Geometric Group Theory

Cornelia Druțu

University of Oxford

Part C course HT 2023

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Part C course HT 2023 1 / 10

Word and conjugacy problems

Proposition

If the word problem or conjugacy problem is solvable for $G = \langle S|R \rangle$ then it is solvable for any finite $\langle X|Q \rangle = G$.

Proof.

WP: Given $w \in F(X)$ we run simultaneously 2 procedures:

- List all elements in ⟨⟨Q⟩⟩ (i.e. multiply conjugates q_i^{w_i}, w_i ∈ F(X), q_i ∈ Q and transform into reduced word); check if w is among them. If yes, stop and conclude w = 1.
- List all homomorphisms φ : F(X)/⟨⟨Q⟩⟩ → F(S)/⟨⟨R⟩⟩ (i.e. enumerate all |X|-tuples of words in F(S), then check if each q ∈ Q, rewritten by changing x → w_x, becomes ≡ 1 in F(S)/⟨⟨R⟩⟩). This can be done since the WP for ⟨S|R⟩ is solvable.
 - For each φ, check if φ(w) ≠ 1 in F(S)/⟨⟨R⟩⟩. If yes, stop and conclude w ≠ 1.

Proof continued: CP: Given $w, v \in F(X)$, run the following 2 procedures in parallel:

1 • List all
$$gvg^{-1}w^{-1}$$
 in $F(X)$.

Check if gvg⁻¹w⁻¹ is among the list of elements in ((Q)). If yes, stop and conclude: "v, w conjugate".

② Ist all homomorphisms φ : F(X)/⟨⟨Q⟩⟩ → F(S)/⟨⟨R⟩⟩.
③ Check if φ(v), φ(w) are not conjugate. If yes, stop and conclude:

"v, w not conjugate".

Idea: Approximate by finite quotients. So we will need enough of those.

Lemma

TFAE

1

$$\bigcap_{H \leq_{f,i} G} H = \{1\}$$

Prove all non-trivial g ∈ G, there exists φ : G → F finite such that φ(g) ≠ 1.

ŀ

So For all $\{g_1, ..., g_n\}$ distinct, there exists $\phi : G \to F$ such that $\phi(g_1), ..., \phi(g_n)$ are distinct. In other words, every finite chunk of the infinite Cayley table of G can be reproduced identically in the Cayley table of a finite quotient.

Proof.

The proof is based on the fact that

$$\bigcap_{H \leq_{f,i,G}} H = \bigcap_{N \leq_{f,i,G}} N$$

The implications $(3) \Rightarrow (2) \Rightarrow (1)$ are OK.

And for (1) \Rightarrow (3): $\forall i \neq j$, take $N_{ij} \not\ni g_i g_j^{-1}$ and define

$$N = \bigcap_{i \neq j} N_{ij}$$

and then consider ϕ : $G \rightarrow G/N$.

Examples

- $GL(n,\mathbb{Z})$ is residually finite. $\forall g \neq id$:
 - **a** If $\exists i \neq j$ such that $|g_{ij}| \neq 0$, take $p > |g_{ij}|$ and reduce mod p.
 - **b** If $\forall i \neq j$, $g_{ij} = 0$, then $\exists g_{ii} = -1$. Reduce mod 3: $g_{ii} = 2$.
- **2** Any finitely generated $G \leq SL(n, \mathbb{Q})$ (or $GL(n, \mathbb{Q})$) is RF.

● (\mathbb{Q} , +) is not RF (and nor is SL(n, \mathbb{Q})): if we have some $\phi : \mathbb{Q} \to F$, $\phi(0) = \operatorname{id}$, take $g = \phi(1)$, n = |F| and then $g = \phi(1) = \phi(\frac{1}{n})^n = \operatorname{id}$.

Theorem (Mal'cev)

Let *R* be a commutative ring with unity. \forall finitely generated $G \leq GL(n, R)$, *G* is residually finite.

Proposition

- If G is RF and $H \leq G$ then H is RF.
- If H is a finite index subgroup of G then H is RF if and only if G is RF.
- **③** If two groups G and H are RF then $G \times H$ is RF.
- If G = H ⋊ K where H is finitely generated RF, K is RF, then G is RF.

Proposition

For all finite or countable X, F(X) is residually finite.

Proof: We have that
$$F_2 \simeq \langle \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \rangle \leq GL(2, \mathbb{Z})$$
. And for all X finite or countable, $F(X) \leq F_2$.

Theorem

A finitely presented residually finite group has a solvable word problem.

Remark

Note that every finite group has a solvable word problem.

Proof.

Suppose $G = \langle S | R \rangle$. Take $w \in F(S)$. Run simultaneously two procedures:

- **(**) List all elements in $\langle \langle R \rangle \rangle$ and check if *w* is among them.
- 2 List all homomorphisms $\phi : F(S)/\langle \langle R \rangle \rangle \to S_n$ and check if $f(w) \neq 1$.

Definition

G is Hopf if every onto homomorphism $f : G \to G$ is an isomorphism.

Example Every finite group is Hopf.

Theorem

A finitely generated residually finite group is Hopf.

Theorem

A finitely generated residually finite group is Hopf.

Proof.

Assume there exists an onto homomorphism $f : G \to G$ that is not 1-to-1.

Take $g \in \ker f \setminus \{1\}$. There exists $\phi : G \to F$ with $\phi(g) \neq 1$. Construct a sequence

$$g = g_0, \ g_1 \in f^{-1}(g_0), \ g_2 \in f^{-1}(g_1), \ ... \ , \ g_n \in f^{-1}(g_{n-1})$$

 $\forall n, f^n(g_n) = g \text{ and } f^k(g_n) = 1 \text{ for all } k > n.$ Hence, for all $n > \ell$, $\phi \circ f^n(g_\ell) = 1 \text{ and } \phi \circ f^n(g_n) \neq 1.$ So the homomorphisms $\phi \circ f^n$ are pairwise distinct. But this contradicts $\operatorname{Hom}(G, F) \leq |F|^{|S|}$.