Geometric Group Theory

Cornelia Druțu

University of Oxford

Part C course HT 2023

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Part C course HT 2023 1 / 15

A quotation

William Thurston: "Mathematics is not about numbers, equations, computations, or algorithms: it is about understanding."

Residually finite groups

Definition

G is Hopf if every onto homomorphism $f : G \to G$ is an isomorphism.

Theorem

A finitely generated residually finite group is Hopf.

Corollary

If $F(X) = \langle A \rangle$ and $|A| = |X| = n < \infty$, then $F(X) \simeq F(A)$. (i.e. A freely generates F(X) i.e. A is a free basis for F(X)).

Proof.

A bijection $X \to A$ extends to $X \to F(A)$ which extends to an onto homomorphism $F(X) \to F(A)$. By Universal Property, we have a second onto homomorphism, hence an onto hom. $F(X) \to F(A) \to F(X)$. Since F(X) is Hopf, the latter hom. is an isomorphism, hence all are.

Residually finite groups. Simple groups

Theorem

A finitely generated residually finite group is Hopf.

The assumption finitely generated cannot be dropped from the theorem.

Example

- Consider X, Y countable.
- There exists $f : X \rightarrow Y$ onto and not injective.
- f extends uniquely to an onto group homomorphism $F(X) \rightarrow F(Y)$.

At the other extreme, we have simple groups.

Definition

G is simple if the only normal subgroups are $\{1\}$ and G.

Simple groups

Example

 $\mathbb{Z}/p\mathbb{Z}$, A_n , A_∞ , $PSL(n, \mathbb{Q})$, infinite f.g. due to Higman, Thompson, Olshanskii, Burger-Mozes.

Theorem

A finitely presented simple group has solvable word problem.

Proof.

Let $w \in F(S)$. Since G is simple, if $w \neq 1$ in G then $G = \langle \langle w \rangle \rangle$ and hence $\langle \langle \{w\} \cup R \rangle \rangle = F(S)$.

Two procedures:

- Enumerate $\langle \langle R \rangle \rangle$. Check if *w* appears.
- **2** Enumerate $\langle \langle \{w\} \cup R \rangle \rangle$. Check if every $s \in S$ appears.

A main method of investigation is to endow an infinite group with a geometry compatible with its algebraic structure, i.e. invariant by multiplication. This can easily be done for finitely generated groups via Cayley graphs.

Given a countable group G and a subset S such that $S^{-1} = S$, the Cayley graph of G with respect to S, denoted $\Gamma(S, G)$, is a directed/oriented graph with

- set of vertices *G*;
- set of oriented edges $\{(g,gs):g\in G,s\in S\};$

We denote an edge [g, gs]. The underlying non-oriented graph is denoted $\hat{\Gamma}(S, G)$.

Examples of Cayley graphs

1 \mathbb{Z}^2 with $S = \{(\pm 1, 0), (0, \pm 1)\}$

Examples of Cayley graphs

2
$$\mathbb{Z}^2$$
 with $S = \{(\pm 1, 0), \pm (1, 1)\}$

Examples of Cayley graphs

Cornelia Druțu (University of Oxford)

Part C course HT 2023 9 / 15

Particular features of Cayley graphs

• No monogons (edges of the form [g,g]) if $1 \notin S$.

No digons if, when s = s⁻¹, we do not list both s and s⁻¹ in S (i.e. no repetitions in S).

In other words, this is a simplicial graph.

- Γ(S, G) is connected (i.e. any two vertices can be connected by an edge path) if and only if G = (S).
- □ Γ(S, G) is regular: the valency/degree of every vertex is |S|.
 □ Γ(S, G) is moreover locally finite if and only if |S| < ∞.

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Particular features of Cayley graphs

So If $\Gamma(S, G)$ is infinite then it always contains a bi-infinite geodesic.

• $\Gamma(S, G)$ always contains a cycle (in fact plenty) with one exception: $\Gamma(S, G)$ does not contain a cycle (i.e. it is a simplicial tree) \iff $S = X \sqcup X^{-1}$ and G = F(X).

Cayley Graphs

From now on assume that S is a finite generating set (with no repetitions), $1 \notin S$, $S = S^{-1}$. We endow $\Gamma(S, G)$ with a metric d_S as usual:

- each edge has length 1;
- $d_S(x,g)$ is the length of a shortest path from x to g.

Proposition

The action of G on its Cayley graph is an action by isometries. The action is free on the vertices. It is free on the whole Cayley graph if and only if no $s \in S$ is of order 2.

Proof.

We have a map

$$G \to \operatorname{Isom}(\Gamma(S,G)) \quad g \mapsto L_g$$

where $L_g \in \operatorname{Isom}(\Gamma(S,G))$ extends $L_g : G \to G$, $L_g(x) = gx$ to edges.

Cayley Graphs

Definition

The restriction of d_S to $G \times G$ is called the word metric.

Exercises

- |g|_S := d_S(1,g) is the minimum length of a word w in S such that g =_G w.
- $d_S(g,h)$ is the minimum length of a word w in S such that $gw =_G h$.

Proposition

If $G = \langle S \rangle = \langle \bar{S} \rangle$ then d_S and $d_{\bar{S}}$ are bi-Lipschitz equivalent. That is, there exists L > 0 such that

$$\frac{1}{L}d_{S}(g,h) \leq d_{\bar{S}}(g,h) \leq Ld_{S}(g,h)$$

for every $g, h \in G$.

A simplicial tree is a connected graph with no monogons, digons or cycles.

Theorem

 $\hat{\Gamma}(S,G)$ a simplicial tree on which G acts freely $\iff S = X \sqcup X^{-1}$, G = F(X).

Actions on simplicial trees

Theorem

 $\hat{\Gamma}(S,G)$ a simplicial tree on which G acts freely $\iff S = X \sqcup X^{-1}$, G = F(X).

Proof.

(\Leftarrow): A cycle would correspond to a reduced word w = 1 in F(X).