
SUMMARY OF C2.6 LECTURES (VERSION 2)

JAY SWAR

Corrections and feedback is welcome! Send to swar@maths.ox.ac.uk

This document is currently in a rough state, and will be gradually �lled in. The
main point is to give a list of what's been covered in lectures and references, and
so I will aim to be updating it regularly. Feel free to ask for more clarity regarding
mathematical content, what is examinable (or, what's easier for me to answer, what
is strictly non-examinable), or anything else.
A remark on the course: It'll likely be to your advantage to go through the course

�rst hunting for the big pictures, and then later chisel out the details. The theory of
schemes is made much easier by time and by examples.
The lectures in week 8 have been moved to week 7; that is, there are 4

lectures in week 7: Monday, 2pm; Tuesday, 3pm; Wednesday, 2pm; and
Thursday, 3pm. Locations will be con�rmed on Monday.

0. Overview

There are two sets of lecture notes accompanying this course: Ritter's course notes
from last year and Rössler's notes from some previous years. I expect almost all of
the material in Ritter's notes will appear during the lectures or at least be directly
adjacent. The stu� in Rössler's notes which does not appear in lectures, here, or in
Ritter's notes will not be examinable, but might still be helpful (especially if you are
more (co)homologically inclined). The material we cover which does not appear in
either set of notes will appear here. So far (March 22), the course has looked like:

• Parts of sections 1 and 2 of Rössler's notes (especially concerning the ad-
junction between pushforwards and inverse images on sheaves, locally ringed
spaces, OSpecR de�ning a sheaf, schemes as locally ringed spaces) should be
helpful (you can skip the spectral sequence stu�).

• The representability criterion for a Set-presheaf on Sch (not in either set of
notes, we went along section 26.15 of the Stacks project)

• Ritter's notes: Chapters 1, 2, 3, 4, 5, 6, 7, 8, 9 so far (not everything appeared
directly in lectures). Important things to emphasize are a�ne-locality of var-
ious properties of schemes and of morphisms of schemes; induced reduced
closed subschemes (not covered in depth during lectures, but section 5.6 in
Ritter notes); section 5.1 of Ritter's notes on the existence of �ber products
in SchS should be compared with a functor-of-points approach.

• The valuative criteria for universally-closedness/separatedness/properness (not
in either set of notes, we went along sections 26.19-26.22 of the Stacks
project). I also brie�y talked about the (non-examinable) valuative criteria
for smoothness/unrami�edness/étaleness.
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• ModOX
, QCoh(ModOX

), the equivalence of categories betweenModR ≃ QCoh(ModOR
).

Vector schemes over X, relative spec (we went along sections 27.2-27.6 of the
Stacks project).

• We then talked about �ech cohomology and sheaf cohomology; Serre's crite-
rion for a�neness (we went along sections 30.2-30.3 of the Stacks project which
is more general than the version in section 2 of R�'ossler's notes which just con-
siders Noetherian schemes); line bundles, ampleness (we did not mention this
in the lectures!). Chapter 10 of Ritter may be helpful, e.g. for understanding
line bundles on Pn.

If I were to convert these into lecture notes, the sections would be: 1) basics of schemes
as locally ringed spaces and as functors (ideally on CRing, but we focused on char-
acterising them amongst PSh(Sch) rather than descending to PSh(Aff). The descent
isn't too di�cult.); 2) further properties of schemes and morphisms of schemes, val-
uative criteria; 3) properties of sheaves, OX-modules, and cohomology; and 4) bonus
bits.
You should try not to feel unhealthily stressed about the course if you understand

the above material and problem sheets. The problem sheets are intended to require
considerably more new ideas and work than would be appropriate in an exam. I
make lots of non-examinable remarks in this document which are meant to either
be directly helpful or provide some sense of the upshots and shortcomings of scheme
theory, especially in the context of modern mathematics1. Some of the best comple-
mentary/additional reading material is:

• Hartshorne's Algebraic Geometry
• Vakil's online notes, The Rising Sea
• Eisenbud and Harris' The Geometry of Schemes
• The Stacks project, especially Chapter 26, and parts of Chapters 28, 29, 30
as relevant.

The following lectures are fully �summarized�:
• Lecture 8

0.1. I'll include here some nice results/exercises which didn't appear in
lectures/problem sheets.

Exercise 1. Show that a schemeX is reduced i� the canonical morphism
∐

x∈X Spec(κ(x)) →
X is an epimorphism (hence an isomorphism).

1. Lecture (Monday, Week 1, 2pm)

Why are schemes necessary? If you want to work with Z (or even R), with nilpo-
tent rings, or do coordinate-independent algebraic geometry, then you need schemes.
Nilpotent rings arise naturally even when considering classical algebraic geometry (e.g.
in non-transverse intersections such as Spec(C[x, y]/(y− x2)) and Spec(C[x, y]/y) in-
tersecting in Spec(C[x, y]) =: A2

C). For number theory, there's plenty of phenomena

1Many might call schemes the birth of modern algebraic geometry. But it's 2023, and �postmod-
ern� has acquired too many connotations to be universally embraced (and initiates the unsavory
terminology of post· · · postmodern)... still, the theory of schemes is a sine qua non for (and in fact
su�cient to approach!) a stunning proportion of modern research in algebraic geometry, arithmetic
geometry, higher category theory, etc.
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which a priori looks like it should be geometric. Schemes give a theory of geometry
which is su�ciently general to explain much of this. For example, the Diophantine
equation E : y2 = x3+ax+b with a, b ∈ Z (the punctured elliptic curve) is associated
to Spec( Z[x,y]

y2−(x3+ax+b)
). Note that the solutions to E valued in a commutative ring R

are in a functorial bijection with HomCRing(
Z[x,y]

y2−(x3+ax+b)
, R). This is an instance of

what's known as the functor of points perspective. The curve considered as over
the complex numbers or as over a �nite �eld (i.e. the mod p reduction of E) can
then be uniformly considered as base-changes (�bers!) of Spec( Z[x,y]

y2−(x3+ax+b)
) along

SpecC → SpecZ and SpecFp → SpecZ, respectively.
De�nition 2. Ringed spaces. Locally Ringed Spaces.
Presheaves and Sheaves on Op(X) (the category of opens of a topological space

X). Stalks.

A morphism s : B → E is a section of a map π : E → B i� π ◦ s = idB. Sections
of presheaves are sections of the induced projection map from the associated the
'etale space. Historically, the topological picture came �rst and sheaves served as
generalizations (e.g. as coe�cients in cohomology).

De�nition 3. (SpecR,OSpecR).

The closed subsets of SpecR are de�ned to be V (I) := {p ∈ SpecR : p ⊇ I}. For
any open U we can write U = SpecR − V (I) =

⋃
f∈I Df (R) (since a prime ideal p

does not contain I i� ∃f ∈ I which is not in p).

Exercise 4. OSpecR(Df (R)) := R[ 1
f
] de�nes a sheaf.

By the sheaf property, it is thus su�cient to de�ne the values on any basis of opens
to know OSpec(R)(U) on any open U ⊆ SpecR.

2. Lecture

De�nition 5. Morphism of ringed spaces (f, f#) : (X,OX) → (Y,OY ), of locally
ringed spaces (maps on stalks are local morphisms of local rings). Schemes are a
full subcategory of LocRingSpaces, i.e. a morphism of schemes is just a morphism of
locally ringed spaces.
Pushforward of presheaves along a morphism of topological spaces.
Natural Transformations

De�nition 6. Kernel of a morphism of sheaves.

Lemma 7. Let ϕ : F → G be a morphism of sheaves on a topological spaces X. The
presheaf U 7→ ker(ϕU : F (U) → G(U)) is a sheaf.

Example 8. U 7→ coker(ϕU : F (U) → G(U)) is not necessarily a sheaf. We consid-
ered exp : O → O× where O is the sheaf of holomorphic functions on C and O is the
sheaf of nowhere-zero holomorphic functions on C.
De�nition 9. Shea��cation. Universal property of shea��cation.

De�nition 10. Étale space associated to a presheaf. Let F ∈ PSh(X) Let ÉtF :=∐
x∈X Fx. We equip this space with the topology generated by opens {(s, U) ∈ Fx}x∈U

where s ∈ F(U), i.e. the subset of elements induced by sections over opens.
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There is a natural projection map
∐

x∈X Fx → X which can be observed to be
continuous.

Theorem 11. The category of abelian-group-valued sheaves Ab(X) on a topological
space X is an abelian category.

Proof. Omitted. □

Exercise 12. A SES 0 → F → G → H → 0 of Ab-sheaves is exact i� the induced
sequences on stalks 0 → Fx → Gx → Hx → 0 are exact for all x ∈ X.

De�nition 13. The induced map on spectra of a ring homomorphism.

This induced map is continuous.

Example 14. Examples of a�ne schemes:
F[x1, . . . , xn]/I for F a �eld.
SpecK for K a �eld. Topologically, these are just points, but they have di�erent

structure sheaves for di�erent K.
SpecZ

You should think about SpecZ[x]. Drawing this picture relies directly on the
structure theory of algebraic integers and number �elds.

3. Lecture (Monday, Week 2, 2pm)

Lemma 15. CAlgopZ → LocRingedSpaces is fully faithful.

Proof. In Ritter's notes (chapter 1.13). □

The essential image consists of what we call a�ne schemes.

Lemma 16. All schemes are colimits of a�ne schemes.

Lemma 17. The Yoneda lemma.

One motivation: HomCAlgZ(
Z[x,y]

y2−(x3+ax+b)
,−) as a functor CAlgZ → Set allows one

to think of a collection of points valued in di�erent rings instead of a locally ringed
space.
Another very important motivation: there turns out to be an algebro-geometric

version of the theory of Lie groups (manifolds which possess a group structure de�ned
using smooth maps, i.e. group objects in the category of manifolds). This is the
theory of algebraic groups (and group schemes; a group scheme is a group object in
the category of schemes; an algebraic group is a group scheme over a �eld). It is very
helpful to talk about algebraic groups as functors. This is outside the remit for this
course however.

Remark 18. An S-scheme G is a group scheme i� the Yoneda embedding hG of G is
valued in the category of groups (viewed as a subcategory of Set).

De�nition 19. Site = category with a Grothendieck topology.
Grothendieck topology = generalization of open covers
Sheaves on sites
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Remark 20. We will focus mostly on Op(X) for topological spaces X (in particular,
for schemes, we focus on the Zariski topology). I introduce sites since they present
a clean isolation of the structure on a category for which we can discuss sheaves. In
particular, it's more natural to think about sheaves on CRing or on SchS or TopX (i.e.
the category of topological spaces with a continuous morphism to X) using sites. The
site most used in algebraic geometry is arguably the étale site in which the covers
(jointly-surjective collections of étale maps) are algebraic versions of (topological)
covering maps. Such a notion gives one descriptions of fundamental groups of schemes.
The fundamental group of SpecK for a �eld K turns out to be the absolute Galois
group (the choice of base-point corresponds to a choice of seperable closure).

Example 21. Open covers on Op(X) de�ne a Grothendieck topology on the category.

The following will be returned to after Lecture 8

De�nition 22. Let M ∈ ModR. We de�ned an associated sheaf M̃ on SpecR.

We mentioned that these types of sheaves generalize vector bundles; in fact, we
will see eventually that they produce an equivalence between ModR and the category
of quasi-coherent ModOSpecR

-sheaves on SpecR.

4. Lecture

We begin proving the representability criterion. We mostly follow the route con-
tained in the Stacks project, chapter 26.

De�nition 23. A subfunctor H ⊆ F ∈ Fun(Schop, Set) is representable by open
immersions i� for all pairs (T, ξ) where T is a scheme and ξ ∈ F (T ), there exists an
open subscheme Uξ ⊆ T such that a morphism f : T ′ → T factors through Uξ i�
f ∗ξ ∈ H(T ′).

De�nition 24. There is a helpful equivalent de�nition: : a subfunctor Hi ⊆ F is
representable by an open immersion i� for all schemes T and all ξ : hT → F , there
is an open subscheme Ui,ξ ⊆ T such that hUi,ξ

≃ Hi ×F hT . That is, a subfunctor
is representable by open immersions i� �schemes collectively view it in F as an open
immersion� (the way a scheme T views a functor F is HomPSh(Sch)(hT , F ), and the
way T views Hi is Hom(hT , Hi). Thus, the way T views Hi ⊆ F along ξ : hT → F
is precisely Hom(hT , Hi ×F hT ). In particular, for a T -scheme S, we're asking for the
S-points of Hi ×F hT to be the S-points of an open immersion Ui,ξ of T .

5. Lecture (Monday, Week 3, 2pm)

Results on Gluing (chapter 4 of Ritter, chapter 26.14 of the Stacks Project).
Finish proof of representability criterion:

Theorem 25. F ∈ PSh(Sch) = Fun(Schop, Set) is representable by a scheme i�
F ∈ Sh(Sch, τZariski) and F admits a covering by subfunctors representable by open
immersions.

Remark 26. Amoduli problem = A functor on Schop which one would like to represent;
in particular, let's view the functor as valued in Set, although often one wants a
target with more structure (e.g. the category Grpd of groupoids; here, a groupoid



SUMMARY OF C2.6 LECTURES (VERSION 2) 6

is a category in which every morphism is an isomorphism. In contrast, a set S is a
category with objects in correspondence with the elements of the set S and the only
morphisms are the identity morphisms. In more terminology, a set is tautologically a
small discrete category and we view groupoids as moving away from the discreteness
(one might have in mind moving from considering the set of points HomTop(∗, T ) of
a topological space T to the set of paths [0, 1] → T ).
A representing object is called the moduli solution. The following explains the

terminology for universal family: Suppose (X, ξ : hX
∼→ F ) is a universal family

where F is a moduli problem (i.e. we have some interpretation for the T -points of
F where T is a scheme). We view a T -point of F as a T -parametrized family of
�whatever the points of F represent�. In particular, ϕ ∈ F (T ) ≃ HomSch(T,X) under
ξ, and so the T -parametrized family of F 's �points� are a map of T into X. Thus, X
is a universal as a target for T -parametrized family of F 's �points�.

De�nition 27. Noetherian topological space.

Lemma 28. Noetherian i� all opens are quasi-compact.

We began discussing some properties of morphisms.

Lemma 29. All morphisms of a�ne schemes are separated.

6. Lecture

Properties of morphisms. Sections 3.6 and 5.4 of Ritter's notes are decent references
(as well as parts of chapter 26 of the Stacks Project).

De�nition 30. A�ne, quasi-compact, locally of �nite type, separated, universally
closed, open/closed/locally closed immersions. Universally closed. Separated.

Lemma 31. De�ning things with respect to all a�ne open covers vs. a single a�ne
open cover.

Remark 32. X → ∗ in Top is separated i� X is Hausdor�.

7. Lecture (Monday, Week 4, 2pm)

We covered further properties of separated and universally closed morphisms.

Lemma 33. For any morphism of schemes f : X → Y , ∆f : X → X ×Y X is a
locally closed immersion.

Lemma 34. A�ne, quasi-compact, locally of �nite type, separated, universally closed,
being a closed/open/locally closed immersion are all stable under base-change.

Lemma 35. A scheme X is separated i� ∃ a�ne-open cover
⋃

i∈I Ui = X such that
Ui ∩ Uj is a�ne and the induced morphisms OX(Ui) ⊗ OX(Uj) → OX(Ui ∩ Uj) is
surjective for all i, j ∈ I.

Lemma 36. The graph Γf : X → Y ×X is a base-change of ∆Y .

Remark 37. Topological description of (quasi-)compactness, Hausdor�ness can be
phrased categorically. Translating those de�nitions to the setting of schemes high-
lights the schemes which have similarly nice behavior. For example, in compact,
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Hausdor� spaces, we can de�ne �limits� which have nice existence/uniqueness prop-
erties.
The algebro-geometric analogue will be clari�ed in the Valuative Criteria for separated/universally-

closed/properness.

De�nition 38. f : X → Y is quasi-separated i� ∆f : X → X×Y X is quasi-compact.

Lemma 39. Closed immersions are quasi-compact.

Corollary 40. Separated morphisms are quasi-separated.

De�nition 41. Let x, y be points of a topological space. x is a genericization of y
(equiv. y is a specialization of x) i� y ∈ {x}
Example 42. LetR be a local domain which is not a �eld. ThenmR is a specialization
of (0). (we have a �most special� and �most generic� point)

8. Lecture

The content of this lecture is not in Rössler or Ritter's notes and so we write
out details. Source: this is more-or-less all well-documented in the Stacks Project,
Chapter 26.
Moral: In topology, a compact space has �no punctures� and a Hausdor� space

has �unique limits when they exist�. Here is one completely non-examinable way of
making this precise:

Fact. A topological space X is:

• Hausdor� i� every ultra�lter converges to at most one point.
• Compact i� every ultra�lter converges to at least one point.

De�nition. A �lter is: a non-empty family U of subsets of X s.t.
(1) ∅ /∈ U ,

(a) A ∈ U , X ⊇ B ⊇ A =⇒ B ∈ U ,
(b) A,B ∈ U =⇒ A ∩B ∈ U ,

De�nition. A �lter is an ultra�lter i� it is maximal amongst �lters with respect to
inclusion.

This generalizes the notion of �large� subsets of a space.

De�nition. A �lter U converges to a point x i� Nx ⊆ U where Nx is the �neighbor-
hood/principal �lter of x ∈ X� de�ned as the collection of subsets of X containing
x.
If f : X → Y is a function on sets and U is a �lter on X, then f∗U := {A ⊆ Y :

f−1(A) ∈ U} is a �lter on Y (called the pushforward of U via f).

Example 43. (The motivating example for this aside) Let f : N → X be a sequence
in a topological space X. Let I denote the �lter on N consisting of all in�nite subsets.
Then Nx ⊆ f∗I i� f(n) → x as a sequence.

Example. Let U on Rn be the set of subsets with ∞ measure (using the standard
measure).
There's no x ∈ Rn such that Nx ⊆ U . If we compactify Rn with a point p �at ∞�,

we have that Np ⊆ Û (where the hat denotes an ultra�lter on Rn ∪ {p} containing
U).
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We will �nd that there is an algebro-geometric analogue of this in the form of the
valuative criteria for

• universally closedness (cf. compactness)
• separatedness (cf. Hausdor�)

We �rst need some notion of converging to a point in algebro-geometric settings.
Let A ⊆ B be commutative rings (write the corresponding map of a�ne schemes as

ι), X
f→ S be a morphism of schemes. There is an equivalence between the set of

commutative diagrams

SpecB
β //

ι

��

X

f

��
SpecA α

// S

and the set-theoretic limit X(B)×S(B) S(A).

This is precisely: the B-points of X whose image in S can be genericized to A-
points.
There is a natural map of sets X(A) → X(B)×S(B) S(A) which is not necessarily

injective nor surjective in general. (β, α) are in the image of this map i� one can draw
a diagonal map from SpecA to X in the diagram. When this occurs, one calls the
diagonal map a lift of α along β. This can be viewed as a very large generalization
of �converging to a point�: recall that f : X → S is viewing X as a family of schemes
(f−1{s})s∈S indexed by the points of S. So a lift is saying that given a B-point of X
whose image in S can be genericized to an A-point of S, then one can genericize the
B-point of X to an A-point of X. Don't dwell too much on this until we talk about
valuation rings.
Recall that being universally closed and being separated are both about certain

maps being closed (either all base-changes or the diagonal map respectively).

Lemma 44. Let f : X → S be a quasi-compact morphism of schemes. Then f is
closed i� specializations lift along f .

Proof. ( =⇒ ) Suppose f(x′) = s′ and s ∈ {s′}. As f is closed, f({x′}) ⊇ {s′}, and
so there exists x ∈ {x′} such that f(x) = s.

( ⇐= ) Let Z be a closed subset of X (viewed as a closed subscheme with the
reduced induced structure sheaf). Z is closed, so f |Z is quasi-compact and special-
izations lift along f |Z : Z → S since any specialization in X of a point in Z must be
in Z, thus f(Z) is stable under specializations.
Let U = SpecR be an a�ne open of S. As f is quasi-compact and U is a�ne,

f−1(U) is quasi-compact (without loss of generality, we take it to be non-empty). We
can thus take a �nite a�ne open cover f−1(U) =

⋃
i∈I Spec(Ai) of R-algebras. The

lemma below shows that since f(Z) ∩ U is closed under specializations in U we have
that U ∩ f(Z) = im(Spec(

∏
i∈I Ai) → SpecR) is closed in U . As U was an arbitrary

a�ne open, we that f(Z) is closed. □

Lemma 45. Let A → B be a morphism of commutative rings. If im(SpecB →
SpecA) is stable under specialization, then it is closed.

Proof. Let I := ker(A → B). SInce we can write A → B as A → A/I → B, then
im(SpecB → SpecA) ⊆ Spec(A/I). Viewing the injection A/I↪→B as a morphism of
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A/I-modules and using that localization is exact, we observe that Bp := (A/I−p)−1B
is a non-zero A/I-module and in fact a ring for any prime of A/I. In particular, if p
is a minimal prime, then (A/I)p has precisely one prime which must be the pre-image
of any prime q in Bp (which exist as Bp is a non-zero ring). Thus, there is a prime in
B mapping to p.
Since im(SpecB → SpecA) is stable under specialization, it must then be equal to

V (I) = Spec(A/I) ⊆ SpecA and is thus closed. □

So lifting specializations should be precisely what informs being universally closed
and being separated. It turns out understanding specializations is equivalent to un-
derstanding appropriate A-points of our scheme of interest where A is a valuation
ring. This is made precise by the following lemma:

Lemma 46. Let S be a scheme and s′ ⇝ s a specialization of points in S. Then
given any �eld extension K/κ(s′) of the residue �eld of s′, there exists a morphism
from a valuation ring SpecA → S such that the generic point η of SpecA maps to
s′ and the special point σ of SpecA maps to s. Further, κ(η)/κ(s′) is isomorphic to
K/κ(s′).

Proof. We will prove this after some dialogue. □

De�nition 47. A valuation ring R is a commutative unital ring satisfying the fol-
lowing equivalent conditions:

(1) A local domain maximal with respect to domination amongst local subrings
of its fraction �eld.
(a) Let A,B be local subrings of a �eld K. We say A dominates B i� A ⊇ B

and mA ∩B = mB (i.e. the inclusion i : B → A is a local map).
(2) One can write R ⊆ K where K is a �eld, such that for all x ∈ K×, either x

or x−1 is in R.
(3) ∃ a valuation v : K → Γ ∪ {∞} such that R = {x ∈ K : v(x) ≥ 0}

(a) A valuation on K is a map v : K → Γ∪{∞} where Γ is a totally ordered
abelian group (called the value group) satisfying:
(i) v(a) = ∞ i� a = 0
(ii) v(ab) = v(a) + v(b)
(iii) v(a+ b) ≥ min(v(a), v(b)) with equality i� v(a) ̸= v(b).

(4) A local domain such that all �nitely-generated ideals are principal.

Remark 48. A Noetherian valuation ring is thus a PID. In fact, a valuation ring is
Noetherian i� it is a discrete valuation ring (i.e. Γ ≃ (Z,+)) or a �eld.
A discrete valuation ring is a non-�eld local PID (thus has Krull dimension 1, is

integrally-closed, and much more). They should be thought of as local rings of points
on curves.

Remark 49. It is not the case that a valuation ring necessarily has Krull dimension
≤ 1. In fact, the dimension of the valuation ring is equal to the rank of its value group.
Here is an innocuous example of a valuation ring of dimension 2: Let v : k(x, y)× → Z2

be de�ned by v(
∑

i,j ai,jx
iyj) := min{(i, j)} where Z2 is ordered lexicographically

with degx > degy. Then the valuation ring is Rv := {f ∈ k(x, y) : v(f) ≥ 0} =
k[y, { x

yi
}i∈Z≥0

](y).
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Remark 50. A Prüfer domain is an integral domain whose localization at any prime
ideal is a valuation ring.
Equivalently, a ring is a Prüfer domain i� every �nitely-generated projective module

is torsion-free.
The Noetherian Prüfer domains are precisely the Dedekind domains, so Prüfer

domains are the precise non-Noetherian generalizations demonstrating the same local
behavior.

Given a non-�eld local domain A, the closed point mA of SpecA is called the special
point. For any domain, (0) is the unique generic point.
Let's consider the diagram

SpecK
β //

ι

��

X

f

��
SpecA α

// S

.

One can draw intuition from the Noetherian setting: suppose A is not a �eld.
Then SpecA is a local one-dimensional ring, cf. an in�nitesimal disk arount a point
of a curve. SpecK is obtained by omitting the point from the in�nitesimal disk, i.e.
SpecK = SpecA − V (mA). So K-point of a scheme T is a punctured in�nitesimal
disk of T , and saying that the K-point factors through an A-point is saying that the
puncture of the punctured in�nitesimal disk of T can be �lled in. Thus, asking for a
lift of α along β is equivalent to: asking if one has a punctured in�nitesimal disk β
of X whose image fβ in S can be �lled in fβ = αι, then can one �ll in the puncture
of β in X?
For non-Noetherian A, we have roughly the same intuition, just the in�nitesimal

disk is not quite around a point of a curve as it possesses intermediary in�nitesimal
neighborhoods between the closed point and the entire space. The puncture is removes
all these intermediary in�nitesimal neighborhoods of the closed point (i.e. SpecK is
the localization at the generic point).
We can now practically guess what the valuative criteria should be: we should

always have lifts (i.e. X(A) → X(K)×S(K) S(A) is surjective) when f is universally
closed (cf. compactness in topology), and lifts should be unique (i.e. X(A) →
X(K) ×S(K) S(A) is injective) when f is separated (cf. Hausdor�ness in topology).
To make this an i� the quasi-compactness conditions pop-up as in Lemma 44.

Theorem 51. (The valuative criteria of universally-closedness and separatedness)
Let f : X → S be a morphism of schemes.
f is universally closed i� f is quasi-compact and X(A) → X(K) ×S(K) S(A) is

surjective for all valuation rings A with fraction �eld K.
f is separated i� f is quasi-separated (i.e. ∆f is quasi-compact) and X(A) →

X(K)×S(K) S(A) is injective for all valuation rings A with fraction �eld K.

Before we prove Lemma 46, we note the following:

Lemma 52. Let s, s′ be points of a scheme S. We have s ∈ {s′} i� s′ ∈ im(SpecOS,s →
S).
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Proof. ( ⇐= ) This is trivial since continuous maps preserve specialization and every
point of SpecOS,s has the unique closed point (corresponding to s) in its closure, so
every point in the image genercizes s.

( =⇒ ) Pick an a�ne open neighborhood SpecR of s. Note since s ∈ {s′} =⋂
V ∋s′,closed subsets of S V , we have that s′ ∈ SpecR. Since s′ genericizes s, we have

containment on the corresponding primes: p′ ⊆ p, so s′ is in the image of Spec(OS,s) =
Spec(Rp) → SpecR ⊆ S. □

Lemma 53. Let A be a local subring of K. There exists a valuation ring V with
fraction �eld K dominating A.

Proof. This is trivial if FracField(R) = K. Suppose t ∈ K − FracField(R). If t is
transcendental over A, then A ⊊ A[t](t,mA) ⊆ K is a chain of local rings and A[t](t,mA)

dominates A. If t is algebraic over A, then at is integral over A for some a ∈ A, and
A[ta] is �nite over A and so by Nakayama's lemma, mAA[ta] ⊊ A[ta] and so there
exists a maximal ideal q of A[ta] containing mAA[ta]. Now q ∩ A is a proper ideal of
A containing mA and so must be equal to mA and thus A ⊊ A[ta]q ⊆ K is a chain of
local rings and A[ta]q dominates A. We want a maximal element.
Now let Σ denote the set of local subrings of K dominating A and partially ordered

by domination, and note that every chain {Ai}i∈I in Σ has an upper bound
⋃

i∈I Ai

(i.e. this is a local subring dominating A and dominating each Ai), hence Zorn's
lemma implies there exists a maximal element V . FracField(V ) = K since otherwise
we could constrict a strictly greater local subring of K dominating A and V . □

Proof. (of Lemma 46) Let s′ ⇝ s be a specialization of points in S and K/κ(s′) be a
�eld extension. Thus, by lemma 52, we have a map of rings from OS,s → κ(s′) → K
where the �rst map is the natural map fromOS,s → (OS,s/p

′)↪→FracField((OS,s/p
′)) =:

κ(s′) and the second map is the given inclusion of �elds. By lemma 53, there exists a
valuation ring A ⊆ K with fraction �eld K and dominating the image of OS,s → K.
The map OS,s → A induces the desired map SpecA → S. □

9. Lecture (Monday, Week 5, 2pm)

We �nish the proof of the Valuative Criteria.

Lemma 54. Let f : X → S be a morphism of schemes. TFAE:

(1) Specializations lift along any base-change of f .
(2) The f satis�es the existence condition of the valuative criterion.

Proof. We let A denote a vaulation ring with fraction �eld K.
(1 =⇒ 2) Consider a commutative diagram SpecKad[r]β

��

X

f

��
SpecA α

// S

. We consider

the base-change XA := X ×S,f,α SpecA → SpecA. Let x′ := im(SpecK → XA)
be the point induced by β; note thus κ(x′) ⊆ K. By assumption, there exists a
point of XA specializing x′ which maps to the closed point, say denoted x, of SpecA.
We thus have local ring map A → OX,x and OX,x → κ(x′) which compose to yield
A → OX,x → κ(x′) → K which is the canonical injection A → K. A → OX,x is local,
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and so im(OX,x → K) dominates A and thus is equal to A since A is a valuation ring.
Thus, we obtain a morphism OX,x → A lifting α.
(2 =⇒ 1) Note that the existence condition of the valuative criterion must auto-

matically hold for any base-changeXT → T , so it su�ces to verify that specializations
lift along f . If s ∈ s′, then we can apply Lemma 46 to view s as an A-point and s′

as a K-point for a valuative ring A with fraction �eld K, and then this lifts by the
valuative crtierion. □

De�nition 55. The equalizer of two morphisms a, b : X → Y in a category C is the
limit of a and b in C. Equivalently, the equalizer is the pull-back of the diagonal map

Y
(idY ,idY )→ Y ×Y along X

(a,b)→ Y ×Y (assuming C has binary products and pull-backs).

Lemma 56. Suppose we have morphisms of S-schemes a, b : X → Y . Then the equal-
izer Eq(a, b) (in SchS) is a locally closed subscheme. Eq(a, b) is a closed subscheme
when Y → S is separated.

Proof. The equalizer Eq(a, b) is the base-change of ∆Y→S : Y → Y ×S Y along
(a, b) : X → Y ×S Y . □

Lemma 57. If f : X → S is separated, then f satis�es the uniqueness condition of
the valuative criterion.

Proof. Suppose there are two a, b ∈ X(A) mapping to a diagram (β, α) ∈ X(K)×S(K)

S(A). The equalizer Eq(a, b) is a closed subscheme of SpecA as f is separated and
contains the image of SpecK which is the generic point of SpecA. Hence, Eq(a, b) =
SpecA, i.e. a = b. □

Lemma 58. Let f : X → S be a morphism of schemes. If f is quasi-separated and
satis�es the uniqueness condition of the valuative criterion, then f is separated.

Proof. We show that ∆f : X → X ×S X is universally-closed. It is quasi-compact
(since f is quasi-separated), so we check the existence condition of the valuative
criterion for ∆f .
Given any commuative diagram SpecK //

��

X

∆f

��
SpecA α

// X ×S X

, note that α is precisely

the data of two maps a, b : SpecA → X for which f(a) = f(b). Since f satis�es the
uniqueness condition, this implies that a = b, so we have a lift, namely α = ∆f (a). □

As an application, we provided another proof that P1 is proper.

10. Lecture (Wednesday, Week 5, 2pm)

We covered the basic properties of types of OX-modules, e.g. locally free, coherent.
A good reference is Ritter's chapter 6 and 7.

11. Lecture (Monday, Week 6, 2pm)

We continued covering the basic properties of OX-modules and functors on OX-
modules. We showed that pullbacks preserve quasi-coherence. A good reference is
Ritter's chapter 6 and 7.
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We began proving:

Theorem 59. QCoh(ModOR
) := QCoh(SpecR) ≃ ModR.

12. Lecture (Wednesday, Week 6, 2pm)

Today, we �nished the proof of QCoh(ModR̃) ≃ ModR. The main missing ingredient
was the gluing lemma which is the topic of section 7.5 of Ritter's notes. I also talked
about algebraic objects in categories.
The upshot is that one can characterize algebras as certain sets with maps which

satisfy certain properties (in the class, we went through the example of groups as
sets G with a multiplication m : G × G → G, inverse i : G → G, and identity map
e : {∗} → G which satisfy certain properties (i.e. diagrams re�ecting associativity and
the properties of inverses/identity elements). Thus one can de�ne algebraic objects
in categories and these objects are preserved under equivalences of categories.

De�nition 60. For example, an (commutative) R-algebra is characterized as a (com-
mutative) monoid object in the module category over R, i.e. CAlg(ModR) = CAlgR.

Denote the (commutative) algebra objects of an abelian category C (this can
be done more generally) by CAlg(C). A sheaf of algebras is a sheaf of (modules
with an algebra structure) and is equivalently an algebra object in the category
of sheaves of modules. That is, and CAlg(QCoh(ModOR

)) = QCoh(CAlgOR
) where

by QCoh(CAlgOR
), I mean sheaves of OR-algebras which are quasi-coherent as OR-

modules. Trivially, every commutative R-algebra is quasi-coherent as an R-module.
Thus, we have

Corollary 61. QCoh(CAlgOR
) = CAlg(QCoh(ModOR

)) ≃ CAlg(ModR) = CAlgR =
QCoh(CAlgR).

Because a�ne schemes over SpecR correspond antiequivalently to commutative
algebras over R, we thus we have the following:

Theorem 62. There is an (anti)equivalence between QCoh(CAlgR) = CAlgR ≃ AffSchSpecR.

This should be compared to the following (which can be proved from the exercises
on the relative spectrum on sheet 3):

Theorem 63. There is an (anti)equivalence SpecS : QCoh(CAlgOS
) ≃ AffSchS.

Proof. Omitted for now, but this is just a globalization of things you've done. □

We also have the symmetric algebra functor SymR : ModR → CAlgR. Or globally,
SymOS

: ModOS
→ CAlgOS

.
We have

VectSchopS

incl.
��

QCoh(ModOS
)

SymOS
��

SpecS SymOSoo

AffSchopS CAlg(QCoh(ModOS
))

SpecS

oo

.

We characterize the vector schemes over S coming from locally free OS-modules as
the vector bundles over S (to align with Ritter's terminology � sometimes, people
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will take the vector bundles to be the class of A�ne schemes over S associated to
coherent OS-modules via SpecS SymOS

and sometimes people (including EGA!) call
VectSchS the category of vector bundles).
Let F be a quasicoherent OS-module and A be a quasicoherent sheaf of OS-

algebras. We have that HomModOS
(F ,A) ≃ HomCAlgOS

(SymOS
F ,A). Thus, the

SpecS A points of SpecS SymOS
F inherit a OS-module structure (what might be

tempted to call them module bundles, but that is extremely non-mainstream)! There
exist various characterizations of the quasicoherent sheaves of OS-algebras which can
be obtained by SymOS

, but we won't focus on this. A simple observation is that
an a�ne morphism π : V → S is a vector scheme over S i� π∗OV is endowed with
the structure of a graded OS-algebra of the form

⊕
n≥0 Sym

n
OS

(F) where F is some
quasi-coherent OS-module.

13. Lecture (Monday, Week 7, 2pm)

In the next few lectures, we show that a�neness of X can be characterized by
the cohomology of quasicoherent sheaves. We go a di�erent route than in Ritter's
or Rössler's notes to avoid restricting to Noetherian schemes. The di�culty (which
would be avoided for Noetherian schemes) which we don't prove is that QCoh(ModOX

)
has enough injectives.

14. Lecture (Tuesday, Week 7, 3pm)

We showed that:

Theorem 64. If X is a quasi-compact scheme and H i(X, I) = 0 for all quasi-
coherent sheaves of ideals I, then X is a�ne.

We then showed several lemmas which will be helpful for the converse. The main
reference is the �rst sections of chapter 30 on the Stacks project.

15. Lecture (Wednesday, Week 7, 2pm)

We continued the stream of lemmas to show that H i(X,F) = 0 when X is a�ne
for all quasi-coherent sheaves F .

16. Lecture (Thursday, Week 7, 3pm)

We �nished the proof that H i(X,F) = 0 when X is a�ne for all quasi-coherent
sheaves F .
We also proved that sheaf cohomology and �ech cohomology agree for quasi-

compact, separated schemes.
We brie�y discussed the interpretation of H1(X,O×

X) as the moduli space of line
bundles up to isomorphism on X. This is expanded on in Ritter's notes.
We also introduced smoothness. The following is non-examinable, but is meant to

help get a bigger picture of the value of schemes.

De�nition 65. A morphism f : X → S is formally smooth i� for all �rst order
thickenings T → T ′, we have that X(T ′) → X(T )×S(T ) S(T

′) is surjective.
f is formally unrami�ed i� for all �rst order thickenings T → T ′, we have that

X(T ′) → X(T )×S(T ) S(T
′) is injective.
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f is formally étale i� for all �rst order thickenings T → T ′, we have that X(T ′) →
X(T )×S(T ) S(T

′) is bijective.

De�nition 66. Say f : X → S is smooth at a point x ∈ X i� there exists an a�ne
neighborhood Spec(R) of f(x) and an a�ne neighborhood SpecA ∋ px = x mapping
to SpecR such that A ≃ R[x1,...,xn]

(f1,...fm)
with n ≥ m such that det(( ∂fi

∂xj
)) /∈ px, i.e. ( ∂fi

∂xj
)

maps to an invertible matrix on the �ber at x.
Say f : X → S is unrami�ed at a point x ∈ X i� there exists an a�ne neighborhood

Spec(R) of f(x) and an a�ne neighborhood SpecA ∋ px = x mapping to SpecR such
that Ω1

A/R = 0 and A is of �nite type over R.
Again f is étale i� f is smooth and unrami�ed.

Lemma 67. A morphism f : X → S is smooth/unrami�ed/étale i� f is locally of
�nite presentation and formally smooth/unrami�ed/étale.

Lemma 68. Let f : X → S be a smooth morphism of schemes. Then Ω1
X/S is a

locally free of �nite type sheaf over X and rankOX,x
ΩX/S,x = dimκ(x) Xf(x).

Proof. This follows from the local computation. □

We then stated a comparison theorem between de Rham cohomology, singular
cohomology, and étale cohomology. Then we stated the Weil conjectures (or rather
Weil-Dwork-Grothendieck-Deligne theorems).
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