# Geometric Group Theory

Cornelia Druțu

University of Oxford

Part C course HT 2023

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Part C course HT 2023 1 / 25

# Amalgams

#### Theorem

Each  $g \in G = A *_H B$  is represented by a unique reduced word.

### Corollary

 $i_A$  and  $i_B$  are injective. Hence A and B can be seen as subgroups of  $A *_H B$ .

#### Corollary

If  $(g_1, ..., g_n)$ ,  $n \ge 2$ , is such that  $g_i \in A \cup B$ ,  $g_i \notin H$ ,  $\forall i \ge 2$ , and  $g_i$  alternate between A and B, then  $g_1...g_n \ne 1$  in  $A *_H B$ .

#### Proof.

Use induction to show that it can be represented by a reduced word of length n-1 if  $g_1 \in H$  or of length n if  $g_1 \notin H$ .

Cornelia Druțu (University of Oxford)

Geometric Group Theory

# Amalgams

### Theorem

Each  $g \in G = A *_H B$  is represented by a unique reduced word.

Corollary In  $G, A \cap B = H$ .

### Definition

The reduced word  $(h, s_1, ..., s_n)$  and the reduced element  $hs_1...s_n \in A *_H B$  are cyclically reduced if  $n \ge 2$  and  $s_1s_n$  is reduced.

### Proposition

- Every g ∈ A \*<sub>H</sub> B is conjugate either to a cyclically reduced element or to some a ∈ A or to some b ∈ B.
- Every cyclically reduced element has infinite order.

# Amalgams

Proposition

- Every g ∈ A \*<sub>H</sub> B is conjugate either to a cyclically reduced element or to some a ∈ A or to some b ∈ B.
- **2** Every cyclically reduced word has infinite order.

**Proof:** (1): If  $g = hs_1...s_n$  is not cyclically reduced, i.e.  $s_1$ ,  $s_n$  are both in A or both in B, then  $s_ngs_n^{-1}$  is represented by a word of length n - 1. Repeat until we have a cyclically reduced word or a word of length 1.

(2): If g is cyclically reduced of length  $n \ge 2$  then  $g^k$  has length kn, so  $g^k \ne 1$ .

### Corollary

Given any finite subgroup  $F \le A *_H B$ , F must be contained in a conjugate  $gAg^{-1}$  or  $gBg^{-1}$ .

Proof: exercise.

Cornelia Druțu (University of Oxford)

### Definition

- Suppose G is a group acting on a graph X. We say that G acts on X without inversions if for every g ∈ G and [v, w] ∈ E(X) we have that g([v, w]) ≠ [w, v].
- A free action of G on X is an action that is free on the vertices and without inversions.

Suppose G is a group acting without inversions on a tree T.

A subtree  $S \subseteq T$  is a fundamental domain if it intersects the orbit  $G \cdot v$  of every vertex v of T, and it intersects the orbit of every edge exactly once.

### Theorem

 $G = A *_H B$  acts on a tree T with fundamental domain an edge [P, Q] such that  $\operatorname{Stab}(P) = A$ ,  $\operatorname{Stab}(Q) = B$ ,  $\operatorname{Stab}([P, Q]) = H$ .

#### Theorem

 $G = A *_H B$  acts on a tree T with fundamental domain an edge [P, Q] such that Stab(P) = A, Stab(Q) = B, Stab([P, Q]) = H.

### Proof:

Let  $V(T) = G/A \sqcup G/B$ .

Edges are (gA, gB), i.e. we join two left cosets of A and B if they have a common representative g. Given an edge what is the set of common representatives corresponding to it?

$$g_1A = gA$$
,  $g_1B = gB \iff g^{-1}g_1 \in A \cap B = H$ 

So the set is exactly gH. We label the edge (gA, gB) by gH and the edge (gB, gA) by  $g\overline{H}$ . Clearly G acts transitively on the edges and there are two orbits of vertices.

Cornelia Druţu (University of Oxford)

Geometric Group Theory

*T* is connected: For each edge  $\{gA, gB\}$ ,  $g = hs_1...s_n$ , we will prove it is connected by an edge path to  $\{A, B\}$  by induction on *n*. Moreover, the length of the edge path (including  $\{A, B\}$  and  $\{gA, gB\}$ ) is n + 1. The n = 0 case is obvious.

Induction: if  $s_n \in A_1 \setminus \{1\}$  then

$$gA = \underbrace{hs_1...s_{n-1}}_{g'}A$$

and  $\{gA, gB\}$  shares a common endpoint with  $\{g'A, g'B\}$ . Similarly, if  $s_n \in B_1 \setminus \{1\}$  then  $gB = hs_1...s_{n-1}B$  and  $\{gA, gB\}$  shares a common endpoint with  $\{g'A, g'B\}$ .

T is a tree: A path without spikes in T of origin A and even length 2n has vertices of the form:

$$A = a_1 A, a_1 B, a_1 b_1 A, ..., a_1 b_1 ... a_n b_n A$$

where  $a_i \notin H$  and  $b_i \notin H$ .



An easy induction on *n* shows that the reduced form of  $a_1b_1...a_nb_n$  is  $ha'_1b'_1...a'_nb'_n$ : for n = 1 we have

$$a_1b_1 = a_1 \underbrace{hb_1'}_{b_1' 
eq 1 \text{ as } b_1 
ot \in H} = h'a_1'b_1' \quad ext{where} \quad a_1', b_1' 
eq 1$$

Likewise,

$$a_1b_1a_2b_2...a_{n+1}b_{n+1} = a_1b_1ha_2'b_2'...a_{n+1}'b_{n+1}' = h'a_1'b_1'...a_{n+1}'b_{n+1}'$$

In particular we cannot have  $a_1b_1...a_nb_nA = A$  otherwise

$$\underbrace{ha'_1b'_1\dots a'_nb'_n}_{\text{length }2n} = \underbrace{h'a'}_{\text{length }0 \text{ or }1}$$

So there is no cycle through A and so there is no cycle in T (every cycle must contain one vertex in G/A and so can be G-translated to a cycle through A).

Cornelia Druțu (University of Oxford)

Geometric Group Theory