Some inspirational quotations

George Polya: "Where should I start? Start from the statement of the problem. ... What can I do? Visualize the problem as a whole as clearly and as vividly as you can. ... What can I gain by doing so? You should understand the problem, familiarize yourself with it, impress its purpose on your mind."

Th. Bröcker and K. Jänich, "Introduction to differential topology" (p.25) "Having thus refreshed ourselves in the oasis of a proof, we now turn again into the desert of definitions."

Amalgams

Let A, B be groups with two isomorphic subgroups: i.e. there exist injective homomorphisms $\alpha: H \rightarrow A, \beta: H \rightarrow B$.

The amalgam of A and B over H is the "largest" group containing copies of A and B identified along H such that no other relation is imposed and such that it is generated by the copies of A and B.

We will define the amalgam by its universal property.

Amalgams

Notation: $\alpha(h)=h \in A ; \beta(h)=\bar{h} \in B$.
Definition
G is the amalgamated product of A and B over H (written $G=A *_{H} B$) if

- there exist homomorphisms $i_{A}: A \rightarrow G, i_{B}: B \rightarrow G$ with
$i_{A}(h)=i_{B}(\bar{h})$ for all $h \in H ;$
- \forall group L and \forall homomorphisms $\alpha_{1}: A \rightarrow L, \beta_{1}: B \rightarrow L$ satisfying
$\alpha_{1}(h)=\beta_{1}(\bar{h})$ for all $h \in H$, there exists a unique homomorphism
$\varphi: G \rightarrow L$ such that $\alpha_{1}=\varphi \circ i_{A}$ and $\beta_{1}=\varphi \circ i_{B}$:

Amalgams

Remarks
(1) The construction depends on the homomorphisms $\alpha: H \hookrightarrow A$, $\beta: H \hookrightarrow B$ but the notation is simplified.
(2) It is not clear from the definition whether i_{A} and i_{B} are injective. However this turns out to be the case.

Uniqueness of the amalgam

Uniqueness of the amalgam: Suppose G_{1} and G_{2} are both amalgams of A, B over H. Then we have a commutative diagram

This implies that $\operatorname{id}_{G_{1}}: G_{1} \rightarrow G_{1}$ and $\psi \circ \varphi: G_{1} \rightarrow G_{1}$ both make the following diagram commute

And so $\psi \circ \varphi=\operatorname{id}_{G_{1}}$ by uniqueness of the induced homomorphism. Similarly $\varphi \circ \psi=\operatorname{id}_{G_{2}}$.

Existence of the amalgam

Existence of the amalgam:
Let $A=\left\langle S_{1} \mid R_{1}\right\rangle, B=\left\langle S_{2} \mid R_{2}\right\rangle$. WLOG $S_{1} \cap S_{2}=\emptyset$. Then

$$
A *_{H} B=\left\langle S_{1} \cup S_{2} \mid R_{1} \cup R_{2} \cup\{h=\bar{h}: h \in H\}\right\rangle
$$

Proof: Check that it satisfies the universal property (exercise).
Remarks

- A and B generate $A *_{H} B$.
- i_{A} and i_{B} are injective.

When $H=\{1\}$, the amalgam does not depend on α, β and it is called the free product of A and B, denoted by $A * B$.

Example
$F_{2}=\mathbb{Z} * \mathbb{Z}$ since if $\mathbb{Z}=\langle a \mid\rangle, \mathbb{Z}=\langle b \mid\rangle$, then $\mathbb{Z} * \mathbb{Z}=\langle a, b \mid\rangle=F_{2}$.

Amalgams

We would like to describe the elements of $A *_{H} B$ by words.
Simplified notation: we identify H with $\alpha(H)$ and $\beta(H)$, and we identify A with $i_{A}(A), B$ with $i_{B}(B)$.

Let A_{1} be a set of right coset representatives of H in A, and similarly let B_{1} be a set of right coset representatives of H in B, such that $1 \in A_{1}, 1 \in B_{1}$.

Definition
A reduced word of the amalgam $A *_{H} B$ is a word of the form $\left(h, s_{1}, \ldots, s_{n}\right)$, $h \in H, s_{i} \in A_{1} \cup B_{1}, s_{i} \neq 1, s_{i}$ alternating from A_{1} to B_{1}. We associate to this the element $h s_{1} \ldots s_{n}$ of $A *_{H} B$. The length of the reduced word is n.

Theorem
Each $g \in G=A *_{H} B$ is represented by a unique reduced word.

Amalgams

Theorem

Each $g \in G=A *_{H} B$ is represented by a unique reduced word.
Proof: For all $g \in G$, we can write $g=a_{1} b_{1} \ldots a_{m} b_{m}$ for some $a_{i} \in A$, $b_{i} \in B$.

We claim that g can be represented by a reduced word $\left(h, s_{1}, \ldots, s_{n}\right)$. $m=1: g=a_{1} b_{1}=a_{1} \bar{h} b^{\prime}=\underbrace{a_{1} h}_{\in A} b^{\prime}=h^{\prime} a^{\prime} b^{\prime}$ where $a^{\prime} \in A_{1}, b^{\prime} \in B_{1}$.

Inductive step: exercise.
Uniqueness: Let X be the set of all reduced words. We will define an action of G on X, i.e. a group homomorphism

$$
G \rightarrow \operatorname{Symm}(X)=\operatorname{Bij}(X)
$$

Amalgams

By the universal property, it suffices to define $\alpha_{1}: A \rightarrow \operatorname{Symm}(X)$, $\beta_{1}: B \rightarrow \operatorname{Symm}(X)$ such that $\alpha_{1}(h)=\beta_{1}(\bar{h})$.

Definition of α_{1} :
Case 1: $a=h_{0} \in H$:

$$
h_{0} \cdot\left(h, s_{1}, \ldots, s_{n}\right)=\left(h_{0} h, s_{1}, \ldots, s_{n}\right)
$$

Case 2: $a \in A \backslash H$.
2.a: $s_{1} \in B . \forall h \in H$, write $a h=h^{\prime} a^{\prime}$ where $a^{\prime} \in A_{1}, a^{\prime} \neq 1$.

$$
a \cdot\left(h, s_{1}, \ldots, s_{n}\right)=\left(h^{\prime}, a^{\prime}, s_{1}, \ldots, s_{n}\right)
$$

2.b: $s_{1} \in A, s_{2} \in B . \forall h \in H$, write $a h s_{1}=h^{\prime} a^{\prime}, a^{\prime} \in A_{1}$.

$$
\begin{aligned}
a \cdot\left(h, s_{1}, \ldots, s_{n}\right) & =\left(h^{\prime}, a^{\prime}, s_{2}, \ldots, s_{n}\right) & \text { if } \quad a^{\prime} \neq 1 \\
& =\left(h^{\prime}, s_{2}, \ldots, s_{n}\right) & \text { if } a^{\prime}=1
\end{aligned}
$$

Amalgams

This defines a map $\sigma_{a}: X \rightarrow X$.
Exercise: Check that $\sigma_{a_{1} a_{2}}=\sigma_{a_{1}} \circ \sigma_{a_{2}}$.
Therefore $\sigma_{a} \circ \sigma_{a^{-1}}=\mathrm{id}$ and so σ_{a} is a bijection. So we have defined $\alpha_{1}: A \rightarrow \operatorname{Symm}(X)$.

Likewise we can define $\beta_{1}: B \rightarrow \operatorname{Symm}(X)$. Therefore there exists some $\varphi: A *_{H} B \rightarrow \operatorname{Symm}(X)$.

Exercise: $\forall g \in G$, if $g=h s_{1} \ldots s_{n}$ is a reduced word then

$$
\varphi(g)(1)=\left(h, s_{1}, \ldots, s_{n}\right)
$$

And so the reduced word is unique.

Amalgams

Theorem

Each $g \in G=A *_{H} B$ is represented by a unique reduced word.

Corollary
i_{A} and i_{B} are injective. Hence A, B can be seen as subgroups of $A *_{H} B$.

Corollary
If $\left(g_{1}, \ldots, g_{n}\right), n \geq 2$, is such that $g_{i} \in A \cup B, g_{i} \notin H, \forall i \geq 2$, and g_{i} alternate between A and B, then $g_{1} \ldots g_{n} \neq 1$ in $A *_{H} B$.

Proof.
Use induction to show that it can be represented by a reduced word of length $n-1$ if $g_{1} \in H$ or of length n if $g_{1} \notin H$.

