
Continued Fractions and Pell’s Equation

The Mathematical Details

Hilary Term 2023

What follows below is mostly a summary of ideas from Chapters 3 and 4 of C. D. Olds,
Continued Fractions, John Wiley & Sons, 1978.

1 Continued Fractions and Convergents

Every real number x can be written as a continued fraction in the form

x = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

=: [a0; a1, a2, a3, . . .] , (1)

where the ak are all integers. Here a0 may be negative or zero, but all other coefficients are
positive.

In order to compute a continued fraction representation of x, define ⌊x⌋ to be the floor
of x (or the integer part of x, namely the closest integer to x when rounding down), and
define {x} = x − ⌊x⌋ to be the fractional part of x. Note that 0 ≤ {x} < 1. The contin-
ued fraction representation of x is [⌊x⌋; a1, a2, a3, . . .] where [a1; a2, a3, . . .] is the continued
fraction representation of 1/ {x}.

The convergents of a continued fraction are the initial terms in the continued fraction,
i.e.

a0, a0 +
1

a1
, a0 +

1

a1 +
1

a2

, a0 +
1

a1 +
1

a2 +
1

a3

. (2)

These can be written as rational approximations to x as pn/qn where we can see from (2)
above that p0 = a0, p1 = a0a1 + 1, q0 = 1, and q1 = a1.

Lemma 1. The convergents of a continued fraction satisfy p0 = a0, p1 = a0a1 + 1, q0 = 1,
q1 = a1 and

pn = anpn−1 + pn−2 , (3)

qn = anqn−1 + qn−2 , (4)

for n ≥ 2.
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Proof. The proof is by induction on n. When n = 2 we have, from (2),

a0 +
1

a1 +
1

a2

=
a2(a1a0 + 1) + a0

1 + a1a2
=

p2
q2

. (5)

Similarly when n = 2, (3) and (4) give

p2 = a2p1 + p0 = a2(a1a0 + 1) + a0 (6)

q2 = a2q1 + q0 = a2a1 + 1 (7)

so (3) and (4) hold for n = 2.
Now assume that (3) and (4) hold for n = 2, 3, . . . , k. We will show that this implies (3)

and (4) hold for n = k + 1 and so the result is true by strong induction. Consider

pk+1

qk+1
= [a0; a1, . . . , ak, ak+1] (8)

= a0 +
1

a1 +
1

. . . +
1

ak +
1

ak+1

(9)

=

[
a0; a1, . . . ,

(
ak +

1

ak+1

)]
. (10)

Clearly changing the ak entry to ak + 1/ak+1 does not change the values of p0, p1, . . . pk−1

or q0, q1, . . . qk−1 but does change pk and qk so we have

pk+1

qk+1
=

[
a0; a1, . . . ,

(
ak +

1

ak+1

)]
(11)

=
(ak + 1/ak+1)pk−1 + pk−2

(ak + 1/ak+1)qk−1 + qk−2
(12)

where we have used (3) and (4) with n = k with ak replaced by ak + 1/ak+1. Rearranging
(12) gives

pk+1

qk+1
=

ak+1(akpk−1 + pk−2) + pk−1

ak+1(akqk−1 + qk−2) + qk−1
(13)

=
ak+1pk + pk−1

ak+1qk + qk−1
(14)

by the inductive hypothesis. Hence (3) and (4) hold for n = k + 1 as required.

Lemma 2. The numerators and denominators of the convergents satisfy

pn+1qn − pnqn+1 = (−1)n (15)

for n = 0, 1, 2, . . ..
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Proof. The proof is again by induction on n. For the base case we have p0 = a0, p1 =
a0a1 + 1, q0 = 1, q1 = a1 so when n = 0

pn+1qn − pnqn+1 = p1q0 − p0q1 = a0a1 + 1− a0a1 = 1 = (−1)0 , (16)

so (15) holds when n = 0. Now suppose (15) holds for n = k then, by definition of pk+2

from (3) and of qk+2 from (4), we have

pk+2qk+1 − pk+1qk+2 = (ak+2pk+1 + pk)qk+1 − pk+1(ak+2qk+1 + qk) (17)

= pkqk+1 − pk+1qk (18)

= −(−1)k by the inductive hypothesis (19)

= (−1)k+1 . (20)

Hence the result follows by induction.

Lemma 3. For each value of k, the integers pk and qk are coprime.

Proof. Suppose that pk and qk have a common integer factor t so we may write pk = tp̃k
and qk = tq̃k for some integers p̃k and q̃k. By Lemma 2 we have

(−1)k = pk+1qk − pkqk+1 (21)

= t(pk+1q̃k − p̃kqk+1) . (22)

Since t and pk+1q̃k − p̃kqk+1 are integers, the only way that their product can be (−1)k is
if both terms are 1 or −1. Hence t = ±1 and pk and qk are coprime.

2 Quadratic Irrationals

A quadratic irrational is an irrational real root of a quadratic equation with integer coeffi-
cients. Every quadratic irrational may be written in the form

x =
P +

√
D

Q
, (23)

where P,Q,D ∈ Z, D > 0 is not a perfect square and Q divides P 2 − D. Note that if Q
does not divide P 2 −D we may re-write

x =
PQ+

√
DQ2

Q2
(24)

x =
P̃ +

√
D̃

Q̃
, (25)

and then

P̃ 2 − D̃ = (P 2 −D)Q̃ , (26)

so Q̃ divides P̃ 2 − D̃.
With this form, x is a root of the polynomial(

x− P +
√
D

Q

)(
x− P −

√
D

Q

)
= 0 , (27)
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which is equivalent to

Qx2 − 2Px+
P 2 −D

Q
= 0 . (28)

This polynomial has integer coefficients since Q divides P 2 −D.

2.1 Reduced Quadratic Irrationals

We say that x is a reduced quadratic irrational if x is a quadratic irrational satisfying x > 1
and −1 < x′ < 0 where x′ = (P −

√
D)/Q.

Lemma 4. For a fixed D there is a finite number of reduced quadratic irrationals.

Proof. If x is a reduced quadratic irrational we find the following conditions on P and Q:

1. Since x > 1 and x′ < 0 we have x > x′ which means Q > 0.

2. Since x > 1 and x′ > −1 we have x+ x′ > 0 which means P > 0.

3. Since x > 1 we have P +
√
D > Q.

4. Since x′ < 0 we have P <
√
D.

5. Since x′ > −1 we have
√
D − P < Q.

We can combine these to get 0 < P <
√
D and 0 < Q < P +

√
D < 2

√
D. Hence, for a fixed

D, there are finitely many integer values of P satisfying 0 < P <
√
D and finitely many

integer values of Q satisfying 0 < Q < 2
√
D so we can conclude there is a finite number of

reduced quadratic irrationals associated with any given D.

Lemma 5. If αn is a reduced quadratic irrational and we write αn = ⌊αn⌋+ 1/αn+1 then
αn+1 is also a reduced quadratic irrational with the same subject of the square root.

Proof. First we show that αn+1 > 1 and −1 < α′
n+1 < 0. We have

1

αn+1
= αn − ⌊αn⌋ , (29)

and since 0 < αn − ⌊αn⌋ < 1 we have 0 < 1/αn+1 < 1 which gives αn+1 > 1.
Also

(αn − ⌊αn⌋)′ =

(
1

αn+1

)′
, (30)

and so

− 1

α′
n+1

= ⌊αn⌋ − α′
n . (31)

Now −1 < α′ < 0 and ⌊αn⌋ ≥ 1 (since αn > 1) and so

− 1

α′
n+1

= ⌊αn⌋ − α′
n > 1 , (32)
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which gives −1 < α′
n+1 < 0.

Now we show that αn+1 takes the form of a quadratic irrational. Write αn = (Pn +√
D)/Qn so that the solutions of

Qnx
2 − 2Pnx+

P 2
n −D

Qn
= 0 (33)

are x = αn and x = α′
n. Substitute x = αn == ⌊αn⌋+ 1/αn+1 into (33) to get

Qn (⌊αn⌋+ 1/αn+1)
2 − 2Pn (⌊αn⌋+ 1/αn+1) +

P 2
n −D

Qn
= 0 . (34)

We can rearrange this to get a quadratic equation in αn+1:

α2
n+1

(
(⌊αn⌋Qn − Pn)

2

Qn
− D

Qn

)
+ 2αn+1 (Qn⌊αn⌋ − Pn) +Qn = 0 . (35)

This has the root

αn+1 =
Pn −Qn⌊αn⌋+

√
D

⌊αn⌋2Qn − 2⌊αn⌋Pn + (P 2
n −D)/Qn

(36)

=
Pn+1 +

√
D

Qn+1
, (37)

where we took the positive square root in the quadratic equation formula. Taking the
negative square root would give α′

n+1.
In (37) we have Pn+1 = Pn −Qn⌊αn⌋ which is an integer. Also

Qn+1 = ⌊αn⌋2Qn − 2⌊αn⌋Pn +
P 2
n −D

Qn
(38)

is an integer since Qn divides P 2
n −D. We can rewrite (38) as

Qn+1 =
(⌊αn⌋Qn − Pn)

2 −D

Qn
(39)

=
P 2
n+1 −D

Qn
. (40)

Thus we see that Qn+1 divides P 2
n+1 − D so αn+1 is a quadratic irrational with D as the

subject of the square root.

Lemma 6. If x is a reduced quadratic irrational, then its continued fraction expansion is
purely periodic, i.e. x = [a0; a1, . . . , am−1].

Proof. Recall that to compute the continued fraction form of x we perform the following
steps:

1. Set x0 = x

2. for k = 0, 1, 2, . . .

ak = ⌊xk⌋

xk+1 =
1

{xk}
end
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Since x0 = x is a reduced quadratic irrational, Lemma 5 tells us that all xk are reduced
quadratic irrationals with the same subject of the square root. The Lemma 4 tells us that
there are finitely many such reduced quadratic irrationals and so there must be integers j
and k with j < k such that xj = xk. Clearly then aj = ak and xj+1 = xk+1 etc so that the
sequence of a’s repeats.

Now we need to show that the repeating pattern starts at a0. We have

xj =
1

{xj−1}
=

1

xj−1 − ⌊xj−1⌋
=

1

xj−1 − aj−1
, (41)

and so

xj−1 − aj−1 =
1

xj
. (42)

The same equation also holds for xk−1 so, using the fact that xj = xk we have

xj−1 − aj−1 = xk−1 − ak−1 , (43)

x′j−1 − aj−1 = x′k−1 − ak−1 . (44)

Since xj−1 and xk−1 are reduced quadratic irrationals, it follows that x′j−1, x
′
k−1 ∈ (−1, 0)

and aj−1, ak−1 ∈ Z. Thus x′j−1 = x′k−1 and aj−1 = ak−1. We can then repeat this argument
to see xj−2 = xk−2 and finally x0 = xk−j . Hence ifm > 0 is the smallest positive integer such
that xm = x0, we have xm+i = xi and am+i = ai for all i ∈ N. So x = [a0; a1, . . . , am−1].

Lemma 7. If D ∈ N and D is not a perfect square then
√
D = [a0; a1, a2, . . . , am−1, 2a0].

Proof. Since D is not a perfect square, D > 1 so
√
D > 1 and −

√
D < −1 so

√
D is not

reduced. However, if we set x = a0 +
√
D where a0 = ⌊

√
D⌋, then x is reduced. Hence by

Lemma 6

a0 +
√
D = [2a0; a1, a2, . . . , am−1] (45)

and hence
√
D = [a0; a1, a2, . . . , am−1, 2a0].

3 Pell’s Equation

Pell’s equation is

x2 −Dy2 = 1 . (46)

We are interested in finding integer solutions x, y for D ∈ N in the case where D is not a
perfect square.

Theorem 1. Let the continued fraction expansion of
√
D be

√
D = [a0; a1, a2, . . . , am−1, 2a0].

If the length of the period, m, is even then (x, y) = (pm−1, qm−1) is a solution of Pell’s equa-
tion. If m is odd then (x, y) = (p2m−1, q2m−1) is a solution of Pell’s equation.
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Proof. We have

√
D = [a0; a1, a2, . . . , am−1, 2a0] (47)

= a0 +
1

a1 +
1

. . . +
1

am−1 +
1

a0 +
√
D

(48)

= [a0; a1, a2, . . . , am−1, a0 +
√
D] (49)

=
(a0 +

√
D)pm−1 + pm−2

(a0 +
√
D)qm−1 + qm−2

, (50)

using the same idea as in the proof of Lemma 1. We can rearrange (50) to get

Dqm−1 +
√
D(a0qm−1 + qm−2) = a0pm−1 + pm−2 +

√
Dpm−1 . (51)

Now decompositions of the form α+ β
√
D are unique so (51) gives

Dqm−1 = a0pm−1 + pm−2 , (52)

a0qm−1 + qm−2 = pm−1 . (53)

We can rearrange to get

pm−2 = Dqm−1 − a0pm−1 , (54)

qm−2 = pm−1 − a0qm−1 . (55)

Now recall from Lemma 2 that pn+1qn − pnqn+1 = (−1)n for all n ≥ 0. Set n = m − 2 to
get

pm−1qm−2 − pm−2qm−1 = (−1)m . (56)

Using (54) and (55) gives

(−1)m = pm−1(pm−1 − a0qm−1)− qm−1(Dqm−1 − a0pm−1) (57)

= p2m−1 −Dq2m−1 . (58)

Hence if m is even p2m−1 − Dq2m−1 = 1 and (x, y) = (pm−1, qm−1) is a solution of Pell’s
equation. If m is odd, we have p2m−1 −Dq2m−1 = −1.

Note that we could have written (48) by going to the end of the second period so

√
D = [a0; a1, a2, . . . , a2m−1, a0 +

√
D] . (59)

Then the same argument as above gives p22m−1 − Dq22m−1 = (−1)2m = 1 and so (x, y) =
(p2m−1, q2m−1) is a solution of Pell’s equation.

In fact the ideas in the proof can be generalised to give p2km−1 −Dq2km−1 = (−1)km, so
Pell’s equation has infinitely many solutions.
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