Continued Fractions and Pell’s Equation

The Mathematical Details

Hilary Term 2023

What follows below is mostly a summary of ideas from Chapters 3 and 4 of C. D. Olds,
Continued Fractions, John Wiley & Sons, 1978.

1 Continued Fractions and Convergents

Every real number x can be written as a continued fraction in the form
1
r = ap+ =: [ag;a1,a2,a3,...], (1)
ai +
ag +

1
as+ ...

where the aj are all integers. Here ag may be negative or zero, but all other coefficients are
positive.

In order to compute a continued fraction representation of z, define |x| to be the floor
of = (or the integer part of x, namely the closest integer to x when rounding down), and
define {z} = x — |z| to be the fractional part of . Note that 0 < {z} < 1. The contin-
ued fraction representation of z is [|x]; a1, ag, as,...] where [a1;a2,as, .. .| is the continued
fraction representation of 1/ {z}.

The convergents of a continued fraction are the initial terms in the continued fraction,
ie.

1
ap, @ap+—, aop+ , Gt . (2)
aq 1
a + — a; +
a9 1
az + —
as

These can be written as rational approximations to x as p,/q, where we can see from
above that pg = ag, p1 = apa1 +1, qo =1, and ¢1 = a;.

Lemma 1. The convergents of a continued fraction satisfy pg = ag, p1 = agar +1, ¢o =1,
q = a1 and

Pn = GpPn—1+DPn—2, (3)
dn = QnpQn-1+ qn—2, (4)

forn > 2.
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Proof. The proof is by induction on n. When n = 2 we have, from ,

a0+ 1 _ as(arap + 1) + ap _ P2 (5)
0 1 1+ ajas @
a; + —
az

Similarly when n = 2, and give

p2 = agp1+po = az(arap+1)+ap (6)
@ = aq+q = a1+l (7)
S0 and hold for n = 2.

Now assume that and hold for n = 2,3,...,k. We will show that this implies
and hold for n = k£ + 1 and so the result is true by strong induction. Consider

Pk+1
= = agiar, .-, ak, app1] (8)
qk+1
1
= ag+ 1 (9)
a +
1 _ 1
—
1
ar +
Ak+1

_ [0 (W ;)] . (10)

Clearly changing the aj entry to ag + 1/ag41 does not change the values of pg, p1,...pg—1
or qo,q1,---qr—1 but does change pr and g so we have

1
Deri _ {aoaah---, <ak+ )} (11)
qk+1 ak+1

1 _ _
_ (ag +1/ap11)Pr—1 + Pr—2 (12)

(ak + 1/akp+1)qr—1 + qp—2

where we have used and with n = k with ay replaced by ay + 1/ag11. Rearranging

gives

Ph+1 ap+1(arpr—1 + Pk—2) + Pr—1

- (13)
Qo1 ak+1(akqr—1 + qe—2) + qr—1
_ Ok41Pk + Pr—1 (14)
k414K + Qk—1
by the inductive hypothesis. Hence and hold for n = k + 1 as required. O
Lemma 2. The numerators and denominators of the convergents satisfy
Pn+14n — Pndn+1 = (_1)71 (15)

form=0,1,2,....
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Proof. The proof is again by induction on n. For the base case we have pg = ag, p1 =
apa1+1,q0 =1, gt =aj so whenn =20

Prt1n — Pndni1 = P1go —poqi = apai +1—apay = 1 = (=1)Y, (16)

SO holds when n = 0. Now suppose holds for n = k then, by definition of pgyo
from and of qxio from , we have

Prt2qk+1 — Pkt1qk+2 =  (@k42Pkt1 + Pk)Qo+1 — Prt1 (t2Gk+1 + Qk) (17)

= PkQk+1 — Pk+1Gk (18)

= —(-1)k by the inductive hypothesis (19)

= (DM (20)

Hence the result follows by induction. O

Lemma 3. For each value of k, the integers pr and qr are coprime.

Proof. Suppose that p; and g have a common integer factor ¢t so we may write pr = tpg
and ¢ = tgy for some integers Py and §. By Lemma 2| we have

(—1* = prr1gr — Prarr (21)
= t(Pr+10k — Peli+1) - (22)

Since t and pr41qr — Prqr+1 are integers, the only way that their product can be (—1)k is
if both terms are 1 or —1. Hence t = £1 and p and q; are coprime. ]

2 Quadratic Irrationals

A quadratic irrational is an irrational real root of a quadratic equation with integer coeffi-
cients. Every quadratic irrational may be written in the form

P++VD
Q )

where P,Q,D € Z, D > 0 is not a perfect square and @ divides P2 — D. Note that if Q
does not divide P2 — D we may re-write

(23)

P v DQ?
= QJFQZQ (24)
r = ﬂ, (25)
Q
and then
P?—-D = (P’-D)Q, (26)

so @ divides P2 — D.
With this form, x is a root of the polynomial

P++D P—vD\ _
(:17—@> (a:—Q) = 0, (27)
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which is equivalent to

P2—-D
Q

This polynomial has integer coefficients since @ divides P? — D.

Qz* — 2Pz +

I
[es}
—
[\N]
oo
~—

2.1 Reduced Quadratic Irrationals

We say that x is a reduced quadratic irrational if x is a quadratic irrational satisfying = > 1
and —1 < 2/ < 0 where ' = (P —v/D)/Q.

Lemma 4. For a fized D there is a finite number of reduced quadratic irrationals.
Proof. If x is a reduced quadratic irrational we find the following conditions on P and Q:
1. Since z > 1 and 2’ < 0 we have x > 2’ which means @ > 0.
2. Since x > 1 and 2/ > —1 we have z + 2’ > 0 which means P > 0.
3. Since z > 1 we have P ++vD > Q.
4. Since z' < 0 we have P < v/D.
5. Since 2/ > —1 we have VD — P < Q.

We can combine these to get 0 < P < VD and 0 < Q<P+ VD < 2v/D. Hence, for a fixed
D, there are finitely many integer values of P satisfying 0 < P < v/D and finitely many
integer values of @ satisfying 0 < Q < 2v/D so we can conclude there is a finite number of
reduced quadratic irrationals associated with any given D. ]

Lemma 5. If ay, is a reduced quadratic irrational and we write oy, = |apn| + 1/ 41 then
Qn+1 18 also a reduced quadratic irrational with the same subject of the square root.

Proof. First we show that a1 > 1 and —1 < o, ; < 0. We have

1

Qn 1

= a,— o], (29)

and since 0 < a;, — || < 1 we have 0 < 1/ay,+1 < 1 which gives a1 > 1.
Also

(@n=lanl) = (5 ) (30)

Qnt1

and so

1
_0‘/7+1 = |lan] —aj, . (31)
n

Now —1 < o/ <0 and |, > 1 (since ay, > 1) and so

- = |an]—a, > 1, (32)
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which gives —1 < a;,,; <0.
Now we show that «,4; takes the form of a quadratic irrational. Write o, = (P, +
VD) /Q,, so that the solutions of

P?-D
Qnz’® — 2P,z + g =0 (33)
are T = oy, and x = o,. Substitute z = a,, == || + 1/@p41 into to get
9 P?—-D
@n (Lan] +1/an1)" = 2P0 ([an] +1/ann) + =5— = 0. (34)
n

We can rearrange this to get a quadratic equation in ayy1:

On | Jn — n2
o (Lol Bl B o @ulan - RO+ = 00 @)

This has the root
Pn - Qn LanJ + \/5

Qpt1 = lon |2Qn — 2|an | Py + (P2 — D)/Qn (36)
P, D
5o “””

where we took the positive square root in the quadratic equation formula. Taking the

negative square root would give a;, ;.
In we have P,y1 = P, — Qp|a,] which is an integer. Also
P:-D

Qn+1 = LanJ2Qn - 2L04nJ P, + nQ (38)

is an integer since @, divides P? — D. We can rewrite as
(LanJQn - Pn)2 -D

= 39
P2, —-D
_ntl — (40)
Qn
Thus we see that @, divides PT% 1 — D so ayy1 is a quadratic irrational with D as the
subject of the square root. O

Lemma 6. If x is a reduced quadratic irrational, then its continued fraction expansion is

purely periodic, i.e. x = [ag; ar, ..., Gm_1)-

Proof. Recall that to compute the continued fraction form of x we perform the following
steps:

1. Set xg =z

2. for k=0,1,2,...

ar = |wk]
1
Te4+1 = {xk-}

end



3 PELL’S EQUATION 6

Since xg = z is a reduced quadratic irrational, Lemma [5| tells us that all x; are reduced
quadratic irrationals with the same subject of the square root. The Lemma [ tells us that
there are finitely many such reduced quadratic irrationals and so there must be integers j
and k with j < k such that z; = x. Clearly then a; = a; and ;41 = )41 etc so that the
sequence of a’s repeats.

Now we need to show that the repeating pattern starts at ag. We have

1 1 1

T; = = = 41
! {zj—1} oz —lzja] w1 —ajr] )
and so
. (42)
Ti1—Qj_1 = —.
Jj—1 j—1 z;

The same equation also holds for x;_; so, using the fact that z; = x;, we have
Tj1—Qj-1 = Tp_1—ag_1, (43)
iy —aj = T —ap_ . (44)

Since zj_1 and zj_; are reduced quadratic irrationals, it follows that =, 2} ; € (=1,0)
and aj_1,a,—1 € Z. Thus x;-_l = xﬁc_l and aj_1 = ap—1. We can then repeat this argument
tosee xj_o = xp_o and finally xg = x4_;. Henceif m > 0 is the smallest positive integer such
that ,, = xo, we have x,,+; = ; and a4 = a; for all i € N. So x = [ag;ar, .-, Gm_1). U

Lemma 7. If D € N and D is not a perfect square then /D = [ag; a1, g, - - -, Gm_1, 2ag].

Proof. Since D is not a perfect square, D > 1 so v/D > 1 and —vD < —1 so v/D is not
reduced. However, if we set © = ag + VD where ag = L\/EJ, then x is reduced. Hence by
Lemma

ao—i—\/ﬁ = [2a0;a1,a2,...,0m_1] (45)

and hence VD = [ag; a1, az, . - ., Gm_1, 2a0]. O

3 Pell’s Equation
Pell’s equation is
2 —Dy? = 1. (46)

We are interested in finding integer solutions z,y for D € N in the case where D is not a
perfect square.

Theorem 1. Let the continued fraction expansion of /D be /D = [ag; a1, a2, ..., am—1,2ag].
If the length of the period, m, is even then (z,y) = (Pm—1, ¢m—1) s a solution of Pell’s equa-
tion. If m is odd then (x,y) = (P2m—1,@2m—1) s a solution of Pell’s equation.
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Proof. We have

VD = [ag;a1,az,. .., am1,2a0] (47)
1
= ag+ 1 (48)
a1 +
1 . 1
. . n
A
= lag;ai,az,...,am—1,a0+ VD] (49)
(ao + \/E)pmfl + Pm—2 (50)
(a0 + VD)gm-1+ Gm—2
using the same idea as in the proof of Lemma |[l} We can rearrange to get
qu—l + \/B(CLOQm—l + Qm—2) = agPm—-1+ Pm—2 + \/Epm—l . (51)
Now decompositions of the form a + 8v/D are unique so gives
DQm—l = aoPm—-1 +Pm—-2, (52)
aoqm—-1+4m-2 = Pm—1 - (53)
We can rearrange to get
Pm—-2 = D@m-1— aopm-1, (54)
gm—-2 = Pm-1 — @G4m-1 - (55)

Now recall from Lemma [2 that p,11¢n — ppgn+1 = (—1)" for all n > 0. Set n = m — 2 to
get

Pm—-19m—-2 — Pm—29m—-1 — (_1)m . (56)

Using and gives
(_1)m = pm—l(pm—l - aOQm—l) - Qm—1<DQm—1 - aopm—1) (57)
= szfl - Dqgnfl : (58)

Hence if m is even p2,_; — D2, ; = 1 and (2,9) = (Pm—1,qm—1) is a solution of Pell’s
equation. If m is odd, we have p?n_l ~Dg? |, =-1.
Note that we could have written by going to the end of the second period so

\/5 = [ao;al,ag,...,agm_l,ao—i—\/ﬁ]. (59)

Then the same argument as above gives p3,. | — Dq3,, 1 = (=1)*™ = 1 and so (x,y) =
(p2m—1,q2m—1) is a solution of Pell’s equation. ]

In fact the ideas in the proof can be generalised to give p%mfl — Dq,%W%1 = (—1)km, SO
Pell’s equation has infinitely many solutions.
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