Geometric Group Theory

Cornelia Druțu

University of Oxford
Part C course HT 2023

Amalgams

Theorem
Each $g \in G=A *_{H} B$ is represented by a unique reduced word.

Corollary
i_{A} and i_{B} are injective. Hence A and B can be seen as subgroups of A *H B.

Corollary
If $\left(g_{1}, \ldots, g_{n}\right), n \geq 2$, is such that $g_{i} \in A \cup B, g_{i} \notin H, \forall i \geq 2$, and g_{i} alternate between A and B, then $g_{1} \ldots g_{n} \neq 1$ in A * $_{H} B$.

Proof.

Use induction to show that it can be represented by a reduced word of length $n-1$ if $g_{1} \in H$ or of length n if $g_{1} \notin H$.

Amalgams

Theorem
Each $g \in G=A *_{H} B$ is represented by a unique reduced word.

Corollary
In $G, A \cap B=H$.

Definition
The reduced word (h, s_{1}, \ldots, s_{n}) and the reduced element $h s_{1} \ldots s_{n} \in A *_{H} B$ are cyclically reduced if $n \geq 2$ and $s_{1} s_{n}$ is reduced.

Proposition

- Every $g \in A *_{H} B$ is conjugate either to a cyclically reduced element or to some $a \in A$ or to some $b \in B$.
- Every cyclically reduced element has infinite order.

Amalgams

Proposition

(1) Every $g \in A *_{H} B$ is conjugate either to a cyclically reduced element or to some $a \in A$ or to some $b \in B$.
(2) Every cyclically reduced word has infinite order.

Proof: (1): If $g=h s_{1} \ldots s_{n}$ is not cyclically reduced, i.e. s_{1}, s_{n} are both in A or both in B, then $s_{n} g s_{n}^{-1}$ is represented by a word of length $n-1$. Repeat until we have a cyclically reduced word or a word of length 1.
(2) : If g is cyclically reduced of length $n \geq 2$ then g^{k} has length $k n$, so $g^{k} \neq 1$.

Corollary
Given any finite subgroup $F \leq A *_{H} B, F$ must be contained in a conjugate $g A g^{-1}$ or $g B g^{-1}$.

Proof: exercise.

Amalgams and actions on trees

Definition

- Suppose G is a group acting on a graph X. We say that G acts on X without inversions if for every $g \in G$ and $[v, w] \in E(X)$ we have that $g([v, w]) \neq[w, v]$.
- A free action of G on X is an action that is free on the vertices and without inversions.

Suppose G is a group acting without inversions on a tree T.
A subtree $S \subseteq T$ is a fundamental domain if it intersects the orbit $G \cdot v$ of every vertex v of T, and it intersects the orbit of every edge exactly once.

Theorem
$G=A *_{H} B$ acts on a tree T with fundamental domain an edge $[P, Q]$ such that $\operatorname{Stab}(P)=A, \operatorname{Stab}(Q)=B, \operatorname{Stab}([P, Q])=H$.

Amalgams and actions on trees

Theorem

$G=A *_{H} B$ acts on a tree T with fundamental domain an edge $[P, Q]$ such that $\operatorname{Stab}(P)=A, \operatorname{Stab}(Q)=B, \operatorname{Stab}([P, Q])=H$.

Proof:
Let $V(T)=G / A \sqcup G / B$.
Edges are $(g A, g B)$, i.e. we join two left cosets of A and B if they have a common representative g. Given an edge what is the set of common representatives corresponding to it?

$$
g_{1} A=g A, \quad g_{1} B=g B \Longleftrightarrow g^{-1} g_{1} \in A \cap B=H
$$

So the set is exactly $g H$. We label the edge $(g A, g B)$ by $g H$ and the edge ($g B, g A$) by $g \bar{H}$. Clearly G acts transitively on the edges and there are two orbits of vertices.

Amalgams and actions on trees

T is connected: For each edge $\{g A, g B\}, g=h s_{1} \ldots s_{n}$, we will prove it is connected by an edge path to $\{A, B\}$ by induction on n. Moreover, the length of the edge path (including $\{A, B\}$ and $\{g A, g B\}$) is $n+1$. The $n=0$ case is obvious.

Induction: if $s_{n} \in A_{1} \backslash\{1\}$ then

$$
g A=\underbrace{h s_{1} \ldots s_{n-1}}_{g^{\prime}} A
$$

and $\{g A, g B\}$ shares a common endpoint with $\left\{g^{\prime} A, g^{\prime} B\right\}$.
Similarly, if $s_{n} \in B_{1} \backslash\{1\}$ then $g B=h s_{1} \ldots s_{n-1} B$ and $\{g A, g B\}$ shares a common endpoint with $\left\{g^{\prime} A, g^{\prime} B\right\}$.

Amalgams and actions on trees

T is a tree: A path without spikes in T of origin A and even length $2 n$ has vertices of the form:

$$
A=a_{1} A, a_{1} B, a_{1} b_{1} A, \ldots, a_{1} b_{1} \ldots a_{n} b_{n} A
$$

where $a_{i} \notin H$ and $b_{i} \notin H$.

An easy induction on n shows that the reduced form of $a_{1} b_{1} \ldots a_{n} b_{n}$ is $h a_{1}^{\prime} b_{1}^{\prime} \ldots a_{n}^{\prime} b_{n}^{\prime}$: for $n=1$ we have

$$
a_{1} b_{1}=a_{1} \underbrace{h b_{1}^{\prime}}_{b_{1}^{\prime} \neq 1 \text { as } b_{1} \notin H}=h^{\prime} a_{1}^{\prime} b_{1}^{\prime} \quad \text { where } \quad a_{1}^{\prime}, b_{1}^{\prime} \neq 1
$$

Amalgams and actions on trees

Likewise,

$$
a_{1} b_{1} a_{2} b_{2} \ldots a_{n+1} b_{n+1}=a_{1} b_{1} h a_{2}^{\prime} b_{2}^{\prime} \ldots a_{n+1}^{\prime} b_{n+1}^{\prime}=h^{\prime} a_{1}^{\prime} b_{1}^{\prime} \ldots a_{n+1}^{\prime} b_{n+1}^{\prime}
$$

In particular we cannot have $a_{1} b_{1} \ldots a_{n} b_{n} A=A$ otherwise

$$
\underbrace{h a_{1}^{\prime} b_{1}^{\prime} \ldots a_{n}^{\prime} b_{n}^{\prime}}_{\text {length } 2 n}=\underbrace{h^{\prime} a^{\prime}}_{\text {length } 0 \text { or } 1}
$$

So there is no cycle through A and so there is no cycle in T (every cycle must contain one vertex in G / A and so can be G-translated to a cycle through A).

