for the action of g on
Bil(g) = (g ® g)", that s, if B(ad(x)(y), z) = B(y, —ad(x)(z)) = O for all x, y, z € g. This is often written as

B([x,yl,z) = B(x, [y, z]), VYxyzeaq.

Remark 5.2.2. If (V, p)isag-representation and B € Bil(V)is a bilinear form, then it defines alinearmap 0: V —
V* where 8(v)(w) = B(v,w) (Yv,w € V). If Bis invariant, thatis B € Bil(V)", then we have O(p(x)(@))(w) =
B(p(x)(v),w) = B(v,—p(x)(w)) = p*(x)(0(v))(w) for allv,w € V, hence O(p(x)(v)) = p(x)*(6(v)), thatis, O €

Hom(V, V*)8 = Homy(V, V") is a homomorphism of g-representations.

If O is an isomorphism, we say B is nondegenerate and in that case, for any linear map a € End(V) we may define
' = 0loaT o0 € End(V), the adjoint of & with respect to B. If V is a g-representation and B is nondegenerate,
then the condition that B is invariant can be expressed as p(x)* = —p(x) forallx € g, where p: g — gly/ is the action
map, thatis, p(g) consists of skew-adjoint endomorphisms of with respect to the bilinear form B.

Definition 5.2.3. If @: g; — @) is a homomorphism of Lie algebras, and B is a bilinear form on g, then we may
“pull-back” B using « to obtain a bilinear form on g;. Indeed viewing B as an element of (g, ® g,)*, we obtain an
element a*(B) of (g; ® g1)" given by a”(B)(x, y) = B(a(x), a(y)). Itis immediate from the definitions thatif B is an
invariant form for g5, then a*(B) is an invariant form for g;.

It follows that if we can find an invariant form by on a general linear Lie algebra gly/, then any representation
p: g — gly of a Lie algebra g on V will yield an invariant bilinear form t,; = p*(by) on g. The next Lemma shows
that there is in fact a very natural invariant bilinear form, indeed an invariant symmetric bilinear form, on a general
linear Lie algebra gly:

Lemma 5.2.4. Let V be a k-vector space. The trace form by : gl ® gly, — k given by
by(a,b) = tr(a.b), Va,beqgly,

is a nondegenerate invariant symmetric bilinear form on gly.

2part A Algebra focused more on positive definite and Hermitian forms, but there is a perfectly good theory of symmetric bilinear forms over
an arbitrary field k. When k is algebraically closed, the theory is also straight-forward!
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Proof. Let9: V®V* — gly begiveby S(w® f) = f.w € gly, where (f.w)(v) = f(v).wforallv € V. For V
finite-dimensional, this map is an isomorphism andif t: V ® V* — ks the natural “contraction” map induced by
the evaluation map (v, f) = f(v), thentr(S(v ® f)) = tr(f.v) = f(v) = (v ® f) (see Lemma .13 for details).

Moreover, theisomorphism 9 ®9: V@ V* @ V® V" — gly, ® gly, identifies the composition map (a,b) — acb
with the contraction map on the 2nd and 3rd factors. Indeed for any v, v, € V, f1, f» € V* we have

301 ® f1) 0 (0 ® f2) = (f1.01) o (f2.02) = f1(02)-(f2.01) = Hix3(v1 ® f1 ® VL B f))

Thus we see that (4, b) — tr(ab) corresponds under 9 ® 9 tothe map 114 ® 13: VO V*® V® V* — k, where
we write (y; for the contraction map acting on the k-th and [-th tensor factors if the kth is V and the Ithis V*. The
composition (4, b) > ab gives the contraction (y3 and then taking trace corresponds to the contraction (4. Taking
tr(ba) gives the same value since (4, b) — tr(ba) simply contracts the factors in the opposite order, so that tr(ab) =
tr(ba) and thus by, is a symmetric bilinear form. To show it is invariant, since by = 114 ® (3 it suffices to check that
t is invariant. But this is clear, since X(v ® f) = x(v) ® f —v ® (f o x), thus ((x(v ® f)) = f(x(v)) = (f e x)(v) = O,
while x(1(v ® f)) = x(f(v)) = 0, since gly acts by 0 on k, the trivial representation. We leave it as an exercise to
check the nondegeneracy of by,. O

Remark 5.2.5. One can also of course check the invariance property by a direct calculation: for a,b,c € gl we
have

tr([a, b].c) = tr((ab — ba).c) = tr(a.(bc)) — tr(b.(ac))
= tr(a.(bc)) — tr((ac).b)
= tr(a.(bc — cb)
= tr(a, [b, c]).

where going from the first to the second line we used the symmetry property of tr to replace tr(b.(ac)) with tr((ac).b).

Definition 5.2.6. If gis a Lie algebra, and let (V, p) be a representation of g. we may define a bilinear form ¢y, : g X
g — kon g, known as a trace form of the representation (V, p), to be p*(by). Explicitly, we have

ty(x,y) = uy(p@)py)), VYx,ye€aq.

Definition 5.2.7. The Killing form k: g X g — ks the trace form given by the adjoint representation, that is:
Kk(x,y) = tr(ad(x)ad(y)).

Note thatif a € gis a subalgebra, the Killing form of a is not necessarily equal to the restriction of that of g. We
will write k% when it is not clear from context which Lie algebra is concerned.

If ais anideal in g, then in fact the Killing form is unambiguous, as the following Lemma shows.
Lemma 5.2.8. Let a be an ideal of 9. The Killing form k® of a is given by the restriction of the Killing form k% on g, that is:
K = K
Moreover, the subspace orthogonal to a, that is, at = {x € g : x(x,y) = 0, Yy € a} is also an ideal.

Proof. 1fa € awe have ad(a)(g) C a, thus the same will be true for the composition ad(a;)ad(a,) for any aq, a, € a.
Thus if we pick a vector space complement W to ain g, the matrix of ad(a; )ad(a,) with respect to a basis compatible

with the subspaces a and W will be of the form
A B
0 0.

where A € End(a) and B € Homy(a, W). Then clearly tr(ad(a;)ad(a,)) = tr(A). Since A is clearly given by
ad(ay)|,ad(ap),, we are done. To see that al is an ideal, we must check that for any x € gandy € al we have
[x,y] € at. Butifa € athen x(a, [x,y]) = x([a, x],y) = Osince [a,x] € a.

O
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5.2.2 Cartan criterion for solvable Lie algebras

For the rest of this section k is an algebraically closed field of characteristic zero.

We now wish to show how the Killing form yields a criterion for determining whether a Lie algebra is solvable
or not. For this we need a couple of technical preliminaries. Recall that, if (V, p) is a representation of a nilpotent
Lie algebra b, then it decomposes as the direct sum V' = @Ae\y V1, where Wy, € D(b)? denotes the set of one-

v

dimensional representations of [) which occur as composition factors of V, and V, is the maximal subrepresentation
of V whose only composition factor is k. When (g, ) is a Cartan pair and we view g as a [ representation via the
inclusion h C g, the set W, = {0} U @, where gy = b.

Definition 5.2.9. Let (g, ) be a Cartan pair andletg = h & @aeq) g, be the associated decomposition of g. For
eacha € ®weseth, = [a,,8_,] € D. Note thatif —a ¢ D, then }), = {0}.

Lemma 5.2.10. Let (,0) be a Cartan pair and let ® C D(H)° be the roots of § associated to its Cartan decomposi-

tion. Let (V, p) be a §-representation and let V = @ 1ew V') be its decomposition into its isotypical summands as an
v

h-representation. If & € @ and by, C 1 is as in Definition 5.2.9, then for any A € Wy, thereisanr, € Q such that
g, = T2t

Proof. The set of weights V' is finite, thus there are positive integers p, g such that V, ,;, # 0 only for integers t with
—p <t < g;inparticular, A = (p+1)a ¢ YVand A + (g +1)a ¢ W. Let M = @_pqq} Vista- 2 € [04,9_4] is of

the form [x, y] wherex € g,,¥y € g_, then by Lemma 5.1.5,

POV rrga) € Vasgrna = 0L p)(Vapa) € Vacpriya = {0}

we see that p(x) and p(y) preserve M. Thus the action of p(z) on M is the commutator of the action of p(x) and p(y)
on M, and so tr(p(z), M) = 0. On the other hand, we may also compute the trace of p(z) on M directly: forany h € b,
p(h) acts on an isotypical summand V, with unique eigenvalue (1), hence try, (p(h)) = dim(V,).u(h). Applying
this to p(z) we find

0=tr(p(z), M) = Y, t(p(@), Vis) = D, dim(Vi)(A +ta)(z)

-p<t<q -p<t<q

= dim(M).A@Z) +| D) tdim(Vyi)|a@)
—-p<t<q

Since dim(M) > dim(V,;) > 0, this can be rearranged to give A(z) = r;.a(z) as required. O

Definition 5.2.11. Let g be a Lie algebra over a field k. We say that g is perfect if it satisfies g = D(g) = [g, g]. A
perfect Lie algebra therefore has no nontrivial abelian quotients.

Proposition 5.2.12. Let V beafinite-dimensional k-vector space andletby . gly X gly, — k, bethetraceform, by/(x,y) =
try(xy), forall x,y € gly. If ais a non-zero perfect subalgebra of gly then there is an x € a such that by/(x,x) # 0, so that
by does not vanish identically on a.

Proof. Suppose that ) is a Cartan subalgebra of a so that thata = @ a, is the associated Cartan decompo-

Ae®U{0}
sition, where h) = ap. If welet V = EBHGW V, be the decomposition of V into generalised h-weight spaces as in

Theorem 4.3.13, then since a C gl = V*® V, it follows that @ (J{0} C {u1 — o : pq, 2 € V). Nowif a = gp, then
h = aisnilpotent and hence solvable, but by assumption a = D(a), so this is a contradiction. It follows that ® must
be non-empty, and so in particular there must be some non-zero A € Wy,. Next observe that

a=Da=1[aqaq] = [ @ ay, @ a#] = E[a,\, ay].
A

AedU{0} ueDU{0}

Since we know that [q,, aH] C Ay and moreover ) = ag, it follows that we must have

b =[0,0]+ Y[, a_,] = D(D) + Y, b,
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where the sum runs over those roots & such that —a € ®. But by definition, A vanishes on D, so that there must be
some @ € ® with A(h,) # 0. For such an a, letx € b, = [a,, a_,] be such that A(x) # 0. Then we have

by (x,%) = t(x?) = Y] dim(V,)u(x)2.
uew

But now by Lemma 5.2.10 for each i € W thereisanr, € Q such that u(x) = r,.a(x) forallx € [a,,a 4] In
particular, 0 # A(x) = rja(x) so thatry # 0and a(x) # 0. Hence we see that

ty(x,x) = | D] dim(V,)r2 , |a(x)?.
uew

Since the terms in the sum are nonnegative, and the term corresponding to A is positive, we conclude ¢y (x, x) # 0
are required.

O

Recall that for any finite dimensional Lie algebra, the derived series stablizes to an ideal which we denote as
D (g). It has the property that it is equal to its own derived subalgebra, i.e. D*(g) is perfect.

Theorem 5.2.13. Let g be a Lie algebra and let (V, p) be a g-representation. Then if ty vanishes on D(g) then p(g) is
solvable, or equivalently, D*(g) C ker(p).

Proof. Since p(D(g)) = D(p(g)), replacing g by its image p(g), we may assume that § C gly and by vanishes on
D(g). We must show that g is solvable, that is D*°(g) = {0}. But if this is not the case, then setting a = D*(g) it
follows that a is a non-zero perfect subalgebra of gly,. But then the previous Proposition shows there is some x € a
for which by, (x, x) # 0. But by assumption by, vanishes identically on D(g) 2 a, which gives a contradiction. O

Corollary 5.2.14. (Cartan’s Criterion for Solvability) Let § be a (finite-dimensional) k-Lie algebra and let K denote its
Killing form. Then the following are equivalent:

i) k(D(g), D(g)) =0,
i) qissolvable,

iii) x(g, D(g)) = 0, that is, D(g) C rad(x).
is solvable if and only if the Killing form vanishes on D(g).

Proof. Clearlyiil) = i) soitsuffices to showi) = ii)andii) = iii).

Fori) = ii) note that i) is the hypothesis of Theorem 5.2.13 for the representation (g, ad), and hence the
theorem shows that D*(g) C ker(ad) = 3(g). But since D*(g) is perfect, this shows that D*(g) = D(D*(g)) C
D(3(g)) = {0} and hence #i) holds.

For ii) = iii) note that if g is solvable, by Lie’s theorem if & = (V = Fy > F; > .. > F; = {0})isa
composition series for (g, ad) then each subquotient F;/F;, | must be one-dimensional, i.e. % is a complete flag. Pick
abasis B = {ey, ..., e5} of g such that Fy = {¢; : i < d —k),, and leta > [a]p denote the isomorphism gl; — gl;(k)
where [a]p = (ag')lsi,jsd- This isomorphism identifies by O D(by) = ng with by O 1y the space of upper-
triangular matrices and strictly upper triangular matrices in gl; respectively. In particular, for any x,y € by we

have try(xy) = X, xg.yg, and in particular try(xy) = 0if x € b,y € ng. Butas & is a composition series for g,

we have ad(g) C by, and hence ad(D(g)) = D(ad(a)) € D(by) = ng. It follows immediately that x(g, D(g)) C
try(bz, ng) = 0 as required. O
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Chapter 6

Semisimple Lie algebras

In this section we assume that our field k is algebraically closed of characteristic zero, and all representations are assumed to
be finite dimensional over k.

6.1 The solvable radical, semisimplicity, and Cartan’s criterion

Suppose that g is a Lie algebra, and a and b are solvable Lie ideals of g. It is easy to see that a + b is again solvable
(for example, because 0 € a C a+ b, and a and (a + b)/a = b/(a N b) are both solvable). It follows that if g is
finite dimensional, then it has a largest solvable ideal 1. Note that this is in the strong sense: every solvable ideal of
gis a subalgebra of r (c.f. Definition 4.3.7 where the same strategy was used to define the subrepresentation Vg of a
g-representation given an irreducible representation S of g).

Definition 6.1.1. Let g be a finite dimensional Lie algebra. The largest solvable ideal 1 of g is known as the (solvable)
radical of g, and will be denoted rad(g). We say that g is semisimple if rad(g) = 0, that s, if g contains no non-zero
solvable ideals.

Lemma 6.1.2. The Lie algebra §/rad(Q) is semisimple, that is, it has zero radical.

Proof. Suppose that $ is a solvable ideal in g/rad(g). Then if s’ denotes the preimage of s in g, we see that ¢’ is an
ideal of g, and moreover it is solvable since rad(g) and s = $’/rad(g) as both solvable. But then by definition we have
¢’ C rad(g) so thats’ = rad(g) and s = 0 as required. O

Example 6.1.3. The Lemma shows that any Lie algebra g contains a canonical solvable ideal rad(g) such that
g/rad(g) is a semisimple Lie algebra. Thus we have a short exact sequence:

0 rad(g) g g/rad(g) —=0,

so that any Lie algebra is an extension of the semisimple Lie algebra g/rad(g) by the solvable Lie algebra rad(g).

In characteristic zero, every Lie algebra g is built out of rad(g) and g/rad(g) as a semidirect product.

Theorem 6.1.4. (Levi’s theorem) Let g be a finite dimensional Lie algebra over a field k of characteristic zero, and let t be
its radical. Then there exists a subalgebra s of § such that ¢ = 1 < 6. In particular s = g/t is semisimple.
6.1.1 Cartan’s Criterion for semisimplicity

The Killing form gives us a way of detecting when a Lie algebra is semisimple. Recall that, given a symmetric bilinear
form B: V XV — k, the radical of B is

rad(B)={veV:VYweV,B(w,w)=0}=V5
The form B said to be nondegenerate if rad(B) = {0}. We first note the following simple result.

Lemma 6.1.5. A finite dimensional Lie algebra g is semisimple if and only if it does not contain any non-zero abelian ideals.
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Proof. Clearly if g contains an abelian ideal, it contains a solvable ideal, so that rad(g) # 0. Conversely, if 5 is a
non-zero solvable ideal in g, then the last term in the derived series of s will be an abelian ideal of g. O

We have the following simple characterisation of semisimple Lie algebras.

Theorem 6.1.6. A Lie algebra g is semisimple if and only if the Killing form is nondegenerate.

Proof. Letgt = {x € g : x(x,y) = 0, Vy € g}. Then by Lemma 5.2.8 g is an ideal in g, and clearly the restriction of
K to g is zero, so by Cartan’s Criterion, and Lemma 5.2.8 the ideal g is solvable. It follows that if g is semisimple
we must have g+ = {0} and hence « is non-degenerate.

Conversely, suppose that ¥ isnon-degenerate. To show that gis semisimple itis enough to show that any abelian
ideal of g is trivial, thus suppose that a is an abelian ideal, and pick W a complementary subspace to a so thatg =
a® W. With respect to this decomposition, if x € gand a € a, we have

[ x ox [0 a Homy(a,a) Homy(W,a)
ad(x) _( 01 x; )’ ad(a) _( 0 02 )e( Homkk(a, W) Homkk(W, W) |-

But then we see that ad(x) o ad(a) = ( 8 X10ﬂ2 ), and hence tr(ad(x)ad(a)) = 0. It follows that a C g+ = {0} as
is non-degenerate and hence a = {0} as required. O

Remark 6.1.7. It is worth noting that the proof of the previous theorem establishes two facts: first, that g1 is a
solvable ideal in g for any Lie algebra g, and secondly, that any abelian ideal of g is contained in g+. Combined with
the previous Lemma this shows that g+ = {0} < rad(g) = {0}, but in general the containment g1 C rad(g) need
not be an equality.

6.2 Simple and semisimple Lie algebras

Definition 6.2.1. Recall from Definition 3.1.1 that a Lie algebra g is said to be almost simple if it has no non-trivial
proper ideals. We say that g is simple if it is nonabelian and has no nontrivial proper ideal, i.e. gis almost simple and
nonabelian. We now show that this notion is closed related to our notion of a semisimple Lie algebra.

Lemma 6.2.2. Let V bea k-vector space equipped with a symmetric bilinear form B. Then for any subspace U of V we have

i) dim(U) + dim(U~) > dim(V),

ii) the restriction By is non-degenerate if and only if U & U+ = V.

Proof. See Lemma [.21in Appendix I. O

Proposition 6.2.3. Let g be a Lie algebra, and let I be an ideal of g.

i) Ifgissemisimplethen g = I ® 1, and both I and I are semisimple, hence any ideal and any quotient of § is semisim-
ple.

ii) Iissemisimpleif and onlyifg = [ ® I+,

Proof. For parti) consider I N I+. The Killing form « of g vanishes identically on I N [+ by definition, and since it is
anideal, the Killing form of I N I is just the restriction of the Killing form of g. It follows from Cartan’s Criterion that
I N It is solvable, and hence since g is semisimple we must have I N I+ = 0. But then by part i) of Lemma 6.2.2 we
must have g = [ @ I'1. Since this is evidently an orthogonal direct sum, the Killing form must be nondegenerate on
both I and I1, and since they are ideals, Cartan’s criterion then implies they are both semisimple. Since the quotient
map induces an isomorphism [+ = g/I it follows that any quotient of g is also semisimple.

For if), note that by part ii) of Lemma 6.2.2, k is non-degenerate on I if and only if g = I & I+. But the restriction
of 9 to [ is the Killing form of I, and so Cartan’s criterion completes the proof. O

Corollary 6.2.4. Let g be a semisimple Lie algebra and let Der, (Q) be the Lie algebra of derivations of §. Then ad: g —
Der, () is an isomorphism, so that in particular any derivation of § is inner.
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Proof. Suppose thatd € Der(g). Then we may form g; = g 5 gl;, the semi-direct product! of g and gl;. Now gisa
semisimple ideal in g7, so by Proposition 6.2.3,3; = g ® gt. But then [g1,g] € g1 Ng = {0}. and soifa € ais such
that (2, —1) € g then for all x € g we have

0 = [(a,-1), (x, 0)] = ad(a)(x) - 6(x),

and hence 0 = ad(a) is an inner derivation as required.

Theorem 6.2.5. Let g be a semisimple Lie algebra.

i) There existideals 1, 8y, ... Oy C § which are simple Lie algebras and for which the natural map:
01900..0g — g
is an isomorphism. In particular, if § is semisimple it is perfect, i.e. D(g) = g..

i) Any simple ideal a € g is equal to some §; (1 < i < k). In particular the decomposition in part i) is unique up to
reordering.

Proof. For part i) we use induction on the dimension of g. Let a be a minimal non-zero ideal in g. If a = g then g is
simple, so we are done. Otherwise, we have dim(a) < dim(g). Then g = a® a+, and by induction a+ is a direct sum
of simple ideals. It follows that g = a @ al, hence any ideal in ais also an ideal in g, thus since a is a minimal ideal,
it must be simple, and so g is a direct sum of simple ideals as required. Since a simple Lie algebra is trivially seen to
be perfect, each g; is perfect and hence sois g

For part ii), suppose that g = g1 ® g ® ... D gy is a decomposition as above and a is a simple ideal of g. Now as
3(g) = {0}, we must have 0 # [g, a] C q, and hence by simplicity of a it follows that [g, a] = a. But then we have

k
a = [g,a1 = [P 9;, 0] = [ay, Al @ [0, 0] & .. @[5, a],
i=1

(the ideals [g;, a] are contained in g; so the last sum remains direct). But a is simple, so direct sum decomposition
must have exactly one nonzero summand and we have a = [g;, a] for some i (1 < i < k). Finally, using the simplicity
of g; we see that a = [g;, a] = g; as required.

O

Remark 6.2.6. For any finite-dimensional Lie algebra g, its solvable radical rad(g) is a solvable ideal, and hence
has gl asits only composition factor, while g/rad(g) is semisimple. The previous Theorem thus shows that g/rad(g)
is a direct sum of simple Lie algebras. Combined with Proposition 6.2.3, this gives a substantial refinement of the
Jordan-Holder theorem of Chapter 3.

Let % = (g = gg > g1 > ... > g4 = {0}) be a composition series for g with composition factors s; = g;/g;,1. If
s; is simple, then applying Proposition 6.2.3 to $; <1 §;_1/g;_1 We see that g;_1/g;_1 is a direct sum which (by abuse
of notation) we write as s; ® $;_1. It follows that we may modify g; to obtain a new composition series with the
composition factor $; now occuring as $;_1. Applying this repeatedly, we may modify any composition series to
obtain a composition series &’ with the property that there is some k < d such that gy = rad(g), and hence the
composition factor g,/g,,1 = gl; for alls > k, while the composition factors g,/g,,1 for s < k are all in fact direct
summands of go/g.-

6.2.1 The Jordan Decomposition

The following proposition is a consequence of the primary decomposition theorem in linear algebra. For complete-
ness, we provide a proof in the appendices — see Proposition 1.2.

IRecall that a semidirect product of Lie algebras a > b requires, in addition to the two Lie algebras, a homomorphism ¢: b — Der,(a). If
b = gl however, @ is determined by ¢(1) € Dery(a), i.e. we only need to specify the derivation by which ad(1) acts on a in the semidirect
product.

34



Proposition 6.2.7. Let V be a finite-dimensional k-vector space. For any x € End(V), there is a direct sum decomposition

V=(PVie whereVy,={oeV:3IN>0,x-)V@) =0}
A€k

The subspace V) . is known as the A-generalized eigenspace of x.

If the only A € k for which V, , # {0}is A = 0, so that xN = 0 for some N € IN, we say that x is nilpotent. If, for
eachv € V) , we may take N = 1, then we say that x is semisimple. Equivalently, x € End (V) is semisimple if there
is adirect sum decomposition V' = @1<i<n L;suchthatx(L;) € L;, i.e. in terms of the gl -representation p, : gl; —
gly givenby p,(c) = c.x, the representation (V/, Py) is semisimple. The generalised eigenspace decomposition above

can be used to give a decomposition of the endomorphism x in a semisimple (or diagonalisable) and nilpotent part:

Lemma 6.2.8. Letx: V — V be a linear map. Then there exists a diagonalisable linear map X, and a nilpotent linear
map X,, such that x = Xs + X, and [x,, x,,] = 0. Moreover, if U < V is x-stable, so that x(U) C U, then x; and x,, also
preserve U.

Proof. LetV = @/\ek V') be the generalised eigenspace decomposition of V' given by the action of x. Suppose that

c . . .. . k
{A1, ..., Ag} are the distinct eigenvalues of x, and let (ei);(:l be the projection maps to V.. Thenifx; = X;_; A;.¢;,
clearly x; is semisimple, and [x, x,] = 0 (since this is evident on each V). Setting x,, = x — X, and noting that on

each V. the map x — x; is equal to x — A;, which is nilpotent, we conclude that x,, is nilpotent as required.
Now suppose that U < V and x(U) € U. Then we must have U = @Aes(x‘u) U, x, and it follows directly from

the definition that U, , = U NV, ,,sothat U = @Aesm(u N V). But x, clearly preserves U N V), for each A,

and thus x, preserves U. Since x,, = x — X, it also preserves U as required. O

In fact, given X = X, + x,,, the conditions that x, is semisimple and x,, is nilpotent along with the fact that they
commute, determines them uniquely. To see this we use the following:

Lemma 6.2.9. Let V be a k-vector space and x € End(V).

i) Ifn € End(V) is such that [x, n] = 0 and n is nilpotent. Then we have V , = V) 1y

i) Ifx = s+ nwhere[s,n] = 0 and s is semisimple, n is nilpotent, then s = Xy and n = X, that is, the Jordan
decomposition is unique.

Proof. For parti) it suffices to show that V, , € V) .., for all such pairs (x,77) in End(V). Indeed the lemma clearly
follows once one also knows the reverse inclusion, but this follows by considering the pair (x + 1, —11). To prove the
inclusion, note that since [x,n1] = 0, we have n(V, ;) € V, ;. But by definition (x — A) is nilpotent on V, , and
hence (x + 1) — A = (x — A) + n, when restricted to V, ,, is the sum of two commuting nilpotent endomorphisms of
V) x- It follows from Lemma 4.2.13 that (x + 1) — A acts nilpotently on V, ,, and hence V) , C V), ,,,, as required.

For partii), note thatby parti), x; and x; + x,, = x have the same generalised eigenspaces. Butas X, is semisimple,
its generalized eigenspaces are precisely its eigenspaces and hence it is completely determined by these. It follows
X, is unique, and hence x,, = x — x, is also. O

Lemma 6.2.10. Let V be a vector space and x € End(V). If x is semisimple then
ad(x): End(V) — End(V)

is also semisimple, and similarly if x is nilpotent.

Proof. First note that the action of ad(x) on gly is just the action of x on the tensor product V* ® V. When x is
nilpotent, the result is proved in Lemma 4.2.14. Alternatively, for 7,5 > Olet G,; = x" o gly o x° C gly, and let
Fr = X, 1sok Grs- Clearly G, s C Gy o ifr > 7,5 > 8" sothat Fy 2 Fyyq and, ifx? = 0, then G, s = Oif max({r,s} > d,

and hence F;, = 0ifk > 2d —1. Moreover, ad(x)(G,s) € G415+ Gy 541 © Frys11, hence ad(x)(Fy) C Fiyq. Itfollows
ad(x) is nilpotent as required.

If x is semisimple, then we may write V = @:lzl L; where x(L;) € L; and dim(L;) = 1. But then

n n n
Hom(V, V) = Hom @ L, @ L= EB Hom(L;, L),
i=1 j=1

ij=1
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and clearly the one-dimensional spaces Hom(L;, L;) are preserved by ad(x), so that Hom(V, V) decomposes into a
direct sum of one-dimensional ad(x)-stable subspaces, and hence ad(x) is semisimple. O

Corollary 6.2.11. Let x € End(V), and suppose X = X4 + X,, is the Jordan decomposition of X. Then ad(x) = ad(x,) +
ad(x,,) is the Jordan decomposition of ad(x).

Proof. By the previous Lemma, ad(x,) and ad(x,,) are semisimple and nilpotent respectively, and as ad is a represen-
tation, [ad(x,), ad(x,)] = ad([x,, x,,]) = 0. O

We now return to Lie algebras. The above linear algebra allows us to define an “abstract” Jordan decomposition
for the elements of any Lie algebra (over an algebraically closed field).

Definition 6.2.12. Suppose that g is a Lie algebra and x € g. The endomorphism ad(x) € gl has a unique Jordan
decomposition ad(x) = ad(x); + ad(x),, in gl;. Thenif s, 7 € g are such that ad(s) = ad(x), and ad(n) = ad(x),,, we
say the Lie algebra elements s, 11 are an abstract Jordan decomposition of x. Note thatif z € 3(g) # {0} thenif (s,n)isa
Jordan decomposition of x so is (s + z, 1 — z), thus the Jordan decomposition is unique if and only if 3(g) = {0}.

Note that thatif g = gly, for some vector space V, then Lemma 6.2.10 shows that the naive Jordan decomposition
gives an abstract Jordan decomposition for an element x € gly,, and moreover if x € sl then the naive Jordan
decomposition x = x; + x;, has tr(x,) = tr(x) = 0sox,, x,, € sly, and the naive Jordan decomposition is the abstract
Jordan decomposition by the Corollary above.

Lemma 6.2.13. Let a be a Lie algebra and Dery(a) C gl the Lie algebra of k-derivations on a. Let 0 € Dery(a). If
O = s + nis the Jordan decomposition of O as an element of gl,, then s, n € Der,(a).

Proof. We may decompose a = @ L0 where a is the generalized eigenspace of 6 with eigenvalue A € k say. Now
since 6 is a derivation the map a; ® a, — agiven by x ® y > [x, y] is compatible with the action of 6. But then by
Lemma 4.3.1,ifx € ay andy € a,, we have [x,y] € y4y- It follows immediately that s is a derivation on @, and
since n = 6 — s we see that 1 is also. O

Theorem 6.2.14. Let g be a semisimple Lie algebra. Then any X € @ has an abstract Jordan decomposition: that is, there
exist unique elements S, N € § such that X = s + n and [s, n] = 0, and ad(s) is semisimple, while ad(n) is nilpotent.

Proof. Asnoted above, since g is semisimple, ad: g — gl; is an embedding, and the conditions on s and 72 show that
if they exist, they must satisfy ad(s) = ad(x); and ad(n) = ad(x),, where ad(x) = ad(x); + ad(x), is the Jordan
decomposition of ad(x) € gl;. Thus it remains to show that ad(x); and ad(x), lie in the image of ad. But ad(x) acts
as a derivation on I = ad(g), so by Lemma 6.2.13 so do ad(x), and ad(x),,. But then by part (ii) of Proposition 6.2.3,
we see that ad(x); = ad(s) for somes € gand ad(x),, = ad(n) for some n € g. The conditions ons,n € g then follow
from the injectivity of ad, and we are done. O

6.3 Representations of semisimple Lie algebras: Weyl’s theorem

The goal of this section is to establish the following theorem:

Theorem 6.3.1. (Weyl’s theorem.) Let g be a semisimple Lie algebra. If V is a finite-dimensional representation of § and
U is a subrepresentation of V, then there is a complementary subrepresentation W, that is, W is a subrepresentation and

V=UsW.

Remark 6.3.2. The property that every subrepresentation has a complement is called the semisimplicity of a rep-
resentation, so the theorem can be phrased as saying that the finite dimensional representations of a semisimple
Lie algebra are semisimple! Note that we showed in Theorem 6.2.5 that any ideal in a semisimple Lie algebra has a
complementary ideal, which establishes the semisimplicity of the adjoint representation.

It is easy to see that a semisimple representation is completely reducible, that is, is a direct sum of irreducible
subrepresentations (indeed Maschke’s theorem for finite groups establishes the same semisimplicity result for suit-
able representations of finite groups and the argument used to deduce complete reducibility in that setting works in
this context also).
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Definition 6.3.3. Let (V, p) be a g-representation. We define
Ve = {v eV:p(x)(v)=0,VYxe g}, g.V = spank{p(x)(v) IXEQUE V}

Note V9 is the subrepresentation of invariants we have considered before, and one can check directly that g.V is a
subrepresentation, or note that it is the image of the g-homomorphisma: g® V — V given by a(x ® v) = p(x)(v).
See Example 2.3.4 for more details. It is the smallest subrepresentation U of V such that g acts trivially on V/U.

The key to Weyl’s theorem is then the following proposition, whose proof we postpone.
Proposition 6.3.4. Let § be a semisimple Lie algebra and (V, p) a representation of 3. Then V = V8 @ g.V.

Definition 6.3.5. If V is any vector space and U < V is a subspace, a projection to U is a linearmapp: V — U
such that p;; = 1j; (and hence im(p) = U). Equivalently, ifi: LI — V denotes the inclusion map,p: V — Uisa
projectionto Uifpoi = 1y. If p: V — U is a projection then V' = U & ker(p). Indeed the sum is direct because
ifv € UNker(p) thenv = p(v) = 0, hence by rank-nullity it must be all of V. Conversely, if V = U & W, then if
we define pyy(v) = uwherev = u+w,u € U, w € W, the map pyy is a projection to U. Thus we have a bijective
correspondence:

Iy = {p € Hom(V,U) :pei=1y} > (W< V:V=UsW} =%,

between I'1j;, the set of linear projection from V to U and %7; the set of complementary subspacesto U in V. If V is
a g-representation, then this bijection restricts to one between g-invariant projections and complementary subrep-
resentations.

The direct sum decomposition V' = V8 & g.V of Proposition 6.3.4 therefore yields a g-invariant projection
7'((‘)/: V — V8. Moreover, if (V, p) and (W, o) are finite-dimensional g-representations and ¢ € Hom,y(V, W), it
is easy to check that (V%) € W9 and ¢(g.V) C g.W, thus we see

Vo =gony, V¢eHomy(V, W) (6.3.0)

Remark 6.3.6. The maps n(‘)/ are the analogues for a semisimple Lie algebra g of the “averaging” operators ay, for
representations of a finite group G where, for a G-representation (V, 7), the operator ay, is given by |G| EgeG ().

The operators ay play a crucial role in the proof of Maschke’s theorem, and are compatible with G-homomorphisms
in the same sense that the n(‘)/ are compatible with g-homomorphisms, thatis, they satisfy ¢ o a; = ayy o ¢ for any
homomorphism of G-representations ¢: V. — W.

Proof of Weyl's theorem:

Let i: U — V denote the inclusion of a subrepresentation U of V, where V is a finite-dimensional g-
representation. By Definition 6.3.5, we must show that there is a g-invariant projection from s: V. — U, since
then ker(s) will be a complementary subrepresentation to U. Let H; = Hom(V, U) and H, = Hom(U, U), and let
i*: Hy — H, denote the restriction map ¢ +— ¢y = ¢ oi. Since V and U are g-representations, H; and H; are
g-representations and, moreover, it follows from the fact thatiis a g-homomorphism that i* is a homomorphism of
g-representations”. The set of projections to U is IT = {p € Hy : i*(p) = 13} € Hy, and p € ITis g-homomorphism
if p € HY, thus we need to show that IT N Hj is nonempty.

We claim that for any p € I1, its invariant part ngl (p) € TIN Hj, so that ker(T[l(;Il (p)) is a complementary
subrepresentation to U as required. To see that 71(1){1 (p) € ITnote by (6.3.1) we have

(g (p) = T2 (' (p)) = T2 (Ly) = 1.

where the second equality holds because p is a projection, and the third since 1;; € Homg(U, U) = Hj.

6.3.1 Casimir operators

Lemma 6.3.7. Suppose that g is semisimple and (V, p) is a representation of §. Then the radical of ty; is precisely the kernel
of p. Equivalently, ty, induces a nondegenerate invariant form on p(g).

2Bxplicitly, if x € 8, ¢ € Hy then X(*(¢))) = Xy o (P o) = (P o) o Xy = (g 0 P) o i = (P o x) o = i*(x(h))
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Proof. If p(g) = O then the Lemma holds trivially. Otherwise, we may replace g by its image g; = p(g) # 0, which,
since itis nonzero, is semisimple because g is. Now lett = rad(fy/), anideal in g;. Since it g; is semisimple, it follows
thatis semisimple (or zero), and hence by part ) of Theorem 6.2.5, D(t) = 1, that s, 1 is perfect. But by Proposition
5.2.12, the trace form on gly, does not vanish identically on any nonzero perfect subalgebra of gly,, hence we must
have r = {0} as required. O

Definition 6.3.8. Let g be a semisimple Lie algebra and (V/, p) a representation of g with p(g) # 0. Then if we let
g1 = p(g), then by Lemma 6.3.7, t; is nondegenerate on g7, and so induces an isomorphism of g-representations
Oy: g1 — 9]. LetT: g7 — gly denote the composition of 9‘_/1 withi: g; — gly the inclusion map. We have a
sequence of g1 - (and g-) homomorphisms

* * * ®
(01 ®a1)" = 6} ® g} —— gly ®aly — gly,

where ¢ is just composition of linear maps. These are both homomorphisms of g-representations since we have
already seen that 7 is, and the fact that c is follows the discussion in the proof of Lemma 5.2.4.> We thus obtain the
Casimir operator,

C=Cy =c(to1)(ty) € gly’.

The factthat C € gIVg means that Cp(x) = p(x)C for all x € g, thatis, Cy is a g-endomorphism of V.

Lemma 6.3.9. Let {xq, ..., x,} be a basis of 61 and {01, ..., 0,,} the corresponding dual basis of 7. Then ty, = 2?:1 0;®
Oy (x;), and hence Cy, = 27:1 yix; € gly, wherey; = 031(5;). It follows that

i) V8 Cker(Cy)andim(Cy) C g.V,
i) tr(Cy) = dim(g;) = dim(p(g)).

Proof. Clearly we may write any element of g* ® g* in the form 2?:1 0; ® f; for some f; € g*.* But by definition,
Ov(x)y) = ty(x,y) = 2;1:1 6j(x)).fi(y) = fi(y), hence ty = N, 6; ® Oy(x;) as claimed. Thus Cyy = co (1 ®
T)(ty) = C(E?zl 6{/1 0;)®x;) = Z?zl yix; € gly. Since x;,; € g1, part i) is immediate from the definitions, while
for i1) since tr(y;x;) = ty (y;, x;) = litis clear that tr(Cy) = Z?zl 1 =n = dim(g;). O

Example 6.3.10. Letustake g = sl C gl,. Then the trace form #(x, ) = tr(x.y) is non-degenerate and invariant,
and

te f)=tle f)=1, thh) =2, tee)=tf, f)=1teh)=tfh)=0
soif weletd,, O, Oj, be the basis of ¢* dual to {e, f, h}, we see thatt = (1 + 0)(6, ® O + 6, ® O),) where 0 € End(g" ®
g*) is the map (@ ® b) = b®a. It follows that Oy(e) = 67, Oy(f) = 0, and Oy (h) = %6;,, and hence Cy, =
1]’[2
ef + fe+ Sh.

Proof of Proposition 6.3.4: We prove the statement by induction on dim(V'), the case dim(V) = 0 being trivial. If V =
V9 then certainly g.V = {0} and the statement holds. Thus we may assume that V # V9, so that p(g) # {0}, hence
we have a Casimir operator C € gly. Since itis a g-endomorphism, if V = P V) is the decomposition of V into
the generalised eigenspaces of Cy/, each V), is a subrepresentations of V. Since if the statement of the proposition
holds for representations U and W it certainly holds for their direct sum U @ W, we are done by induction unless
C has exactly one generalised eigenspace, i.e. V = V. But then by part ii) of Lemma 6.3.9, dim(V).A = «(C) =
dim(p(g)), so that A # 0°, and hence C is invertible. The by part i) of Lemma 6.3.9 we have V% C ker(C) = {0} and
im(C) =V Cg.V,sothat V = {0} ®g.V = V3@ g.V asrequired.

6.3.2 The Jordan decomposition: functoriality

Given a representation (V, p) of g, it is thus natural to ask whether p(x) = p(s) + p(n) is again the naive Jordan
decomposition of p(x).

Theorem 6.3.11. Let g be a semisimple Lie algebra and let (V, p) be a representation of §. Then if s € g is semisimple, so is
p(s), and similarly if n € g is nilpotent, then so is p(n). In particular, if x € § has abstract Jordan decomposition x = s + n,
then p(x) = p(s) + p(n) is the naive Jordan decomposition of p(x).

3Itis also equivalent to the fact that, for any a € gly, the map ad(a) is a derivation for the associative algebra End(V).

4Indeed if V and W are vector spaces and B = {ey, ..., ¢4} is a basis of V/, then any element of V ® W may be written uniquely as E’ii:l e; ®w;
forw; e W, (1 <i <d).
®This is where we use that the characteristic of the field is 0.
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Proof. Let us first show that the final sentence follows from the fact that p(s) is semisimple if s is semisimple and
p(n) is nilpotent if 1 is nilpotent. Indeeed since [s, 7] = 0 and p is a Lie algebra bomomorphism, [p(s), p(1)] = 0,
thus p(s) semisimple and p(#) nilpotent implies that the pair (p(s), p(1)) satisfy the characterising property of the
naive Jordan decomposition established in Lemma 6.2.9.

o p(n) is nilpotent: Let . gl; — gbe given by ((t) = t.1, so that (g, ad o t) and (V, p o 1) are gl; -representations.
Let V = @)\E\P(n) V) be the generalised weight-space decomposition of V as a representation of gl; — that
is, the generalised eigenspace decomposition of V with respect to p(¢(1)) = p(n). Since ad(n) is nilpotent,
g = g as a representation of gl;.

FixA € W(n). fa: gg® V, — Visgivenby d(x ® v) = p(x)(v), then 7 is a g-homomorphism, and hence
a homomorphism of gl; -representations. Since go ® V) C (g ® V)40 it follows that .V, C V), thatis V,
is a g-subrepresentation of V. But now g = D(g), hence if g, denotes its image in gly , D(g") = g%, so that

gt c sly,. Butthen try, (p(n) = A.dim(V,) = 0, hence A = 0. It follows that V = V and p(n) is nilpotent
as required.

e p(s) is semisimple: Since g is semisimple, Weyl’s theorem ensures that V is completely reducible, and so it
suffices to check that p(s) is semisimple in the case where V is irreducible. Let V = @/\es - V) be the
ve

generalised eigenspace decomposition of p(s), where S;y C k is the set of eigenvalues of p(s), and let g =
@aes g5, be the decomposition of g into the eigenspaces of ad(s) (since ad(s) is semisimple, g is the direct
g

sum of its ad(s)-eigenspaces). Let V3 C V, be the p(s)-eigenspace of p(s) inside the generalised eigenspace
and let V° = @/\e‘yv V4. We claim that V* is a g-subrepresentation of V. Note that the claim establishes

the semisimplicity of p(s), since V§ # Oif and only if V # 0, so we musthave 0 # V* C V. Butsince V' is
irreducible, it follows V*® = V as required.

To verify the claim we may assume thatv € V) and x € g,. Then
pE) (p)®) = (p(ls, XD + pp(s)) (©)
= a(s)p(x)(0) + AHp(©) = (@ + 1)(s) (p()(@)),

thatis p(x)(v) € Vi, , C V®,and V® < V is a subrepresentation of V as claimed.

O

Remark 6.3.12. Note that the proof that p(n) is nilpotent does not require that g is semisimple, it only requires that
g be perfect. On the other hand, the proof that ad(s) is semisimple uses Weyl’s theorem, to reduce to the semisimple
case. In fact it is the case that if g is a perfect Lie algebra in characteristic zero, then every element x € g has an
abstract Jordan decomposition x = s + 7, and that decomposition yields the naive Jordan decomposition of its
image p(x) € gly for any finite-dimensional representation (V, p) of .
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Chapter 7

The structure of semisimple Lie algebras

If (g, b) is a Cartan pair, the amount of information captured by the Cartan decomposition g = h @ @ae o S depends
on . At one extreme, when g is nilpotent, we have the trivial decomposition ) = g. The semisimple case is in some
sense at the opposite extreme: the Cartan subalgebra ) turns out to be abelian and the decomposition of g is as fine
as possible — g is a semisimple h-representation.

7.1 TheKilling form and the Cartan decomposition

Proposition 7.1.1. Let (3, D) be a Cartan pair and let § = (P
Dy = {0} U D, g9 = b, and let k denote the Killing form of g.

Aed, O be the associated Cartan decomposition of g, where
0

i) Wehave(g,,9,) = Ounless A+ u = 0.

ii) Forany A € Qg therestrictionofkto gy X g_, givesalinearmap 0, : 8y — g ,. TheKilling form x isnondegenerate,
and hence § semisimple, if and only if, for every A € © the linear mayp 0, is an isomorphism. In particular:
a) the restriction of  to ) = g is nondegenerate,
b) dim(g,) = dim(g_,) andso A € D ifand only if —A € .

Proof. Let 0: g — g* be the map given by O(x)(y) = «(x,y) for x,y € g. By2.2.1,g" = @/\e% @) as an b-
representation. Now g, is the A-generalised weight space of g, hence its only composition factor is k. By Lemma

2.2.9 it follows that g} has k_, as its unique composition factor, and hence g* = EBAed) a3 gives the h-weight
0

%

isotypical decomposition of g* where (g"), = (9_,)

Since « is invariant, 0 € Hom(g, §")? = Homgy(g, g%), i.e. it is a homomorphism of g-representations. In par-
ticular, it is an h-homomorphism, so that 6(g,) C (3")4 = g7 . It follows that x(g,, 8,) = 6(31)(g,) = O unless
p = —A as claimed. Moreover, if g is semisimple, then «x is nondegenerate, i.e. 0 is an isomorphism. But as 0 is an
h-homomorphism this forces 6, = )4, : 91 — ¢, to be an isomorphism for all A as required. O

Remark 7.1.2. When g is semisimple, by Proposition 7.1.1, ¥ induces an isomorphism 8y: ) — b*. Given A € b,
we will write t; € b for O51(A), so that t, is uniquely determined by the condition that «(t,, k) = A(h) for all i € .

Lemma 7.1.3. If (g, D) is a Cartan pair and « is the Killing form of g, then we have

K(hl,hz) = Z d1m(ga)a(h1)a(h2), Vhl,hz (S [) (711)

acd

If g is semisimple, it follows that

i) (D) =D
i) bisabelian.

iii) Recalll, =[8,,9_,] Cb. Wehaveb, Nker(a) = {0}, and hence dim(h,) < 1.
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Proof. Since g = 69/\@130 g, as an h-representation, k(hy,hy) = ZAE% ty, (11, hp). Equation (7.1.1) thus follows
immediately by applying Lemma 2.2.8 to the h-representations g, .

Now suppose that g is semisimple and let S = (®),. Since ® C D(h)°? C b*, clearly S € D(h)°. Let S° = PO =
(hebh:al) =0,Ya e ®}, where, since ) is finite-dimensional, we view S? as a subspace of [y via the canonical
isomorphism (h*)* = §. It is clear from (7.1.1) that S® C rad(kyp), but if g is semisimple, part ii) of Proposition 7.1.1
shows that this is {0}. But then S = (S§°)° = b*, so that ® spans b establishing 7). But S € D(h)° hence D(h)? = b*
and hence D(f)) = {0}, establishing part ii). Finally, by Lemma 5.2.10 applied to the adjoint representation of g, if
B € @, then we have By = rg.ay, for somerg € Q. But thenifz € D, Nker(a) it follows B(z) = rg.a(z) = 0 for all
B € ®,and hencez € S = {0} as required. Since dim(ker()) = dim(h) — 1, clearly dim(b,) < 1. O

7.1.1 The roots of a semisimple Lie algebra

0 0 0 -1 10
obeyed by {¢,h, f}in sl, are [e, f] = h,[h,e] = 2eand [k, f] —2f. If g is an arbitrary Lie algebra, an sl,-triple is a
triple {E, H, F} of elements of g which obey the same relations, so [E, F] = H, [H, E] = 2E and [H, F] = —2F. Such
a triple determines a homomorphism 6: sl, — gwhere 8(¢) = E, O(h) = H and 6(f) = F. Since sl, is simple, such
a homomorphism is determined by its image up to a scalar.

Definition 7.1.4. The standard basis for sl,(k) ise = 01 Jh= 10 )andf = ( 0 0 ) The relations

Definition 7.1.5. Recall that, as in Definition 2.2.10, if W is an })-representation then we write W¥ for the socle of

W, that is, the sum of all irreducible f)-subrepresentations of W. If (g, ) is a Cartan pair and g = @AE% g,, is the

decomposition of g as an f)-representation, then the f)-representation g, has k; as its only composition factor and
hence g} = {x € g, : [I,x] = A(h).x,Vh € b}, thatis,if x € g} and x # O then k.x = k, as h-representations. For
example, gf) = b ie. a;) is the subrepresentation of h-invariantsin g.

The following Lemma is the first step in constructing a copy of sl, for each pair {+a} of roots in a semisimple Lie
algebra.

Lemma 7.1.6. Let (g,D) be a Cartan pair such that § is semisimple, and let § = h @ @ae o %o the associated Cartan
decomposition. If x € g5 andy € §_, then [x,y] = x(x, y).t,. Moreoverife, € g, is nonzero, then ad(e,)(3_,) = k.ty =
by sothaty = b, @ ker(a). In particular, ifh, € b, is given by a(h,) = 2, thereisan f, € g_, such that[e,, f,] = h,.

Proof. Fori)takeanyx € g5,y € §_, andh € . Then forallh € b,

Oo([x, yD)(h) = x(h, [x, y]) = «([h, x], y) = x(x, y)a(h)

Thus [x, y] = 051 (k(x, y)a) = k(x, y)t,. By part iii) of Lemma 7.1.6, we know [),, N ker(a) = {0}. Hence D), =C k.t,.
Butsince 0,: g, — g", is an isomorphism, for any non-zero ¢, € g}, we may findy € g_, with x(e,, y) # 0. Hence
thereis an f,, € k.y with k(e,, fo) = 2a(t,) ! so that[e,, f,] = h, and moreover b, 2 ad(e,)(k.f,) = k.1, hence
b, = k.h, = k.t,.

O

Definition 7.1.7. Given aroot @ € @, the element /1, is known as the coroot associated to a. We will write @Y =
{h, : a € ®} C bfor the set of coroots.

Proposition 7.1.8. Let g be a semisimple Lie algebra and V) a Cartan subalgebra with Cartan decomposition § =

b @aeq) 0q- Then

i) The root spaces §, are one-dimensional, andif &« € @, ¢ € Z, thenc.a € © if and only if c = £1.
i) sl, =g, ®b, ®q_, is a subalgebra of § isomorphic to sly (k).

iii) Qisasemisimplel)-representation, sothatforallh € b, ad(h) is semisimple, and hencel) consists of semisimple elements,
i.e. the Jordan decomposition of h € Hish = h.

Proof. Fixa € @, andlet{e,, f,,h,} be asin Lemma 7.1.6, so that {e,, h,, f,} € M where

M= @ My, My = ke Myo =y, ¥p <0.
k<1
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We claim that M is a subalgebra. Since M, C g, forallp € Z, it suffices to check that [M ,, M ] € Mxii)a
fork <1 < 1. Fork +1 < 0 this is clear because M1y = G(k+1)o While if k = 0 it is equivalent to M; , being an
b-subrepresentation which we have already checked unlessI = 1, butase, € g, M, = k,. Finallyifk = [ = 1, then
[Ma, M) = kileq, e0] =0 = Mp,.

It follows that ad(h,) = [ad(e,), ad(f,)] acts on M with trace zero. But M = @k<1 M., is the decomposition
of M into ad(h, ) generalised eigenspaces where My, = My, , hence

0= Y 2p.dim(M,,) =2- Y, 2p.dim(3_p,) = 2.(1 - Y p.dim(a_,)
p<1 p=1 p>0

Ifp > 1then p.dim(3_,) > 1 unless dim(g_,,) = 0 hence dim(g_,,) = Oforallp > 1 so thatdim(g_,) = 1.
Since dim(g,) = dim(g_,) it follows dim(g.,) = 0if |c| > 1 and dim(g,) = dim(g_,) = 1, which proves parti). It
follows that sl is three-dimensional with basis {e,, h,, f,}. But[e,, f,] = h, by our choice of f,, and as g,,g_, are
1-dimensional, §., = ky,, and hence as a(h,) = 2 we have [h,, e,] = 2e,, [l,, fo]l = =2f 4. Thus {e,, by, fo} isan
sly-triple, so that s, = sl, establishing part ii).

~ 1,dim(b)
=~ k0

Finally, since [) is abelian fy thus the Cartan decomposition g = ) @ @ae o Ja exhibits g as a direct sum

of irreducible h-representations, hence ad(/) acts diagonalisably on g for all & € b, which proves part iif). O

We can use our strategy of evaluating traces in two ways once more to obtain finer information about the set of
roots associated to the Cartan decomposition of a semisimple Lie algebra. For this we need the some more termi-
nology:

Definition 7.1.9. Suppose that &, § are two roots in g. Then we may consider the roots which have the form § + ka
for some integer k € Z. Clearly, since g is finite dimensional, there are integers p, g > 0 such that § + ka € @ for
each k with —p < k < g, but neither 8 — (p + 1)a nor B + (g + 1)« are in @y = ®. We call this set of roots’ S, () the
a-string through f.

Proposition 7.1.10. Leta, € O and suppose tharS,(B) = (B —pa, ..., B + qa} is the a-string through B. Then we have

i)
ZK(ta, tﬁ) _

Bhy) = x(hy, tg) = L) P

In particular B — B(h,).a € D.
ii) Ifp = c.a for somec € k, thenc = £1.

ii}) IfS = {B+ka € DU(0} : k € Z), then S = Sy (B).

Proof. First note thatif 0 € S,(f) then f = k.« for some k € Z, and the claims of this proposition in that case
all follow from Proposition 7.1.8. Thus we may assume § ¢ Z.a so that S,(f) € ®. Lety = B — pa, so that
the S,(B)Sa(y) = {y, ¥ +a, ..,y +sa}, wheres = p + 4. Consider the subspace My = o<kes O
{eq, iy, e_o} be an sl -triple corresponding to an isomorphism ¢ sl — sl, asin Remark 7.1.4. Sincey —a ¢ ® U {0}
andy + (s + 1)a € O U {0}, we see that sl,, preserves M. Hence trMﬁ(ad(ha)Wﬁ) = trM([ad(ea)‘Mﬁ, ad(e_a)|Mﬁ]) =
0. Lete: gly — b be the map e(t) = t.h,, so thate' (1) = A(h,) is the unique eigenvalue of ad(l,));, where
eT: b — gl;” = gl = k denotes the transpose of .

y+ka» and let

But the weight spaces of M are g, where 0 < k < s, which are thus 1-dimensional eigenspaces for ad(h,)
with eigenvalue e' (y + ka) = y(h,) + 2k. Thus the spectrum of ad(h,) is an arithmetic progression {)(h,) + 2k :
0 < k < s} with each eigenvalue having multiplicity one. But then since tr(ad(h,) = 0, their mean value is 0, so

0=y, + ﬁ Ei:o = y(h,) + s, and so
eT(S4(B) = {-s,~s+2,..,5 2,5} (7.1.2)

Since s = p + g, it follows that f(h,) = (y + pa)(h,) = p — g asrequired,and f— (p—q)a = ¥y + . € S,(B) € D.

For part if), note " restricts to an isomorphism k.a — k, withe(aa) = 2a. Thusif f = c.a, since ¢ Z.«v
by assumption, 0 ¢ e'(S,(B)) so by (7.1.2), s must be odd, where s +1 = |S,(c.a)|. But then, again by (7.1.2),

!Some references will impose the condition that & and 3 are linearly independent, in which case the a-string through  will be a subset of .
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1 € {-s,—s+2,..s}and sincel = e'(a/2), it follows @/2 € S,(8) C ®. Butthena = 2(®/2) € 2.0, whichisa
contradiction. Hence if § ¢ Z.a we must have §§ € k.a.

Finally, note that S is clearly the disjoint union of the @-root strings it contains, and by the above, if S, (') is any
such string, we may form the corresponding sl,-subrepresentation My of g. But the eigenvalues of ad(h,) on Mg
mustbe e’ (S,(8)) = Ps = {-s,—s+2,..,5—2,s} wheres = |S,(B’)]. Since for s < s’ we have P; C Py, any two
such sets intersect. Since the map  + ka — pB(h,) + 2k is injective and the roots strings in S are pairwise disjoint, it

follows S = S,(f) as claimed.
O

7.1.2 Rational form of [) and inner product spaces

Recall that since k|, is non-degenerate, it gives an isomorphism §: ) — . For A € )", we write ¢, for 071(1),
so thatk(ty, h) = A(h), WA € b",h € ). Given aroot @ € @, we have seen thatsl, = 4, D9_,D[6,,9-,] € g
is a subalgebra isomorphic to sl,. Indeed each summand is 1-dimensional, and [g,,9_,] = k.t, € b. Weseth, =
2a(t,)L.t,, so thata(hy,) = 2.

Definition 7.1.11. Lethg ={h € ) : a(h) € Q,Va € ®}. Clearly h is a Q-vector space (a subspace of [) viewed as
aQ-vector space?). Recall also that a symmetric bilinear form (., .) on a Q-vector space V is said to be positive definite
if (v, v) > 0 with equality holding precisely when v = (. Such a form is also commonly called an inner product.

Lemma 7.1.12. The Q-vector space Yy has the following properties

i) Ifxq denotes the restriction of the Killing form to D, then Kq is a Q-valued positive definite symmetric bilinear form
on hg.

ii) bg = (CDV>Q = ({ty : @ € Dh)g, and dimg(bg) = dimy(h). In particular, O identifies the dual ()" of g with
(D)o

Proof. For part i), since we have shown in Proposition 7.1.8 that dim(g,) = 1 for all@ € ®, we may simplify the
expression for k|, given in (7.1.1) to obtain x(hy, hp) = EV < V(h1)y(hy). Itis thus immediate from the definition of

bq that the Killing form is Q-valued on hg. Moreover, if i € D, since )/(h)2 > Oforally € ®, wehave xq(h, ) > 0,
with equality if and only if y(h) = O for all y € ®, and since () = b, this holds only if & = 0. Thus k¢ is positive
definite as claimed.

For part ii), by Proposition 7.1.10, the roots are Z.-valued on set of coroots ® ", hence bg 2 ((I)V>Q. Moreover
h, = cy.ty where2 = c,.%(ty, t,), hence k(hy, hy) = 3K (ty, t,) = 2.c, € Z. Thust, = 2xk(hy, hy)  h, € Q.hy,
and hence clearly ({t, : @ € ®})g = (CDV)Q.

Now since @ spans b*, we may find a subset B = {yq, ..., ¥;} € ® which is a basis of h*. Let B’ = Gal(B) =
{t,, 11<i< I} c (CDV)Q. Since it is a k-basis of ), B’ is linearly independent over k and hence over Q. It follows
dimg({®")q) > I Butifn: hg — Q' is given by n(h) = ()/i(h))le, then 7 is injective because B is a basis of ™.
Hence dim(bg) < I It follows that hg = (CDV)Q and dimg(hg) = I = dimy(D). Since spanf{t, : a € ®} = hq, the
final statement in ii) is now also clear. O

Definition 7.1.13. Let (-, —) denote the bilinear form on l)* which is obtained by identifying h* with by: thatis

A, ) = (b, ).

Clearly itis a nondegenerate symmetric bilinear form, and via the previous Lemma, for all @, § € ® we have (o, ) =
K(ta, tg) € Q, so thatitrestricts to a Q-valued symmetric bilinear form on h which is positive definite.

*Remark 7.1.14. The group Y generated by {1, : @ € ®}is afinitely generated abelian group which is a subgroup of
a Q-vector space, and so is torsion-free. It follows from the structure theorem for finitely generated abelian groups®
that Y is therefore actually a free abelian group. Moreover, the inner product restricts to an integer-valued positive
definite form on Y. A finitely generated free abelian group with such a form is called a lattice. (See the final problem
sheet for some discussion of these.) Note that any basis B for Y is also a Q-basis of ) but not conversely — this
gives at least some motivation for the notion of a base we will see shortly, in that some subsets of @ may yield only
a Q-basis of ), whereas others may yield a Z-basis of Y.

2Since k has characteristic zero, it contains a canonical copy of Q —it is the intersection of all of the subfields of k)
3which you may have seen in a previous algebra course...
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7.2 Abstract root systems

In this section we study the geometry which we are led to by the configuration of roots associated to a Cartan de-
composition of a semisimple Lie algebra. These configurations will turn out to have a very special, highly symmetric,
form which allows them to be completely classified.

We will work with rational inner product spaces V, thatis, Q-vector spaces V equipped with a positive-definite
symmetric bilinear form* which we will denote by (.,.). Such vector spaces have, in addition to a notion of length
given by, for any v € V, the norm ||v]| = (v, v)"2, a notion of angle: by the Cauchy-Schwarz inequality there is a
unique 0 € [0, 7] with

(v1,02)

cos(f) = ——=—
O = Tor el

€ [-1,1].

The group of orthogonal linear transformations of V is
0(V) = g € GL(V) : (3(0), g(@)) = (v, w), Y0, € V.

Definition 7.2.1. Areflectionis anontrivial element of O(V) which fixes a subspace of codimension1 (i.e. dimension
dim(V)-1). 1fs € O(V)is areflection and W < V is the +1-eigenspace, then L = W+ is aline preserved by s, hence
the restriction sy, of s to L is an element of O(L) = {+1}, which since s is nontrivial must be 1. In particular s has
order 2. If v is any nonzero element of L then it is easy to check that s is given by

2(u,v)

(v,0)

s(u) =u- .

Given v # 0 we will write s,, for the reflection given by the above formula, and refer to it as the “reflection in the
hyperplane perpendicular to v”.

We now give the definition which captures the geometry of the root of a semisimple Lie algebra.

Definition 7.2.2. A pair (V, ®) consisting a rational inner product space V and a finite subset @ C V\{0} is called
an (abstract) root system if it satisfies the following properties:

i) @ spansV;
i) fa € ®,c € Q,thenca € Pifand onlyifc = £1;
iii) Ifa € @ thens,: V — V preserves ®;

iv) Ifa,f € O and we define
_2a,p)
(@)

(a, )

(7.2.0)
then (&, B) € Z. We say (a, f8) is a Cartan integer.

This definition is, unsurprisingly, motivated by the following result.

Lemma 7.2.3. Let (g,1) be a Cartan pair where g is semisimple, and let ¢ = h @ @ae o %a be the associated Cartan
decomposition and let Oy be the Q-span of @ in ", Then (bgy, @) is an abstract root system.

Proof. Let (—, —) denote the symmetric bilinear form on I, induced by the restriction of the Killing form «j, as in
§7.1.2. Lemma 7.1.12 shows that this restriction is positive definite. Property i) for an abstract root system follows
immediately from the definitions, and the remaining properties follow from Proposition 7.1.10: partii) of that Propo-
sition establishes property if), while part 7) establishes properties iif) and iv).

O

Remarkably, the finite set of vectors given by a root system has both a rich enough structure that it captures the
isomorphism type of a semisimple Lie algebra, but is also explicit enough that we can completely classify them, and
hence classify semisimple Lie algebras.

4Such forms only make sense over ordered fields, such as Q or R.
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Definition 7.2.4. Let(V, ®)be arootsystem. Then the Weyl group of the root systemis the group W = (s, : @ € D).
Since its generators preserve the finite set @ and these vectors span V/, it follows that it is a finite subgroup of O(V).

Example 7.2.5. Letg = s, Thenlet D, denote the diagonal matrices in gl,, and ) the (traceless) diagonal matrices
in sl,. As you saw in the problem sets, f) forms a Cartan subalgebra in sl,. Let{¢; : 1 < i < n} be the basis of
D}, dual to the basis {E;; : 1 < i < n} of d, in gl,,. The Cartan decomposition of sl,, is ) ® @ k.E;;, where

I<i#jsn P
ad(h)(Ejj) = (h; — hj)Ej;, where hy = €x(h) fork € {1, ..., n}. Thus
n n n
bQ = {Z hiEii . hi €qQ, th = O} and bb = E Ci&; 1 C; € Q /Q.(El + ..+ En),
i=1 i=1 i=1

where the roots in D, are the (images of the) vectors {¢; — ¢; : 1 < i,j < n,i # j}. Moreover, the Killing form for s,
is k(x, y) = 2n.tr(xy), so the {E; : 1 < i < n} are an orthogonal basis of h with x(Ej;, E;;) = 2n. The Weyl group W
in this case is the group generated by the reflections s, which, for @ = ¢; — ¢; interchange the basis vectors ¢; and ¢,
so it is easy to see that W is just the symmetric group on 7 letters.

7.2.1 Positive sets and sets of simple roots

Since the set of roots @ spans V, it certainly contains (many) subsets which form a basis of V. The key to the classi-
fication of root systems is to show that there is a special class of such bases which capture enough of the geometry
of the set of roots that the entire root system can be recovered from the bases of this form.

Definition 7.2.6. Given a set of vectors X in a vector space V, we will write

IN.X =4 Y cs: Y C Xfinite,c, e NP CZ.X =4 Y, ¢p5 1 Y C X finite, ¢, € Z
seY seY

The set IN.X is closed under vector addition and multiplication by elements of IN.

Definition 7.2.7. Let (V, ®) be a root system, and let A be a subset of @. We say that A is a base (or a set of simple
roots) for @ if A is a linearly independent and for each & € @, exactly one of & or —a lies in IN.A. Note that since
(®)g = V, abase Ais in particular a basis of V. Given a base A of ® we set @} = INAN @ and @, = —P, the
subsets of A-positive and A-negative roots respectively.

Remark 7.2.8. One can express the conditions that a subset A € ® must satisfy to be a base in various equivalent
ways. For example, one can rephrase them as follows: i) @ € Z.A and ii) N.AN-IN.A = @and DN IN.Ais as
large as possible, i.e. |© NIN.A| = |D|/2.

e second condition is perhaps less natural-seeming, but it is helpful to note thatif it holds, and we write n* =

Th d condit perhaps| tural g, butitis helpful to note that if it holds, and ten*

@aecbi 84, then 1 and 1~ are subalgebras of g and in fact g = n* @) @ n~ (a direct sum as a vector space — each
A

summand is only a subalgebra, not an ideal, of g). Moreover, the Killing form induces an isomorphism 6% : n* —
()"

The following definition gives us a natural way of decomposing the roots ® into “positive” and “negative” sub-
sets.

Definition 7.2.9. Let V be a Q-vector space. A positive set & in V is a subset Z C V\{0} such that

e Foreachv € V\{0}, exactly one of v or —v lies in . 2.

o ifv;,0, € P and A € Q>0 thenA.Ul,Ul +0, € P.

If 7 is a positive set, then we define a total order < on V by v; < v, ifand only if v, —v; € Z.

Example 7.2.10. If V is a Q-vector space and B= (eq, - ,€,)is an ordered basis of V, and let {0, ..., 6;} be the dual
basis of V* so thatfor anyv € V we havev = 25:1 0i(v).¢;. Lets: V\{0} — {1, ..., I} be given by s3(v) = minfk :
1 <k <1,6¢(v) # 0}, and, if v € V\{0} has s33(0) = k, let p3(v) = 0x(v). Then

!
P(B) ={ve V\0}: p3(@) >0} ={ Y Aieg ik € (1,2, 1L, A, > 0
i=k
is a positive system.
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Definition 7.2.11. Let(V, ®)bearootsystem and fix a positive set.# in V. Let CD}, =PNFandd_, = PN (-F)
(where the positive set .7 is understood from context, we will simply write @ *). We say that @ is a set of positive
roots if there is a positive set & in V for which @* = @7, = d N 2.

Given a set of positive roots @, we say thata € CD;? is decomposableif &« = 5 + y for some 3,y € (D_tm. Arootis
indecomposable if it is not decomposable. Let I 5 be the set of indecomposable roots in @}o.

Proposition 7.2.12. Let (V, ®) be an abstract root system.

i) Let (V, D) be a root system and suppose that 7 is a positive system. Then the set of indecomposable roots I1 = I1
is linearly independent and CDJ;G = N.I1y N D, so that I is a base of (V, ) and the map O, +— T1  is bijective
with inverse I1 5 +— IN.I1 5, N @. In particular, any root system has a base.

ii) Every base of (V, @) is of the form I1 5 for some positive system 2, thus the map A — O} gives a bijection between
set of all bases of (V, D) and the set of all sets of positive roots (I);?, since for any positive system 7 with @ 5, = O} we
havelIl » = A.

Proof. We establish part i) in three steps:

Step 1: We claim that @7, C IN.IT. The set @™ is totally ordered by the order given by %, so if ®* is not contained
in IN.TT, we may consider « € ®7, the minimal element of ®* not contained on IN.IT. Clearly @ ¢ [T, hence
« is decomposable and there are 1,7, € ®* witha = y; + v,. Butthen y1,), < @, so by minimality of «,
¥1, V2 € IN.IL ButIN.ITis closed under addition, so & = Y1 + y» € IN.II, giving a contradiction. Hence @ C IN.T1
as required, and (I{;,, — I1 5 is bijective.

Step 2: Next we claim thatif o, f € (D} are distinct roots such that (@, f) > 0, then at least one of them must
be decomposable. To see this, first note that (@, ), (8,a) > 0. Since a, € D are distinc, they are linearly
independent, and hence by Cauchy-Schwarz, («, ).(f,a) € {1,2,3}. It follows one of (a, f) or {8,a) = 1. By
symmetry we may assume (&, ) = 1, and hence s,(f) = f—a € ®. Butthenoneof &« —for f —aliesin®*. But
asa = (a— ) +Pandf = (B —a) + a, it follows that one of @ or f must be is decomposable as required.

Step 3 Let S be any subset of & with the property thatif s, t € S are distinct, then (s, #) < 0. We claim that Sislinearly
independent. Since by step 2, I'1 5 has this property, and by step 1 ®*, C IN.I1 , it follows from the claim that T 5
is a base. Suppose that }, 1. ;.5 = Ois alinear dependence, where T C S. Thenlet T* = {s € T : ¢, > 0}, and let
Z2= Nyeqs Ot = Ve (=C5).8. Now ¥, i ¢t € P unless T = @since T* € F and ¢, > Oforallt € T*. But

(z,2) = () ety D (=c)8) = Dy cil=c)(s,1) < 0

teT+ seT~ st

hencez = 0. Butthen T* = @, and ¥, _; (=c,).s = 0. Since (=¢;) > 0 and s € & foralls € T this implies ¢, = 0
foralls € T~ = T, so Sis linearly independent as required.

For part if), given a base A, pick an arbitrary ordering A% = {a, ..., &;}. Then A is an ordered basis of V and
hence gives a positive set & = .Z,,u as in Example 7.2.10. Now @} = N.AND C Z since A C ., and hence

1
O} C dN.P = DY, and since D} and @7, both have EI‘DI elements, P{ = @7, (thus the set of positive roots 7,
is independent of ordering of A which we chose to obtain .2).

Let p € V" be given by p(a) = 1foralla € A. If & is any positive set for which @7, = @} = IN.A N D we see
that 6(a) € IN for all @ € @7, so thatif a is decomposable we must have 6(a) > 2, while 6(a) = 1 if and only if
a € A. Itfollows that A C IT . Since we have just seen that Il is a base of V it follows IT» = A. Part ii) follows
immediately.

O

Lemma 7.2.13. Let (V, ®) be an abstract root system, and suppose that o« € .

1. Thereis a positive set P for which « is the minimal element of CD_};, In particular, @ € (I)fj? is indecomposable, and so
belongs to I1 5, a base of (V, D).

2. If Nisabaseand a € A, then iff € @) and f # a, then s, (B) € DF,. Hence if we write @™ (ar) = O *\{a} then we
have s,(®*(a)) = ©* () whenever a € A.

Proof. Pick a basis B C @ of V containing @ and let B = {y1, ., 71} be an ordering of it in which @ = y;. Let
D = {6y, ..,01} Let & = P Thenif f € (I); has < a, since f € & and sz = |, we must have s3(B) = [ also,
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and hence § = c.a for some ¢ > 0. But since a, § € @ this implies § = « as required. Since f3 is minimal, it must be
indecomposable, and hence § € I, which we have seen is always a base.

Next if A is a base containing @, we may take B = A, so that 7 = 7. If 51 =5, (Z), then ’@31 = 5,(Z). But
sa(Vi) = vi —{¥1, Vi)-y1, hence the dual basis to A = s,(A)is D1 = 54 (D) = {01, ..., 011, —0; — 2y Yol 1t
follows that pA (v) = pa, (v) forallv € V\Q.a, hences, (&) = 9531 and Z\Q.a = ﬁgl\Q.a = 5,(Z)\Q.q, so that
(D\{xa}) N Z = (D\{xa} N A asrequired.

O

It turns out that we can recover the entire root system provided we know a base for it. Before we can show this,
we first show that any two bases of @ are conjugate under the action of W.

Proposition 7.2.14. Suppose that A1 is any base of (V, D) and let OF be the corresponding set of positive roots. Then there
is some w € W such that w(®7) = Dy, and hence w(A1) = A,.

Proof. We prove this by induction ond = |®§ N ®7|. If thisd = 0 then ®j = ®F and hence Ag = A (hence we may
take w = e theidentity element of W);). Next suppose thatd > 0. Let .2 be a positive set such that & = @ N A, If
Ao C @f, then since any element of O is a positive integer combination of A, it follows & € .7 N @ = O and
hence ®f N @] = @, which contradicts the assumption thatd > 0. Thus there is some @ € A such thata € @7.
But then using the notation of Lemma 7.2.13 we see that

[0F N 52(@D)] = [5o(@F) N D7| = | (=) U D (@) N 7| = [ (a) N 7| = d ~ 1

where the first equality holds because s3 = 1y, the second equality follows from Lemma 7.2.13, and the third from
the fact that @] contains @ and hence not —a. But then by induction there is aw € Wy with ws,(®;)* = ®f. Since
ws, € Wy we are done. O

Corollary 7.2.15. Suppose that 5 € ©. Then thereisaw € Wy and an a € Ay such that w(f) = a. In particular, W is
generated by the reflections {s,, : y € Ag}, thatis, W = Wy,

Proof. For the first claim follows from the fact that every root lies in a base for (V, @), shown in part i) of Lemma
7.2.13, together with Proposition 7.2.14.

For the final claim, note that if § € ® then we have just shown that there is aw € Wy such that w(B) = y for
some ) € Ag. But then clearly sg = w‘lsyw € Wy, and so since W = (sg : f € D) it follows that W < W, Since
Wy < W by definition, it follows W = W, as required.

O

Remark 7.2.16. In fact W acts simply transitively on the bases of (V, @), that s, the action is transitive and, if A is a
base and w € W is such that w(A) = A, thenw = 1. The proof (which we will not give) consists of examining the
minimal length expression for w in terms of these generators {s, : @ € Ag}.

7.2.2 Cartan matrices and isomorphisms of root systems

First let us formulate the notion of an isomorphism of root systems:

Definition 7.2.17. If (V, @) and (V’, ®’) are root systems, we say that a linear map ¢: V — V’ is an isomorphism
of root systems if it is a isomorphism of vector spaces such that p(®) = @’ and

(P(a), p(B)) =<a,p), VYa,pe.

Note that ¢ need not be anisometry: if 0 < ¢ < 1, then (V, ¢.®) is aroot system which is notisometric to (V, @), but
¢(x) = c.xis anisomorphism from (V, ®) to (V, c.D).

Definition 7.2.18. Let (V,®) be a root system. The Cartan matrix associated to (V, @) is the matrix

C = Ca = (ay, )} iy
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where {a1, @y, ... ,ap} = Ais abase of (V, D). Since the elements of W are isometries, and W acts transitively on
the set of bases of @, the Cartan matrix is independent® of the choice of base (though clearly determined only up to
orderings of the base A).

Theorem 7.2.19. Let(V, ®)bearootsystem. Then (V, D) is determined up to isomorphism by the Cartan matrix associated
to it.

Proof. Given root systems (V, @) and (V’, ®’) with the same Cartan matrix, we may certainly pick a base A =
{a1, ..., ar} of (V, D) and abase A’ = {B, ..., B¢} of (V/, @’) such that(a;, O(j) = (ﬁi,[a’j) foralli,j, (1 <i,j < £). We
claim the map ¢: A — A’ given by ¢(at;) = f; extends to an isomorphism of root systems. Since A and A’ are bases
of V and V" respectively, ¢ extends uniquely to an isomorphism of vector spaces ¢: V — V', so we must show that
¢(P) = @7, and (P(a), p(B)) = (a, f) foreach , € D.

Lets; = s,, € O(V)ands; = sg € O(V’) be the reflections in the Weyl groups W = W(V,®) and W' =
W(V’,®’) respectively. Then from the formula for the action of s; it is clear that ¢(s;(¢)) = sl'(ﬁ]) = sj(p(ay)),
so since A is a basis it follows ¢(s;(v)) = s;(¢(v)) for allv € V. But then since the s;s and s;s generate W and W’
respectively, ¢ induces an isomorphism W — W', given by w + w’ = ¢ ow o ¢ 1. But by Corollary 7.2.15 we have

P(@) = PW.A) = (PWH™)(P(A)) = WH(A) = WA = @’

Finally, fixing @ € A, clearly the linear functionals given by v = (@, v) and v — {(P(a), p(v)) (v € V) agreeif
v € A, hence by linearity they are equal. Hence (a, ) = (¢(a), (B))if &« € A and § € ®. But since W and W’ act
by isometries

(w(a), w(p)) = <a, B) = {P(a), p(B)) = (W' (P(a)), W' (P(B))) = (Pp(w(a)), p(w(B))),

so that since W.A = @, it follows that(a, ) = (p(a), ¢(B)) foralla, € D.
O

Thus to classify root systems up to isomorphism it is enough to classify Cartan matrices. It turns out that there
is a more combinatorial way to encode the information given by a Cartan matrix, because the possible entries of the
Cartan matrix are heavily constrained, as the next Lemma shows:

Lemma 7.2.20. Let (V, D) be a root system and let o, f € D be such that @ # +f. Then the Cartan integer {a, f) €
{0, +1, £2, +3} Moreover, the angle between o and 3 and the ratio ||0¢||2/||,B||2 are determined by the pair (a, B), (B, @), as
the table below shows:

@p | Bay| 0 | IR
0 0 1/2 | undetermined
1 1 /3 1
-1 -1 | 2n/3 1
1 2 T1/4 2
-1 -2 | 371t/4 2
1 3 11/6 3
-1 -3 | 51t/6 3

Proof. By assumption, we know that both (&, f) and (f, @) are integers with the same sign. By the Cauchy-Schwarz
inequality, if O denotes the angle between « and f3, then:

2
(@, BB a) = 4—9PY_ _ 4eosiop <a. (722)

lladl>- 181>

Noting that cos(6)? determines the angle between the two vectors (or rather the one which is less than 77) and (if
(a,8) # 0) (B, a)/{a, B) = ||0(||2/||‘B||2 (where we write ||[0]|> = (v, )), it is then easy to verify the table given above
by a case-by-case check. O

5This might appear to overlook something: While it is true that W acts transitively on the set of bases, so we may pick an arbitrary base in
order to compute the Cartan matrix, if Wy = {w € W : w(A) = A} then W) acts on C,, and thus could yield constraints on the possible
structure of the Cartan matrix. In fact W is trivial, so we are not missing anything!
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Definition 7.2.21. Asthe previous Lemma shows,if C = (Cl-]-) is a Cartan matrix, its entries ¢;; are highly constrained:
indeed c;; = 2andifi # j,¢;; € {0,-1,-2,-3} and {Cij/ Cﬁ} = {-1, _CijCji} so that ¢;; is determined by the product
¢jj-Cj; and the relative lengths of the two roots (set out in the table above). As a result, the matrix can be recorded
as akind of graph: the vertex set of the graph is labelled by the base {a1, ..., a;}, and one puts (;, @j) (), a;) edges
between a; and ¢, directing the edges so that they go from the larger root to the smaller root. Thus for example if

(a;, a]-) = —2and (a]-, a;) = —1 so that ||(sz||2 > |la;|I?, that is, @ is longer than a;, we record this in the graph as:
Qig = .0(]'

The resulting graph is called the Dynkin diagram.

Definition 7.2.22. We say thatarootsystem (V, @)is reducibleif thereis a partition of the roots into two non-empty
subsets @ LI P, such that (@, f) = Oforalla € @y, € ®,. Thenif we set V| = span(®P;) and V, = span(P,),
clearly V = V| @ V, and we say (V, @) is the sum of the root systems (V7, 1) and (V,, D,). This allows one to
reduce the classification of root systems to the classification of irreducible root systems, i,e. root systems which are
not reducible. It is straight-forward to check that a root system is irreducible if and only if its associated Dynkin
diagram is connected.

Definition 7.2.23. (Not examinable.) The notion of a root system makes sense over the real, as well as rational,
numbers. Let (V, @) be a real root system, and let A = {ay, @y, ..., a;} be abase of . If v; = a;/|l;|| (1 < i < 1) are
the unit vectors in V corresponding to A, then they satisfy the conditions:

L (v;,v;) = 1foralliand (v;, ;) < 0ifi #,

2. Ifi # jthen 4(v;, vj)2 € {0,1,2,3}. (This is the reason we need to extend scalars to the real numbers — if you

want you could just extend scalars to Q(\/E, \/5), but it makes no difference to the classification problem).
Such a set of vectors is called an admissible set.
Itis straightforward to see that classifying Q-vector spaces with a basis which forms an admissible set is equiv-
alent to classifying Cartan matrices, and using elementary techniques it is possible to show that that the following

are the only possibilities (we list the Dynkin diagram, a description of the roots, and a choice of a base):

e Type Ap (€ >1):

t+1
V={U=2Ci€i€Q£+l:ECi=O},®={€i—€j:1Si¢jS€}
i=1

A:{€i+1—€iilﬁiﬁf—1}

e Type B, (€ > 2):

-0 ——> @0
V=Q ,®={e+e:1<ij<li#jlUfxe1<i< ),

A:{Elrgi_{.l_el‘:l Sle—l}

e Type C, (€ = 3):

o--c0<——eo
V=0Q 0= {texe:1<ij<lizjluf2e1<i<t,

A:{2€1,€i+1—€iilﬁiﬁf—1}

e Type D, (€ > 4):

V:Q[,(D:{iEiiéjllﬁi,jﬁf,iij},

A:{€1+€2,€l’+1—€1‘:1Siﬁg—l}
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e Type Gy.
e<——oeo

Lete = &1 + &, + €3 € Q3 then:

V={veQ’: (0,e)=0,,®={e-¢:i#j}U{x(Be-e):1<i<3)

A ={e—¢&y,e- 3¢}

o TypeFy:

e ——— o

V=04
1
q)z{ic‘fi:lSiﬁé‘:}U{iEiiej‘:i¢j}U{§(iEli€2i€3i€4)}
1
A ={ey—e3,63 ¢y, 84/5(51 — &) — &3~ &y}

e TypeE, (n=6,7,8).

These can all be constructed inside Eg by taking the span of the appropriate subset of a base, so we just give
the root system for Eg.

V=0Q80={te+ei# U

8 8
(-1)%ig; 1 Y, a; € 22Z),
=1 i=1

N =

1
A={g +€2,€i+1—€i,§(81 +eg—(exg+e3+..+¢7):1<i<6)

Note that the Weyl groups of type B, and C, are equal. The reason for the restriction on ¢ in the types B,C,D is
to avoid repetition, e.g. B, and C, are the same up to relabelling the vertices.

Remark 7.2.24. I certainly don’t expect you to remember the root systems of the exceptional types, but you should
be familiar with the ones for type A, B, C and D. The ones of rank two (i.e. Ay, B, and G,) are also worth knowing
(because for example you can draw them!)

7.3 The Classification of Semisimple Lie algebras

Only the statements of the theorems in this section are examinable, but it is important to know these statements!

Remarkably, the classification of semisimple Lie algebras is identical to the classification of root systems: each
semisimple Lie algebra decomposes into a direct sum of simple Lie algebras, and it is not hard to show that the
root system of a simple Lie algebra is irreducible. Thus to any simple Lie algebra we may attach an irreducible root
system. By the conjugacy of Cartan subalgebras (see Remark 5.1.4) this gives a well-defined map from simple Lie
algebras to irreducible root systems. Then the following theorem shows that its image classifies simple Lie algebras
up to isomorphism.

Theorem 7.3.1. Let 1, 0y be semisimple Lie algebras with Cartan subalgebras Yy, ), respectively, and suppose now k is of
characteristic zero. Then if the root systems attached to (a1, b1) and (g, b,) are isomorphic, there is an isomorphism ¢ : g1 —

0y taking by to by.
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Thus to obtain a classification of simple Lie algebras, it remains to determine which irreducible root systems are
associated to a simple Lie algebra. In fact all of them are!

Theorem 7.3.2. There exists a simple Lie algebra corresponding to each irreducible root system.

Thus Theorem 7.3.1 says each irreducible root system is associated to at most one simple Lie algebra (up to iso-
morphism) and so is a kind of uniqueness theorem, while Theorem 7.3.2 shows each irreducible root system comes
from a simple Lie algebra, so is an existence theorem. Theorem 7.3.1is not difficult given the machinery we have de-
veloped in this course. The existence statement is the more substantial result, but we developed enough machinery
to see the existence in most cases: the four infinite families A, B, C, D correspond to the classical Lie algebras sl 1,
SDyp, SPyp and s0,p, 1 — their root systems can be computed directly (as you say in the Problem Sheets). This of course
alsorequires checking that these Lie algebras are simple (or atleast semisimple) but thisis also straight-forward with
the theory we have developed.

It then only remains to construct the five “exceptional” simple Lie algebras. This can be done in a variety of ways
— given aroot system where all the roots are of the same length there is an explicit construction of the associated Lie
algebra by forming a basis from the Cartan decomposition (and a choice of base of the root system) and explicitly
constructing the Lie bracket by giving the structure constants with respect to this basis (which, remarkably, can be
chosen for the basis vectors corresponding to the root subspaces to lie in {0, £1}). This gives in particular a con-
struction of the Lie algebras of type E¢, E7, Eg (and also A, and D, though we already had a construction of these).
The remaining Lie algebras can be found by a technique called “folding” which studies automorphisms of simple
Lie algebras, and realises the Lie algebras G, and F, as fixed-points of an automorphism of D4 and Eg respectively.
Appendix I1I gives an outline of this approach to the existence theorem, describing all the necessary constructions,
but omitting some of the details of the proofs.

There is also an alternative, more a posteriori approach to the uniqueness result which avoids showing Cartan
subalgebras are all conjugate for a general Lie algebra: one can check that for a classical Lie algebra g C gl,, as above,
the Cartan subalgebras are all conjugate by an element of Aut(g) N GL,,(k). This then shows the assignment of a root
system to a classical Lie algebra is unique, so it only remains to check the exceptional Lie algebras. But these all have

different dimensions, and the dimension of the Lie algebra is captured by the root system, so we are done.®

6This is completely rigorous, but feels like cheating (to me).
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Appendices

I (Multi)-linear algebra

In this appendix, k denotes an arbitrary field unless further conditions are explicitly stated.

I.1 Primary Decomposition

DefinitionI.1. Letkbe an algebraically closed field and V a k-vector space. If x € End, (V) and A € k, the generalized
eigenspace for x with eigenvalue A is

Viy={veV:An>0,(x-A)"(v) =0},

Thus V), , # {0} if and only if x has an eigenvector v € V\{0} with eigenvalue A. The set of eigenvalues of x is called
the spectrum of x, denoted Sp(x) = {A € k : dim(V} ;) > 0}. The subspaces V), , are clearly invariant under the
action of x, thatis x(V;) C V.

The following proposition, used in a number of places in this course, is a standard result in Linear Algebra. We
provide a proof for the sake of completeness.

Proposition I.2. Let k be an algebraically closed field and V a k-vector space, and letx: V' — V be a linear map. There
is a canonical direct sum decomposition
V=P Vi

of V into the generalized eigenspaces of x.

Proof. Letm, € k[t] be the minimal polynomial of x. Thenif ¢: k[t] — End(V) given by f — x denotes the natural

map, we have k[t]/(m,) = im(¢) C End(V). If m, = Hle(t — A;)" where the S(x) = {A; : 1 < i < k}isthe
spectrum of x, then the Chinese Remainder Theorem and the first isomorphism theorem shows that

k

im(9) = Kit)/(my) = @D kIt =A™,

i=1

It follows that we may write 1 € k[t]/(m,) as1 = eg + ... + €, according to the above decomposition. Now clearly
eiej = 0ifi # jand e,-z = ¢;, so thatif U; = im(¢;), then we have V = @1<i<k U;. Moreover, each e; can be written as
polynomials in x by picking any representative in k[#] of ¢; (thought of as an element of k[¢]/(171,)). Note in particular
this means that each U, is invariant under im(¢).

Now the characteristic polynomial of x|y, is clearly just (t — A% where d; = dim(V,, ,), and evidently this
k
divides x,(t) the characteristic polynomial of x € End(V). Butsince V = @i: U; we must have x,(f) = Hle(t -

Ap™i, where m; = dim(U;) and hence d; < m;. Since U; C V), , we also have m; < d;, and hence they must be
equal, so V. = U; as required. O

The next Lemma is included for completeness — it readily implies that the coefficients of the characteristic poly-

nomial x, of an elementa € A of a subspace A C gl are polynomial functions of the coordinates of a given by
taking a basis of the subspace. This is used in the proof of the existence of Cartan subalgebras.
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Lemma L.3. Suppose that V and A are finite dimensional vector spaces, . A — End(V) is a linear map, and
{ay,ay, ..., a;} is a basis of A. Let
d
Xa(h) = Y ci@)t € K[t]
i=0
be the characteristic polynomial of p(a) € A. Then if we write a = Z;{:l X;a;, the coefficients c;(a) (1 < 1 < d) are
polynomials in k[xq, Xy, ..., Xi].

Proof. Pick a basis of V so that we may identify End(V') with Mat,, (k) the space of 1 X n matrices. Then each ¢(a;)
. . ik . k
is a matrix (ﬂi M1<jk<n, andifa = 21 Xiaj, we have

k
Xa(t) = det(t], - 2 xip(a;)),

i=1

which from the formula for the determinant clearly expands to give a polynomial in the x; and ¢, which yields the
result. O

I.2 Tensor Products
1.2.1 Definition and construction

Tensor products were studied in Part B, Introduction to Representation Theory. We review their basic properties
here.

DefinitionI.4. If V1, V,, ...,V and U are vector spaces over a field k, let
MV, .. Vi, U)={0: Vi X ..xV, — U : Oisk-linear}

be the vector space of all k-(multi-)linear maps on V{ X ... X V. taking values in a vector space U. Here we say that
a function 0: V; X Vo X .. X V. — U is a k-linear if it is linear in each component separately, that is, if for any
k-tuples of vectors (0;)1<i<k, (U)1<j<k € V1 X ... X Vi and any A € k, we have foreachi € {1,2, ..., k},

0(v1, ..., A0 + U, ... V) = A.O(Vq, ..., j, . U) + O(V1, oo, U, .. V),

Pick a basis B; of V; for eachi (1 < i < k), and let B] denote the corresponding dual basis of V. If b € B}, let 0,
denote the corresponding element of the dual basis Bj, so that B} = {0}, : b € B;}. Let B = By X By X ... X By,

Proposition I.5. In the notation given above, the restriction to B gives an isomorphism
rg: M (Vy,..,ViU) - UB ={f: B — U}

from the space of all k-multilinear maps taking values in U to the space of all U -valued functions on B. Indeed rg has inverse
given explicitly by
TN )= D 8y, (1) Oy, (@) f ().

b=(b1,...,.b)eB

Proof. Note that if we pickb = (by, ..., b;) € B then the product &, = 0y, .0p, - Op, is a k-linear map (since mul-
tiplication distributes over addition). Since it is easy to see that 6;,(b") = Oy (that s, is zero unlessb = b’ in
which case it is equal to 1), it is immediate that rg(F5(f)) = f, so we must show that Fg(rg(6)) = O for any
0 € #(Vq,.., Vi U). Explicitly, we must show that

6= ), 0p0(b) (L.1)

beBy X...XBy

Indeed applying O to a k-tuple b € By X ... By, we see that the coefficients on the right-hand side are uniquely
determined, so it remains to show the products 6, of dual basis vectors do indeed span.

The case k = 1 is simply the standard argument that the functions {0y, },ep, are indeed a basis of V3: ifv; € V4
then we may write v; = Ebl eB, Ap, by for unique scalars A, € k. By the definition of the functions 9y, it then
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follows that 0y, (v1) = Ay, , so thatv; = EbleBl 0p, (v1).by. Applying O gives O(v;) = ZbleBl 0p, (01).6(b1). But as
this holds for allv; € V7, itfollows that 6 = Zbl B, 0(b1)-6p, , as required.

The general case then follows by an easy induction: Indeed for any k-tuple of vectors (v;)1 <;<x with v; € V;, using
the case k = 1, we may write v; = ¥, _p Op, (v1).b1 . But then if O is k-linear we have
1€B1 1

01, -, 0) = O( D) 04, (01):b1,02 0, ) = D 8y, (01)-0(b1, 0, e, V)
b1eBy b1€By

But for each b; € By, the map (v;)p<j<x > (b1, Vo, ..., Ug) is a (k — 1)-linear map from V, X ... V| to k, hence the
result follows by induction. O

Remark I.6. Note that, for k = 1, this says that a linear map is uniquely determined by its values on a basis of V7,
and the statement should be thought of as saying that a k-linear map is similarly determined “by its values on bases”
where the statement of the question gives the precise meaning to the vague phrase in quotation marks.

The previous Proposition gives one way of constructing the tensor product: If V and W are k-vector spaces and
we pick bases By, and Byy of V and W respectively, then by the Proposition, if we set B = By, X Byy, then for any
vector space U, we have

A (V,W;U) = U = Hom,(S(B), U), (1.2)

where S(B) is the vector space with basis B, that is, the space of finite formal linear combinations of elements of B.
The first isomorphism above is a direct consequence of the Proposition where we takek = 2and V; =V, V, = W,
while the second is the case k = 1 of the proposition with V| = S(B). Now taking U = S(B) in (1.2), the identity
linear map from S(B) to itself corresponds to a bilinear map : V X W — S(B).

Lemma L.7. Thebilinearmapt: V X W — S(B) has the universal property, so that the pair (S(B), t) is the tensor product
of Vand W.

Proof. Thisisessentially established in the previous paragraph: if §: V X W — U isbilinear, thensince Op: B — U
extends to a linear map : S(B) — U. Tracking how the isomorphism of Proposition 1.5 identifies @ with the linear
map 0O itis easy to see that this can be expressed by means of the bilinearmapt: VX W — S5(B)as@ = 0ot. O

Remark I.8. Note that thereis a naturalisomorphismo: VW = W® V givenbyv@w — w®v. If V # W, we
will normally abuse notation and identify these two spaces and thus write VW = W® V. If V = W however,
0: V®V — V®YV isaninvolution on V ® V, and more generally, V® = V ® .. ® V, the tensor product of
V with itself n times, has an action of S,, the symmetric group, which permutes the tensor factors: if T € S, then
(01 ® ... ®Vy) 1= V(1) ® e ® Ty(y)-

Example 1.9. If V = k and W is an arbitrary k-vector space, thenif s: k X W — W is scalar multiplication map

given by s(A, w) = Ad.w, itis clearly bilinear and it is straight-forward to check that it has the universal property so
thatk@ W = W.

The following Lemma may help give a better sense for what a “general” element of V ® W looks like.
Lemma 1.10. Suppose that V and W are k-vector spaces, and letx € V @ W. Then
) Ifx = 2?:1 v; ® w; and {wy, ... , Wy} is a maximal linearly independent subset” of {wy, ..., W, }, we may write x =
Zztl U} ® w;. Moreover, if {U1, ..., U} is linearly independent, then {v1, ..., vy, } is linearly independent.

i) Anyx € V ® W may be written as a sum 221 v; @ w; where {vq, ..., v} and {wy, ..., w,,} are linearly independent
sets.

. . . . m k
P;oof. By assumgtlon {wq, ..., w,,} is a basis oflk/ = Wy, ., Wy )y, so thatif k > mthen wy = Y., Ajw; for some
Aj €k.Hence X 1 Ok ® Wk = Xy icpycken i Uk ® W; and

n

x=i0i®wi=§:vi®wi+ E Af?vkébwi:i v; + E Aﬁ-‘vk ®w;.
i=1 i=1

i 1<i<m<k<n k=m+1

"This can always be arranged by permuting the w; appropriately
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Thus if we setv; = v; + ZZ=m+1 /\;{Uk € Vwehavex = EZl v; ® w;. Now if {01, ..., v, } are linearly independent,

then clearly {v], ..., v;,} will also be linearly independent, hence ) follows.

For ii) if x = 2:’1:1 v; ® W; as in the statement of i), then applying i) we obtain x = 221 vi@w;. fo: VW —

W ® V is the isomorphism (v @ w) = w ® v then o(x) = ZZl w; ® v;, and applying i) to o(x) € W® V (so
that V and W are interchanged) we see that after reordering so that {7, ..., v;} is a maximal linearly independent
subset of {01, ..., Uy}, 0(x) = Zi':l w; ® v}, where the set {wy, ..., w;} is also linearly independent. It follows that

_ 1 . . . .
x =0 (o(x)) = 2l;_1 Ui ® W} gives an expression for x in the required form. O

The construction of the tensor product allows us to replace bilinear maps with linear ones, but one can also relate
bilinear maps to “linear maps to spaces of linear maps” — which is really just the process of taking a function of two
variables and holding one variable fixed in order to obtain a function of one variable. Formally, we can state:

Lemma L11. Let V, W and U be vector spaces over a field k. Then we have natural isomorphisms
Hom(V,Hom(W,U)) = .#(V,W,;U) = Hom(V @ W, U) = Hom(W, Hom(V, U))
In particular, if U = k, this shows that Hom(V, W*) = .7 (V, W; k).

Proof. Since there is an obvious identification between .Z (V, W; U) = .#Z (W, V; U) it suffices to establish the first
isomorphism. Butif 8 € Hom(V, Hom(W, U)), then we let W(6)(v, w) = O(v)(w). The fact that O is linear shows
that W(0) is linear in V, while the fact that 6(v) lies in Hom(W, U) shows that W(6) is linear in W. Conversely, if
b e #(V,W;U), then we may define Y(b)(v) = [w +— b(v, w)]. The map Y'(b) € Hom(W, U) because b is linear
in W, while the map Y is linear because b is linear in V. Itis clear that W and Y are inverse to each other, thus the
firstisomorphism is established.

The final claim follows immediately. O

Definition I.12. Let U, V, W be k-vector spaces. If p € Hom(U, V) and ¢ € Hom(V, W), then the map (i, ) —
1 o ¢ given by composition of functions induces a linear map

¢: Hom(V, W) ® Hom(U, V) — Hom(U, W).

In particular, taking V = k, we obtain a morphism 9: U*® V — Hom(U, V), andif U = V then one also has the
composition in the opposite direction, t: V*® V — k, where ((f ®v) = f(v).

Lemmal.13. Let V and W bevector spaces. The naturalmap S: V*® W — Hom (V, W) isinjective with image the space
Hom/"(V,W) = {a: V = W : dim(im(a)) < o0} of linear maps of finite rank. Moreover, when V. is finite-dimensional,
ifi: V*®V — kis the contraction map and a € Homy(V, V), then (1o 071)(a) = tr(a).

Proof. Toseethatthemap8: V*® W — Hom(V, W) isinjective, suppose thatf = Z?zl 0; ® w; € ker(6). By parti)
of Lemma 1.10 we may assume that {wq, ..., w,,} is linearly independent. But then 9(f) = O implies thatforallv € V
we have 9(t)(v) = E?:l 0;(v).w; = 0 and so, since the w; are linearly independent, we see that for allv € V and

eachi, (1 < i < n)wehave §;(v) = 0, thatis, §; = 0. But then clearly f = Z?:l 0® w; = 0 as required.

To see that im(9) = Hom/"(U, W) note that O(f ®w) = f.w has image contained in k.w, hence rank((f ®
w)) < 1. But then a finite sum Ezlzl fi ® w; can have rank at most 1, so that im(9) C Hom/"(V, W). To see
that Hom/"(V, W) C im(9), suppose that a: U — W is finite rank so that im(a) = Wj is finite-dimensional.
Pick a basis {wy, ..., w,} for Wy, and let {04, ..., 0,,} be the corresponding dual basis of W] so thatif w € W; then
w = E?:l 0;(w).w;. Butthenifv € V,a(v) € Wy so that a(v) = Z?:l 0i(a(v)).w;. Thusa = 8(2?21 a’(6;) ®w;)
lies in the image of 9 as claimed.

Finally we consider the contraction map ¢: V* X V — k. This is again composition, but now in the opposite
order, sothatv: k = Vand f: V — k compose to give f(v) € k. If {ey, ..., e,} is a basis of V and {61, ..., 0,,} the
dual basis of V*, then1y, = E?:l 0;.; (since they agree on the basis {eq, ..., ¢,}) andsoa = ao1ly = a( 2?:1 0;.6;) =
E:lzl o;.a(e;). Thus 971(a) = 2?:1 0; ® a(e;), and we have

tr(a) = i i(ale)) = L(i 6 ®@ale;)) = 1o 07 (a),
i=1 i=1

where the first equality is simply the definition of tr, the second follows from the the definition of ¢ and the third by
using the formula we just obtained for 971 (a). O
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Remark I.14. Since we only use the cases where V and W are finite dimensional, the reader is welcome to ignore
the generality the result is stated in and assume throughout that all vector spaces are finite dimensional. Here one
can be a bit more concrete: if {1, ..., €,} is a basis of V and {f7, ..., f,,;} is a basis of W, then taking the dual basis
{01, ., 0,} of V" itis easy to see that the images of §; ® f]- under § correspond to the elementary matrices E;; under
the identification of Hom, (V, W) given by the choice of bases for V and W, hence ¥ is an isomorphism.

Remark I.15. We will usually abuse notation somewhat and write t: V ® V* — kratherthani oo whereo: V®
V* — V* ® V interchanges the tensor factors.

I.2.2 Linear maps between tensor products.

Leta: Vy — Vpand f: Wy — W, be linear maps. If v € V;, w € Wy, the map (v,w) — a(v) ® f(w) from
V1 X W, — V, ® W, is bilinear, and so induces a linear map Hom(V; ® Wy, V, ® W,), which we denote by & ® f3.
In fact, the map (a, f) — a ® f3 is itself bilinear, and so we even obtain a map

Hom(Vl, Wl) ® HOl’l’l(Vz, Wz) — Hom(V1 ® Vz, Wl ® Wz) (1.3)

Moreover, it follows immediately from the definitions that (1.3) also respects composition. In more detail, if
ay: Vy — Vzand fy: Wy — Wj are linear maps to any vector spaces V3 and W3, then (a; ® fp) o (g ® B1) =
(az o CY1) ® (ﬁz o ﬁl) Indeed,ifv € Vl/ w e Wl’ then

(a0 ® ) o (a1 ® B1)(v @ W) = (a2 ® fr)(1(v) ® B1(w))
= (ag 0 a1)(v) ® (B7 © f1)(w)
= (az001) ® (B2 °f1)v@W).

When all the vector spaces V1, V,, Wy, W, are finite dimensional, the map (I.3) is actually an isomorphism,
indeed using Lemma .13 you can check that

HOl’I'l(Vl, Wl) &® HOI’I’I(Vz, Wz) = (VI ® Wl) ® (VE ® Wz)
= (Vi ®V3)® (W; 8 W)
=(V1®Vy) ' ®(W; @ W,)
= HOI‘I‘I(Vl ® Vz, W1 ® Wz),

where the second isomorphism simply permutes the second and third tensor factors.

Example I.16. Themap(: V' ® V — k also describes the composition of linear maps: Suppose we have three
vector spaces V, W and U. The composition gives a bilinear map from Hom(U, V) X Hom(V, W) to Hom(U, W),
thusitis equivalent to a linear map 771: Hom(U, V) ® Hom(V, W) — Hom(U, W).

Hom(U, V) ® Hom(V, W) Uev)e(VeoWw)

Us(VeVviIoW —— U kW ————= U QW

where the first arrow is the induced by the isomorphisms provided by Lemma 1.13, the second from the associativity
of tensor products, and the third arrowis 1y ® t ® 1«. By Example 1.9 scalar multiplication gives a natural isomor-
phisms: k@ (V® W) — (V ® W), and the final arrow swaps the first two factors and then applies s. Identifying
the term U* ® W with Hom(U, W) this becomes the composition of linear maps. This can be checked by consid-
ering the composition of rank-one maps: if f ® v € U* ® V then it corresponds to the rank-one map u — f(u).v
(u € U). Thus if we take f.v € Hom(U, V) and g.w € Hom(V, W) (where f € U, v € V,g € V*',w € W)
then (g.w) o (fo)u) = @Qw)(f(w).v) = g(f(w).v)w = f(u)g@.w = g@).(f.w)(u). On the other hand
(feoregew) — feg@)w— g@).(f ®w).

Remark I.17. Itis sometimes useful to have the following notational convention: Given a tensor product of more
than two vector spaces, such as U ® V ® V* ® W, then it can be convenient to write (3, for the map which acts via
¢ on the third and second factors (that is swapping the second and third factors, applying ¢ and the repeating the
swap) and by the identity on the remaining tensor factors.

56



I.2.3 Tensor products and duality

Suppose that V and W are finite dimensional vector spaces. We wish to understand the relationship between the
tensor product of the dual spaces V* ® W* and the dual space of the tensor product (V @ W)*. Ifn € V*andv € W*
thenn.v: VX W — kgiven by (v, w) — 1(v).v(w) is a bilinear map, hence it induces a linear map which by abuse
of notation we will also denote as .v: V® W — k. Thus (1, v) — 1.visamap from V* X W* to (V ® W)". Since it
is also bilinear it induces a linear map dy y: V*® W* — (V ® W)". The map dy yy is injective since, if t € V* @ W*
isin ker(dy ) then by parti) of Lemma .10 we may write t = Elril 0; ® n; where {1y, ..., 1,,} is linearly independent
in W*. But thendy () = Z:’ll 0;.1; = 0, and so in particular, for all v € V we must have Ez"il 0;(v).n; = 0,soby
the linearly independence of the 1); we have 6;(v) = O forallv € V, thatis 6; = 0, and hence t = 0 as required.

Another way to view dy 1y is as follows: Letcy jy: V" ® W ® V® W — k be the linear map given by ¢y v =

LY_O, ® Lgﬁ, where LY?) denotes the contraction map ¢V acting on the first and third tensor factors, and LIZ/Z similarly
denotes the ccontraction (¥ acting on the second and fourth factor, that is

cvw (n®v®v®w) ="(n®v).Nvew) = no).v(w).

Now cy 1y yields a bilinear map ty y: (V*® W*) X (V ® W) — k which induces, by Lemma 111, a linear map
(V*®W*) = (V®W)", and this is just the map dy v constructed above. Moreover, the linear functional cy yy, by
permuting the tensor factors, can be viewed as a linear functional

cyw =i ®W: (V'@W)e(W V) — k.

Now if we assume V' and W are finite-dimensional, then (V*® W) = Hom(V, W) and W* ® V = Hom(W, V), so
that cy y gives a linear functional on Hom(V, W) ® Hom(W, V). Now 1y~ ® 13} ® 1y, corresponds to composition
of linear maps (a,b) — aoband ({; ® ng =" o1y ® l% ®1y),and(V: V*®V = Hom(V, V) — k gives the
trace map. Thus cy 1y viewed as a linear map Hom(V, W) ® Hom(W, V) — kis just the trace form (a ® b) > tr(ab).
As noted in the proof of Lemma 5.2.4, this description of the trace form also makes the symmetry property tr(ab) =
tr(ba) is evident.

I.3 Bilinear forms

Definition I.18. Let V be a k-vector space. A bilinear form on V is abilinearmap B: V XV — k, thatis, an element
of #(V,V; k). We will denote the vector space of all bilinear forms on V as Bil(V'). From the universal property of
tensor products, Bil(V) = (V ® V)*.

Let S, = {e, 0} denote the symmetric group on two letters. There is a natural linear action of S, on Bil(V) given
by o(B)(v, w) = B(w, v) (for any v, w € V). Aform B is said to be symmetricif B = (B), thatis if B(v, w) = B(w, v)
forallv, w € V, and skew-symmetricif 6(B) = —B.

If B € Bil(V) satisfies B(v, v) = 0 we say that B is alternating. Since 0 = B(v + w, v + w) = B(v,v) + B(v, w) +
B(w, v) + B(w, w) = B(v, w) + B(w, v), any alternating bilinear form is skew-symmetric. Conversely, if B is skew-
symmetric, then B(v,v) = —B(v,v) so that 2.B(v,v) = 0. Thus, provided that char(k) # 2, the alternating and
skew-symmetry properties coincide. Moreover, if we write S?(V/) for the space of symmetric bilinear forms on V
and A?(V) for the space of alternating bilinear forms on V, then we have Bil(V) = S?(V) @ A?(V), as they are the
+1 and —1 eigenspace of the involution 0. More concretely, we have B = B* + B, where B* = (B + ¢(B))/2 and
B~ = (B - 0(B))/2 where 0(B*) = +B*.

We may deal with the symmetric and skew-symmetric cases uniformly (to some extent) by working with a form
B which has the property that B(v, w) = €.B(w, v) for allo, w € V, where € € {£1}.

Remark I.19. Lemma .11 gives a natural isomorphism
O: Bil(V)=.#(V,V;k) - Hom(V,Hom(V, k)) = Hom(V, V*)

It follows that giving a bilinear form on V is equivalent to giving a linear map from V to V". Note that the action of
0 € S, gives a second isomorphism @1 : Bil(V) — Hom(V, V*), where ®@; = © o g, thatis, ®1(B)(v)(w) = B(w, v).
For symmetric bilinear forms the two maps agree, but for arbitrary bilinear forms they yield differentisomorphisms.

Definition I.20. Given a bilinear form B, we set

rad(B) =rad;(B) ={ve V:OB)(v) =0} ={ve V:B(w,w)=0,YVwe V}
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(here the subscript “L” denotes “left”). Similarly, we set
radg(B) = ker(®1(B)) ={v e V : B(w,v) =0,Yw € V}.

If B is symmetric or alternating, then rad; (B) = radg(B), but this need not be true otherwise. We say that B is non-
degenerateifrad; (B) = {0}. Note that, even though in generalrad; (B) # radg(B), itis still the case thatrad; (B) = {0}
if and only if radg(B) = {0}.

From now on we will only work with symmetric and alternating bilinear forms. Fix such a B € Bil(V) so that
0(B) = €.Bfor some € € {+1}. Then if U is a subspace of V, we define

Ul ={veV:Bw,w)=0,YwelU}={veV:0OB)w) e U°.

When B is nondegenerate, so that @(B) is an isomorphism, this shows that dim(U+t) = dim(U°) = dim(V) -
dim(U). The next Lemma shows that this can be refined slightly.

Lemma I.21. Let V be a finite-dimensional k-vector space equipped with a symmetric (or alternating) bilinear form B.
Then for any subspace U of V we have the following:

i) dim(U) + dim(U~) > dim(V).

ii) The restriction of B to U is nondegenerate if and only if V. = U & UL,

Proof. Let p: V — U be given by ¢(v)(u) = B(v,u), thatis ¢(v) = (O(B)(v))y. Clearly ker(¢)) = U+, while
im(¢) < U" and hence dim(im(¢)) < dim(U). The inequality in 7)) now follows from rank-nullity.

For the second part, note that B is non-degenerate on U if and only if U N UL = {0}. But then the inequality in
i) shows that we must have U @ U+ = V for dimension reasons. O

1.4 Classification of symmetric bilinear forms

There is a natural linear action of GL(V) on the space Bil(V): if ¢ € GL(V') and B € Bil(V') then we set g(B) to be the
bilinear form given by

§B)(v,w) =B (0),g7 W), (weV),

where the inverses ensure that the above equation defines a left action. It is clear the action preserves the subspace
of symmetric bilinear forms.

Since we can find a invertible map taking any basis of a vector space to any other basis, the next lemma says that
over an algebraically closed field there is only one nondegenerate symmetric bilinear form up to the action of GL(V),
thatis, when k is algebraically closed the nondegenerate symmetric bilinear forms are a single orbit for the action of

GL(V).

Lemma I.22. Let V be a k-vector space equipped with a nondegenerate symmetric bilinear form B. Then if char(k) # 2,
there is an orthonormal basis of V', i.e a basis {vy, ..., v} of V such that B(v;, v;) = bj;.

Proof. We use induction on dim(V). The identity®
1
B(v,w) = E(B(U +w,v+w) - B(v,v) — B(w, w)),

shows thatif B # 0 we may find a vector v € V such that B(v, v) # 0. Rescaling by a choice of square root of B(v, v)
(which is possible since k is algebraically closed) we may assume that B(v,v) = 1. Butif L = k.v then since By is
nondegenerate, the previous lemma shows that V = L@ L+, and if B is nondegenerate on V it must also be so on
LL. But dim(L1) = dim(V) -1, and so L1 has an orthonormal basis {0, ..., 0,,_1}. Setting v = ©v,,, it then follows
{v1, ..., U,}is an orthonormal basis of V as required. O

8Note that this identity holds unless char(k) = 2. It might be useful to remember this identity when understanding the Proposition which is
the key to the proof of the Cartan Criterion: it claims thatif ¢ = Dg then there is an element x € g with x(x, x) # 0. Noting the above identity,
we see this is equivalent to asserting that x is nonzero.
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Remark1.23. Over thereal numbers, for example, there is more than one orbit of nondegenerate symmetric bilinear
form, but the above proof can be modified to give a classification and it turns out that there are dim(V) + 1 orbits
(“Sylvester’s law of inertia”).

One can also classify alternating forms using essentially the same strategy, except thatif B is anon-zero alternat-
ing form on a vector space V, one shows that it contains a two-dimensional space H on which B is nondegenerate.
Then we can choose a basis {e, f} of V with B(e, f) = 1 = —B(f,¢), and then since V = H & H one can apply
induction. Moreover, in the alternating case, the classification holds over any field k where char(k) # 2.

II Reminder on Representation theory

We recall here some basics of representation theory used in the course, all of which is covered (in much more detail
than we need) in the Part B course on Representation theory. Let g be a Lie algebra. The main body of the notes
proves all that is needed in the course, but the material here might help clarify some arguments. We will always
assume our representations are finite dimensional unless we explicitly say otherwise.

II.1 Basic notions

Definition II.1. A representation is irreducible if it has no proper nonzero subrepresentations. A representation
(V, p) is said to be indecomposable if it cannot be written as a direct sum of two proper subrepresentations. A repre-
sentation is said to be completely reducible if is a direct sum of irreducible representations.

Clearly an irreducible representation is indecomposable, but the converse is not in general true. For example k?
isnaturally a representation for the nilpotent Lie algebra of strictly upper triangular matrices 1, C gly(k) anditisnot
hard to see that it has a unique 1-dimensional sub representation, hence it is indecomposable, but not irreducible.

A basic observation about irreducible representations is Schur’s Lemma:

Lemma IL2. Let g be a Lie algebra and let (V, p), (W, 0) be irreducible representations of §. Then any §-homomorphism
¢: V — Wiiseither zero or an isomorphism. In particular, if k is algebraically closed, then Homy(V, W) is one-dimensional.

Proof. The proof is exactly the same as the proof for finite groups. If ¢ is nonzero, then ker(¢) is a proper subrepre-
sentation of V, hence as V is irreducible it must be zero. It follows V is isomorphic to ¢(V'), which is thus a nonzero
subrepresentation of W. But then since W is irreducible we must have W = ¢(V) and ¢ is an isomorphism as
claimed.

Thus if Hom, (V/, W) is nonzero, we may fix some ¢p: V' — W an isomorphism from V to W. Then given any
g-homomorphism a: V. — W, composing with qb_l gives a g-homomorphism from V to V, thus it is enough to
assume W = V. Butthenifa: V — Visag-endomorphism of V| since k is algebraically closed, it has an eigenvalue
A and so ker(a — A) is a nonzero subrepresentation, which must therefore be all of V, thatis @« = A.idy, so that
Hom,(V, V) is one-dimensional as claimed. O

II.2 Exact sequences of representations

Parallel to the notion for Lie algebras, there is also a notion of an exact sequence for representations. Let g be a Lie
algebra.

Definition I1.3. A sequence of maps of g-representations
u—2-v i> W
is said to be exact at V if im(a) = ker(f). A sequence of maps

o—u—sv-row_ .o

is called a short exact sequence if it is exact at each of U, V and W, so that a is injective and f3 is surjective and im(a) =
ker(f). If V is the middle term of such a short exact sequence, it contains a subrepresentation isomorphic to U,
such that the corresponding quotient representation is isomorphic to W, and hence, roughly speaking, V is built by
gluing together U and W. Just as for Lie algebras, an exact sequence

o—>uU—sv-Low_ .o

is said to be split if § admits arightinverses: W — V, thatis, a g-homomorphism s such that f o s = idyy.
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The next Lemma shows that the situation for representations is simpler than it is for Lie algebras’:

Lemma I1.4. Suppose that g is a Lie algebra and

0—>U—>v-—Tow—>0

is a short exact sequence of §-representations. Then the sequence is split if and only if L(U) has a complementary subrepresen-
tation W', thatis, V = ((U) ® W', and if W’ exists then necessarily quy, : W' — W is an isomorphism.

Proof. First suppose thats: W — V be a splitting map and let W’ = s(W). Since g o s = 1y, it follows that {0} =
ker(quy) = ker(q) N W’ = ((U) N W’. But ((U) + W’ = V since for any v € V we have v = (v -5 (v)) + 5 f(v)
where certainly s o f(v) € s(W), and since g o s = idyy we have

q(v =5°4(v)) = 4(v) =g °s°4(v) = 9(v) ~idy > 4(v) = 4(v) = q(v) = O,
hence v —s0g(v) € ker(g) = «(U) and V = ((U) ® W’ as required.
For the converse, note thatif V' = (U) + W’ then g(V) = g(W’) = W, and ker(q;» = ker(q) "W’ = ((U) N
W’ = {0}, so that gy, : W — W is an isomorphism, hence s = (q|W/)_1 is a splitting map. O
Remark IL.5. If the short exact sequence of Lemma 11.4 is split and we have a splittingmaps: W — V,ityields an
isomorphismS: U® W — V given by 5(u, w) = (1) + s(w), since the proof of the Lemma shows that s a bijective
homomorphism of representations. If 771, 71, denote the projection maps from U @ W onto the factors U and W,

theng = 7, 057!, and if we setp = 71 057!, then3(v) = (p(v), q(v - l(p(v))) so that the splitting is also determined
byp: V — U aleft-inverse to (.

Our study of the representations of a nilpotent Lie algebra 1 can be interpreted as calculating, for a given 1-
dimensional representation k, of 1t which one-dimensional representations ks can form non-split extensions of it.

Lemma IL.6. Let g be a nilpotent Lie algebra, and let o, § € (8/Dg)” be distinct. Any exact sequence of §-representations
0 Ky |4 kg 0

splits, thatis, V = k, ® kﬁ.

Thus non-isomorphic one-dimensional representations U and V of a nilpotent Lie algebra cannot be “glued
together” in any way other than by taking their direct sum. Using the above Lemma and induction, one can actu-
ally recover the theorem that any representation V of a nilpotent Lie algebra 11 decomposes into a direct sum of its
isotypical subrepresentations V,, (where @ € D(n)? C 1*).

Example IL.7. To see anon-split extension, let § = 11, be the one-dimensional Lie algebra, thought of as the (nilpo-
tent) Lie algebra of 2 X 2 strictly upper triangular matrices. Then its natural 2-dimensional representation on k?
given by the inclusion 1, — gl,(k) gives a non-split extension

0 ko —— k2 ko 0

where kg is the trivial representation, and i: kg — k? is the inclusion t > (£,0). The extension cannot be trivial,
because the image of 11, is non-zero. Itis factit’s easy to see using linear algebra that for gl; (k) = 1, an extension
of one-dimensional representations k, and kg automatically splits if @ # f while there is, up to isomorphism, one
non-split extension of k, with itself (@, § € (gl;(k))"). The splitting statement is a special case of the following more
general result, a special case of Theorem 4.3.13.

The notion of a composition series has an analogue for representations of a given Lie algebra g.

Definition II.8. Let V be a g-representation. A nested sequence of subrepresentations & = (V =Fy D F; D .. D
F; = 0) is said to be a composition series for V if the subquotients F;_1/F; are irreducible (for eachi € {1, ..., d}). The
isomorphism classes of the irreducibles which arise in this way are known as the composition factors of the series & .
For V finite-dimensional, itis clear that V must contain proper subrepresentations which are maximal with respect
to containment among proper subrepresentations (since one can choose one of maximal dimension). From this an
inductionon dim(V) it follows easily that any finite-dimensional representation has a composition series.

For an irreducible representation S, the multiplicity [S : @] with which S occurs as a composition factor if & is
known as its composition multiplicity. Thus

[S:Z]=|lj:1<j<dF/Fj=5)|.

Let us also define [S : V] = min{[S : &] : & a composition series for V}.

“In the sense that there are no non-trivial semi-direct products.
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Remark I1.9. A composition series @ = (V = Fy > ... > F; = {0}) can also be viewed as the vestige of how the
representation V was built up from its composition factor S; = F;/F;,1. Indeed for each k € {1, ..., d} we have

0 — St = Fy/Fya = V/Fyss ——= V/F —0

Thus starting with Sq = Fy/F7, one obtains Fy/F, by extending it by S;. Continuing in this way, extending Fo/F, by
S, one obtains Fy/F3 and so on, until finally we get V by extending Fy/F;_1 by S;_1 = F;_1 to obtain V itself!

A composition series for a representation V naturally induces a composition series for any subrepresentation of
V and for the image of V any homomorphism ¢: V — W.

Proposition I1.10. Let V be a representation and W < V a subrepresentation. Then if & = (Fk)zzo is a composition
series for V, then & induces composition series 'y and &y for W and V/W respectively. Moreover, if S is an irreducible
representation, then [S : €] = [W : G| +[S : Gyywl.

Proof. Let W, = W N Fy, so that (Wk)g:0 is a descending filtration of W by subrepresentations. Using the second
isomorphism theorem we see that

Wi/Wisr = Wi/Wi N Fyyq = (Wi + Fry1)/Frer € Fi/Frar- (1.1)

Next, letg: V — V/W be the quotient map, and let Qy = g(Fy), so that (Qk)zzo is a descending filtration of V/W.
Now ker(qr,) = W N Fy = W, hence by the first isomorphism theorem F/Wy = g(Fy). Under this isomorphism
q(Fxs1) < q(Fy) is identified with (Fy,1 + Wy)/Wj, hence by the 3rd isomorphism theorem

Qu/Qrs1 = 4(Fi)/q(Fis1) = Fx/ Wi/ (Frsn + Wie)/ Wy = Fi/(Fyq + Wy) (11.2)

Now Fiy1 < Fiyq1 + Wi < Fi, hence as F/Fy,q is irreducible, F.,1 + W) must be one of Fy. or Fj,1. But it follows
from (I1.1) and (I1.2) that in the former case Wi/Wj.1 = Fi/Fr11 and Qr = Qjy1, while in the latter, Wy, = W; 4

and Qi/Qg+1 = Fi/Fra-

Thusifwelet] = {k: 0 <k < d,Fr.1+ Wy = FilandK = {k: 0 < k < d,Frq + Wy = Fri1}, and set
Zw = (W))igy and Zyy = (Qp)kek (ordered so as to form a descending chain) it follows that %7y is a composition
series for W and &y is a composition series for V/W. Moreover if j € | then the composition factor Fj/Fjyq of 128
corresponds to a composition factor of Zyy, while if j € K it corresponds to a composition factor of &y, which
readily implies the multiplicity equation. O
This result allows one to give a quick proof of the Jordan-Hélder theorem for g-representations.'®
Corollary I1.11. For any finite-dimensional representation V of a Lie algebra g and any irreducible representation S, the

multiplicity with which S occurs in a composition series for V is independent of the choice of composition series for V, and
hence equals [S : V.

Proof. For i) we use induction on the minimal length n(V) of a composition series for V. If n(V) = 1 then V is
irreducible and (V' > 0) is its unique composition series. If n = n(V) > 1 then take a composition series .#Z =
(M;)i—, of V with length 7 and set U = Mj. Since (Mi+1)?:_01 is a composition series for U, we have n(U) < n—1.
Nowif & = (Fi)flzo is any composition series for V, by Proposition I1.10, it induces composition series ©; and &y
of U and V/U respectively. Thus if S is irreducible, by the final sentence of Proposition I1.10 we have

[S:Z]1=1[S: Byl +[S: Byl =[S: Ul+[S: V/U]

where the second equality follows by induction since 7#(V/U) = 1andn(U) < n—1. Thus[S : ] = [S : V]is
independent of . Part ii) now follows immediately from the final sentence of Proposition II.10. O

Remark II.12. Note that Proposition I1.10 and Corollary I1.11 together show that [S : V] =[S : W] +[S : V/W]for
any subrepresentation W < V.

19The same proof works for representations of groups or finite-dimensional algebras.
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II.3 Semisimplicity and complete reducibility

Definition IL.13. Arepresentation (V, p)is said to be semisimple if any subrepresentation U has a complement, that
is, there is a subrepresentation W such that V = U @ W. A representation is said to be completely reducible if it
is a direct sum of irreducible representations. Note that Lemma 11.4 shows that V is semisimple if and only if every
short exact sequence

0 u v W 0

splits. Indeed this follows from Lemma II.4: the image of a splitting map s: W — V gives a complement to the
image of U, and s is determined by its image.

The following simple Lemma is one reason why exact sequences of representations are easier to work with than
exact sequences of Lie algebras.

Lemma I1.14. Let § be a Lie algebra and suppose that we have a short exact sequence of §-representations:

0—U—>v—Tow_—>0

Then dualizing we obtain a sequence
q’ i
0 W+ 4 u- 0
which is again a short exact sequence. It follows that a short exact sequence splits if and only if thereisamapt: V — U such
thattoi="1y.

Proof. The injectivity of g7 follows from the surjectivity of 4. To see that the i is surjective, any functional 6 on U
extends to one on V. But this is easy — simply pick a complement T to U and define 6(T) = 0. Finally we must show
thatim(q") = ker(i"). Since o i = 0, we havei' oq" = 0, so thatim(q") C ker(i"). The equality then follows by
considering dimensions.

For the final sentence, note thatisp: V' — U isamap satisfyingpoi = 1;,theni’ op™ =1;+,and hencep' isa
splitting of the dual short exact sequence. But then V* = U* @ W*, and hence taking duals and using the canonical
isomorphism it follows that V = U @ W so that our original sequence was split. O

Lemma IL.15. IfV isasemisimple representation, then any subrepresentation or quotient representation of V is semisimple.

Proof. Suposethatq: V — Wis asurjective map, and that V is semisimple. We claim that IV is semisimple. Indeed
if W is a subrepresentation of W, then q_l(Wl) = V] is a subrepresentation of V, which has a complement V5.
Then we claim that W, = g(V/;) is a complement to W in W: indeed since g is surjective clearly W = Wy + W,
and if w € W; N W, then there exist v, € V, with q(v,) = w € Wj. Butthenv, € g }(W;) = V; hence
vy € V1NV, ={0}and w = g(v,) = 0 as required.

Next, if U is a subrepresentation of V, then picking a complement U’ to U, so that V = U @ U’, the correspond-
ing projection map 7t: V. — U with kernel U’ shows that U is isomorphic to a quotient of V, and hence is also
semisimple. O

Lemma IL16. Let (V, p) be a representation. Then the following are equivalent:
i) V issemisimple,
i) V is completely reducible,

iii) V is the sum of its irreducible subrepresentations.

Proof. To see i) implies ii), use induction on dimension: if U is a non-zero subrepresentation of V of minimal di-

mension, U must be simple. If U = V then we are done, otherwise U has a non-zero complement W with
dim(W) = dim(V) — dim(U) < dim(V). By induction W = @Tzl S where each Sy, is simple, and thus setting
m+1

U=S,,1weseeV = @kzl Sy

Certainly if) implies iif) so it is enough to show that iii) implies 7). For this, suppose that V is the sum of its
irreducible subrepresentations and that U is a subrepresentation of V. Let W be a subrepresentation of V which is
maximal (with respect to containment) subject to the condition that U N W = {0}. We claim that V = U @& W. To
see this, suppose that U @ W # V. Then by our assumption on V there must be some irreducible subrepresentation
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X with X not contained in W @ U, and hence X N (W & U) = {0}. But then we certainly have' (X ® W) N U = {0},
which contradicts the maximality of W, so we are done. O

Remark I1.17. If g is nilpotent, and V a g-representation, then for any one-dimensional representation A, the iso-
typical subrepresentation (or A-weight space) V, is a direct summand of V, i.e. it has a complementary subrepre-

sentation. Since this is true for all A we obtain a direct sum decomposition V' = @ Ae@D@)" V.

If g is semisimple, then the representations of g are semisimple, so any subrepresentation has a complement. It
follows that if V is a g representation and yx is an irreducible representation, the isotypical subrepresentation V
has a complement, so V = V, @ U. Inductively it therefore follows that V' = @X V, where the sum is over the
irreducible representations of g that occur in V. Since any semisimple representation is completely reducible, the
subrepresentations V, are just a direct sum of copies of x, thatis, V, = V7, i.e V is equal toits socle.

In particular, the isotypic summand of V corresponding to the trivial representation xg is V,, = V9, the invari-
ants of V. A consequence of the complete reducibility is that V9 should be a direct summand of V. In factin the proof
of Weyl’s theorem, we showed this by proving that V = V9@ ¢.V, and then deduced semisimplicity from this. Note
that for any Lie algebra g and g-representation V, the quotient V/g.V is the largest quotient of V on which g acts
trivially. If V is semisimple, and V = @X V is its decomposition into isotypical summands, then if U < V is any

subrepresentation, we can similarly decompose U = @X U,, and hence ViU = @X VX/ U, . It follows that viu
is invariant for the action of g if and only if U, = V/ for all nontrivial x, and hence g.V = @Xﬂ) V. Thusif V'is

semisimple, we must have V = V8@ .V, that is, the subrepresentation we used as the candidate for a complement
to V9 in our proof of Weyl’s theorem was in fact forced on us.

since both X N (W & U) = {0} and (X & W) N U = {0} are both equivalent to the sum X + W + U being direct.
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III *On the construction of simple Lie algebras

The classification of semisimple Lie algebras, as discussed in §7.3, relies on two key results: an Isomorphism theorem,
and an Existence theorem: the former ensures that the root system captures enough information to determine the Lie
algebra up to isomorphism, while the latter ensures that every abstract root system arises as the root system of some
semisimple Lie algebra.

This section outlines one approach to the existence theorem. Clearly itis enough to constructa simple Lie algebra
for each indecomposable root system, so we will assume throughout the remainder of this section that (V, ®) is
indecomposable. We will establish the existence theorem in two steps. In the first step we consider the case where
all the roots in @ have the same length, and in the second step deduce from this the general case. An alternative
elementary approach is described in [Gecl17].

III.1 The simply-laced case

Definition III.1. Let (V/, ®) be an (indecomposable) root system. We say that (V, @) is simply-laced if all the roots
in @ have the same length.

If Aisasetof simpleroots for @, since ® = W.A (where W is the Weyl group) itis equivalent to the condition that
all the roots in A have the same length. Since (V, @) is indecomposable, this in turn is equivalent to the condition
that{(a, ) = (B, a) forall@, f € A, thatis, the Cartan matrix is symmetric. By Lemma 7.2.20, this is equivalent to
the condition that for all &, § € ® the Cartan integer (&, ) € {0, —1}. If we normalize the inner product on V so that
the roots have length \/E, then the Cartan integers are precisely the values of the inner product on pairs of simple
roots.

From the classification of abstract root systems, one can check that the simply-laced indecomposable root sys-
tems are those of types A,D and E.

To construct a Lie algebra from such a root system, we need one additional ingredient: Lete: Q X Q — {1} be
a bimultiplicative function, thatis, for all, 8,y € Q,

ela+B,y)=e@y)e@ ),
e(a, p+y) = e, p)ela,y).

and suppose also that it satisfies
ela,a) = (-1)@¥2  VageQ (11L.1)

(note that since (a, @) = 2 for all roots & € O, we must have (3, ) € 2Z for any € Q). Such a function is called an
asymmetric function. Since (@, ) € Z for any «, f € Q we can replace a by a + ff in the second condition (1IL1) for an
asymmetric function to obtain:

e(a, Be(B, a) = (-1)P). (111.2)

Note that the bimultiplicativity property means it is determined by its values on a base A and moreover the second
condition (II1.1) requires €(a;, ;) = —1 for any &; € A. To construct such a function on the rest of A X A, orient the
edges of the Dynkin diagram, whose vertices are labelled by the base A = {«, ..., a;}, arbitrarily, and then define for
a; F CY]'
-1 ifthereis an edge going from a; to «;,
(e o) = B om0
/ +1 otherwise.

It the follows from this definition that Equation (111.2) holds for all roots in our base, and thus extending this € bi-
multiplicatively, we obtain an asymmetric function on all of Q.

We can now give a construction of the Lie algebra g associated to our root system: Let )* denote the extension
of scalars from Q to our field k of V, and similarly we can extend our inner product to a symmetric bilinear form on
b*. Let h) be the dual of ).

Definition IIL.2. Letgy = D& @aeq) k.e, as a vector space, and let /1, be the image of & under the isomorphism
between [) and f)* given by the nondegenerate symmetric bilinear form on h* induced from the inner product on V.
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We define

[, W]1=0,Yh N €l
[h, ea] = a(h)ea}
—h,, ifa+p=0;
lea e5] = €l B)ep ifa+fed;
0 otherwise.

We also extend the symmetric bilinear form on ) (obtained by identifying it with h*) to all of g by setting (e,, €g) =
—0a,-p, and making [) orthogonal to @ae ® k.e,. (Note the minus signs in the definition of the invariant form and in
the bracket [e,, e_,] are consistent.)

Proposition III.3. The definition above gives a Lie algebra which hasY) as a Cartan subalgebra and root system @, and the
form on gq is invariant.

Proof. (Sketch): We must show that g is a Lie algebra, that is, we must check that the bilinear map [, ] defined above
is a Lie bracket. To see that it is alternating, note that if {o, 8, & + f} C @ then, since the root system is simply-
laced, (@, f) = -1, and hence (111.2) shows that e(a, f) = —€(f, @). It remains to check that [.] satisfies the Jacobi
identity. It is enough to check this on three basis elements, x, iy and z. If at least one of our basis elements is in [) this
is easy (the properties of the bimultiplicative function beyond the one already used for the alternating property are
not involved). For example, if x = h € h, y = ¢,,z = eg then (settinge,,3 = 0ifa + f ¢ D)

[h/ [ea/ 8‘3]] + [ea/ [eﬁ/ h]] + [eﬁ/ [h/ ea]]

= e(at, B) (@ + BIW)easrs — Br)ears — alh)eap)
=0.

If x, 1, z are of the form ¢, e €y then there are a number of cases to check. Firstly,ifnoneofa + g, + 7y, + ¥
lie in @ U {0}, then the Jacobi identity holds trivially. Thus let us suppose thata + § € ® U {0}. Note thata + § €
if and only if (a, ) = F1. Moreover, it follows that e(a, @) = =1 and e(av, f)e(B, ) = —1.

There are four cases: ) a £y ¢ @ U {0};2) eithera+ yora—y = 0;3)a+y € ®and;4)a—y € . Cases1)
and 2) are easy to check, case 3) follows from

ey, a)e(y +a,—a) = (o, a).

In this fashion one can reduce to the case where a + 3, @ + ) and f§ + y all lie in ®@. But then (a, ) = (a, ) =
(B,v) =-landso(a+f+y,a+p+y)=0sothata + +y = 0. In this case the Jacobi identity

[ea/ [eﬁ/ ey]] + [eﬁr [eyr ea]] + [ey/ [ea/ eﬁ]] =0

reduces to

e, v)e(a,p+y)+ely,a)e(B,a+y)+e(a,fle(y,a+p)=0

which can be checked using the properties of €.

Itis similar, though more straight-forward, to check that the symmetric bilinear form we have defined is invari-
ant. O

III.2 The non-simply-laced cases

One can also use the construction of the simply-laced Lie simple Lie algebras to give a construction of all simple
Lie algebras: We do this as follows: Given a simply-laced Dynkin diagram D, a admissible diagram automorphism is
a graph automorphism o: D — D with the property that the orbit of a vertex is discrete, that is, there is no edge
between a vertex i and 0¥ (i) for any k € Z.

Given such an automorphism, we claim that 0 induces an automorphism of g the associated simple Lie algebra.
To see this, note that we can pick the orientation of our Dynkin diagram so that it is invariant under the diagram
automorphism (we will check this shortly for the automorphisms we need). Clearly ¢ induced an isometry of V to
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itself preserving the roots @ (it clearly preserves Q and hence @ since @ is the set of norm 2 vectors in (J). Moreover,
itpreserves the bimultiplicative function € because it preserved the orientation of our Dynkin diagram (by our choice
of orientation).

Defining 0 on g by letting o(e,) = €4(n) and letting it act on [) by extension of scalars of its action on V/, itis then
clear that 0 is a Lie algebra homomorphism. It follows that its fixed point set is a sub-Lie algebra.

Theorem II1.4. The Lie algebra g‘é is a simple Lie algebra with Dynkin diagram D° given as follows: the vertices of D° are
the orbits of 0 on the vertex set of D, and, for any two orbits, they are joined if there were edges joining a vertex in one orbit to
a vertex in the other, etc..
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