
Further Partial Differential Equations (2023)

Problem Sheet 2

1. Possible similarity solutions
Consider the partial differential equation

∂f

∂t
=

∂

∂x

(
∂f

∂x
+ xαfβ

)
, (1)

subject to the boundary conditions

f → 0 as x→ ±∞. (2)

Suppose that β > α ≥ 0 and that f is suitably well behaved so that xf → 0 as x→ ±∞.

(a) Show that ∫ ∞
−∞

f(x, t) dx (3)

is a constant.

(b) Using (1)–(3), show that a similarity solution of the form f = tag(η) with η = x/tb

exists for this system provided

α = β − 2 (4)

and given values of a and b.

(c) Show that g satisfies the ordinary differential equation

1

2
ηg + g′ + ηβ−2gβ = 0. (5)

(d) In the case when β = 2, show that we can write (5) in the form(
η

2g
+
g′

g2

)
e−η

2/4 = −e−η
2/4 (6)

and so by recognizing an exact differential on the left-hand side, show that the solution
is

g =
e−η

2/4

√
π (coth(G/2) + erf(η/2))

, (7)

where

G =

∫ ∞
−∞

g(η) dη (8)

is a constant.
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Solution

(a) Integration of (1) and use of (2) gives

d

dt

∫ ∞
−∞

f(x, t) dx = 0

and so ∫ ∞
−∞

f(x, t) dx

is a constant.

(b) Try f(x, t) = tag(η) with η = x/tb. Equation (3) indicates that we must choose a = −b.
Substituting the ansatz f(x, t) = tag(η) with η = x/tb into (1) we obtain the ordinary
differential equation

−bg − bηg′ = t1−2bg′′ + αxα−1tb+1−βb (gβ + βηgβ−1g′
)

(9)

and so we must choose

b =
1

2
, α = β − 2 (10)

for the equation to be in similarity variables.

(c) These choices can be imposed to equation (9) and then we may integrate this equation
once. The constant of integration is determined to be zero by applying the conditions
as η → ±∞ and the regularity conditions given in the question assumptions that imply
that ηg and ηβ−2gβ both tend to 0 as η → ±∞. This leads to the required (5).

(d) Simple rearrangement and multiplication of both sides by e−η
2/4 gives (6). This can be

written as

∂

∂η

(
e−η

2/4

g

)
= e−η

2/4. (11)

Integration gives

g =
e−η

2/4

A+
√
πerf(η/2)

; (12)

A is determined by the integral constraint:∫ ∞
−∞

g dη = G, say, (13)

which may be evaluated and rearranged to give

A =
√
π coth (G/2) . (14)

The result then follows.
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2. Outwardly radial spreading in a porous medium

Consider the radial spreading of a fixed volume of liquid in a porous medium. The height ĥ
of the liquid is governed by the equation

φ
∂ĥ

∂t̂
+

1

r̂

∂

∂r̂

(
r̂ĥQ̂

)
= 0, Q̂ = −ρgk

µ

∂ĥ

∂r̂
(15)

where r̂ and t̂ denote respectively the radial coordinate and time and Q̂ is the flux; ρ denotes
the density of the fluid, g acceleration due to gravity, k the permeability, φ the porosity and
µ the fluid viscosity.

(a) Write down the equation that expresses conservation of mass.

(b) By choosing suitable non-dimensionalization show that the system may be reduced to
one that contains no physical parameters.

(c) By finding the appropriate form of the similarity solution, show that the problem can
be reduced to solving the following ordinary differential equation system,

(ηff ′)
′
+

1

4
η2f ′ +

1

2
ηf = 0, (16)∫ ηf

0

ηf(η) dη = 1, (17)

f ′(0) = 0, (18)

f(ηf ) = 0, (19)

where you should define the functions η = η(r, t), ηf = ηf (r, t) and f = f(h, t).

(d) By rescaling s = η/ηf and g = f/η2f find the ordinary differential equation that is
satisfied by g and a condition for ηf in terms of g.

(e) By performing a local analysis show that the conditions at the front are

g(1) = 0, g′(1) = −1

4
. (20)

(f) Hence show that the solution is given by g(s) = (1− s2)/8, ηf ≈ 2.

(g) Based on the results of this analysis, is this a similarity solution of the first or second
kind? What physical feature of the problem indicates that it is a similarity solution of
this kind?
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(a) Conservation of mass is expressed via the equation

2π

∫ r̂f

0

r̂ĥ(r̂, t̂) dr̂ = V̂ , (21)

where V̂ is the volume of liquid. We non-dimensionalize via the following scalings

r̂ = r̂0r, r̂f = r̂0rf , t̂ =

(
2πr40µφ

ρgkV̂

)
t, ĥ =

(
V̂

2πr̂20

)
h, Q̂ =

(
ρgkV̂

2πµr̂30

)
Q. (22)

Here, the radial scale r̂0 is arbitrary. The governing equations and mass conservation
become

∂h

∂t
+

1

r

∂

∂r
(rhQ) = 0, (23)

Q = −∂h
∂r
, (24)∫ rf

0

rhdr = 1. (25)

(b) Try h = tαf(η) with η = r/tβ . Substituting into the governing equations and volume
constraint show that we require α = −1/2 and β = 1/4. This leads to the required
system (16) and (17) while the conditions (18) and (19) represent respectively symmetry
at the centre at the behaviour at the front.

(c) Applying the scalings given leads to the new system

(sgg′)′ +
1

4
s2g′ +

1

2
sg = 0, (26)

ηf =

(∫ 1

0

sg(s) ds

)−1/4
. (27)

(d) We perform a local analysis by scaling s = 1 + δξ, g = δG to obtain

(G(ξ)G′(ξ))′ +
1

4
G′(ξ) = 0 (28)

⇒ G′(ξ) = −1

4
, (29)

which in terms of the original variables gives the required result g′(1) = −1/4.

(e) It is straightforward to substitute the given form for g and show that this is a solution.
Alternatively, one could try g(s) = a + bs2 and find the required values for a and b.
The value of ηf is obtained numerically.

(f) This is a similarity solution of the first kind as the form of the similarity solution was
determined by substituting into the governing equation. The problem has no natural
lengthscale, which is an indicator that a similarity solution exists.
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3. Inwardly radial spreading in a porous medium

Consider again the radial spreading of a fixed volume of liquid in a porous medium as
described by equation (15). Suppose that the liquid is now confined in a cylindrical container
of radius r̂0 and the liquid occupies a region r̂f (t̂) ≤ r̂ ≤ r̂0 where r̂f moves inwardly with
time.

(a) Write down the equation that expresses conservation of mass in this case and comment
on how it differs from that in question 2.

(b) By using the results of question 2, show that the system may be reduced to one that
contains no physical parameters.

(c) Let tc denote the time at which the central dry hole closes. Define

τ = tc − t, h =
r2

τ
h̄(r, τ), Q =

r

τ
Q̄(r, τ) (30)

and show that in terms of these new variables the system may be written as

2h̄+ Q̄+ r
∂h̄

∂r
= 0, (31)

τ
∂h̄

∂τ
− h̄− 4h̄Q̄− r ∂

∂r

(
h̄Q̄
)

= 0. (32)

(d) Now suppose that h̄ = h̄(η), Q̄ = Q̄(η) where η = r/τα is a similarity variable, for some
α. Find the equations that are satisfied by h̄ and Q̄.

(e) Show that the system can be written in the form

dQ̄

dh̄
=
h̄+ 4h̄Q̄− α(Q̄+ 2h̄)− Q̄(Q̄+ 2h̄)

h̄(Q̄+ 2h̄)
. (33)

(f) Based on the results of this analysis, is this solution a similarity solution of the first
or second kind? What physical feature of this problem indicates that it is a similarity
solution of this kind?
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Solution

(a) Conservation of mass is expressed via the equation

2π

∫ r̂0

r̂f

r̂ĥ(r̂, t̂) dr̂ = V̂ , (34)

where V̂ is the volume of liquid. This differs from the result in question 2(a) since now
we have an additional length scale in the problem: the radius of the cylinder.

(b) We non-dimensionalize in exactly the same way as in question 2(b) except now the
radial scaling r̂0 that was arbitrary in problem 1 is now chosen to be the radius of the
cylinder. The governing equations and mass conservation then become

∂h

∂t
+

1

r

∂

∂r
(rhQ) = 0, (35)

Q = −∂h
∂r
, (36)∫ 1

rf

rhdr = 1. (37)

(c) This is a straightforward substitution.

(d) Making the substitution proposed gives

2h̄+ Q̄+ ηh̄′ = 0, (38)

−αηh̄′ − h̄− 4h̄Q̄− η
(
h̄Q̄
)′

= 0. (39)

(e) Solving for Q̄′ and h̄′ and dividing one by the other gives the required result.

(f) This is a similarity solution of the second kind as we have not yet found the value of
the scaling. This comes from the application of boundary conditions. Note that in the
original formulation, we have a natural lengthscale, which is the radius of the container,
r̂0. This is what prohibits a similarity solution of the first kind. However, with the
introduction of the variable η = r/τα, since τ → 0 as the hole closes up, η →∞ and so
we lose the lengthscale, enabling a similarity solution. However, the price we pay is that
ηf cannot be found from our similarity analysis: this would need to be determined by
comparing our similarity solution with the actual numerical (or experimental) solution
at a particular point in time.

We find three fixed points of the system (33): (h̄, Q̄) = (0, 0), (0,−α) and (1/8,−1/4).
The first point is the trivial solution. The second fixed point corresponds to the moving
front and the third point corresponds to the fluid arriving at the origin. If we apply
the first and second conditions then this provides two boundary conditions for the first-
order system, which forms an eigenvalue problem. The eigenvalue, δ is found to be
α ≈ 0.856.
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