Geometric Group Theory

Cornelia Druțu

University of Oxford

Part C course HT 2023

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Examples of Cayley graphs

Integer Heisenberg group:

$$H_3(\mathbb{Z}) := \langle x, y, z \mid [x, z] = 1, [y, z] = 1, [x, y] = z \rangle.$$

2/9/23, 4:25 PM

HeisenbergCayleyGraph.png (533x423)

Theorem

 $\hat{\Gamma}(S,G)$ a simplicial tree on which G acts freely $\iff S = X \sqcup X^{-1}$, G = F(X).

Proof.

Oriented paths in $\Gamma(S, G)$ without spikes correspond to pairs (g, w), w a reduced word in S.

(\Leftarrow) : A cycle would correspond to a reduced word w = 1 in F(X). (\Rightarrow) : G acts freely $\Longrightarrow \forall s \in S$, $|\{s, s^{-1}\}| = 2$. For every such pair, pick one and together let these form X. X generates G and so there exists an onto homomorphism $\varphi : F(X) \to G$. Suppose $w \in F(X)$, $w \in \ker \varphi$. Since w is reduced as a word in X, it is also reduced as a word in S. So if $w \neq w_{\emptyset}$ then w gives a cycle in $\hat{\Gamma}(S, G)$. So ker $\varphi = \{w_{\emptyset}\}$.

General theorem: G is free if and only if G acts freely by isometries on a simplicial tree T. The (\Rightarrow) direction is given by the theorem above. Cornelia Drutu (University of Oxford) Geometric Group Theory Part C course HT 2023 3 / 8

Lemma

There exists $X \subseteq T$, X a tree, such that X contains exactly one vertex from each orbit.

Proof: Take X maximal such that X intersects each orbit $G \cdot v$ in at most one point (X exists by Zorn's lemma). Assume there exists some v such that $Gv \cap X = \emptyset$. Take v at minimal distance from X. If d(v, X) = 1, then we can add it to X - contradiction. So assume $d(v, X) \ge 2$.

By minimality, $gv' \in X$ for some $g \in G$. Therefore d(gv, X) = 1 and so we can add gv to X - contradiction.

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Lemma

There exists $X \subseteq T$, X a tree, such that X contains exactly one vertex from each orbit.

Theorem

G is free if and only if G acts freely by isometries on a simplicial tree T.

Cornelia Druțu (University of Oxford)

Proof.

 (\Leftarrow) : Choose an orientation E^+ on the edges of T that is G-invariant. Let

$$S = \{g \in G : \exists e \in E^+, o(e) \in X, t(e) \in g(X)\}$$

We will prove that G = F(S).

If $gX \cap X \neq \emptyset$ then there exists $v \in X$ such that gv = v and so g = 1 by the freeness of the action. Hence if $g_1 \neq g_2$ then $g_1X \cap g_2X = \emptyset$.

 $\{g_1, g_2\}$ is an edge of $\hat{\Gamma}(S \cup S^{-1}, G)$ if and only if there exists an edge of T with one endpoint in g_1X and the other in g_2X .

 $\hat{\Gamma}(S \cup S^{-1}, G)$ is connected because T is. It is simplicial because it is a Cayley graph. And if $\hat{\Gamma}(S \cup S^{-1}, G)$ contains a cycle then so does T. So G = F(S).

Theorem

G is free if and only if G acts freely by isometries on a simplicial tree T.

Corollary

Subgroups of free groups are free.

In order to study groups having actions on simplicial trees that are not free, we need the notion of amalgam.

- Let A, B be groups with two isomorphic subgroups: i.e. there exist injective homomorphisms $\alpha : H \to A$, $\beta : H \to B$.
- The amalgam of A and B over H is the "largest" group containing copies of A and B identified along H such that no other relation is imposed and such that it is generated by the copies of A and B.
- We will define the amalgam by its universal property.