Geometric Group Theory

Cornelia Druțu

University of Oxford

Part C course HT 2023, Oxford

A quotation

Leo Moser: "A mathematician named Klein
Thought the Möbius band was divine.
Said he: "If you glue
The edges of two,
You'll get a weird bottle like mine."
Indeed, by glueing two Möbius bands one obtains a Klein bottle.
There is a second way of obtaining a Klein bottle, that relates to a construction we will introduce today: the HNN extension.

Amalgams and actions on trees

Theorem
$G=A *_{H} B$ acts on a tree T with fundamental domain an edge $[P, Q]$ such that $\operatorname{Stab}(P)=A, \operatorname{Stab}(Q)=B, \operatorname{Stab}([P, Q])=H$.

Corollary
If $F \leq A *_{H} B$ is such that $F \cap g A g^{-1}=\{1\}$ and $F \cap g B g^{-1}=\{1\}$ for every $g \in G$, then F is free.

Proof.
F acts on the tree T with trivial vertex or edge stabilisers and so it acts freely on the tree T.

Proposition

The kernel of the map $\varphi: A * B \rightarrow A \times B$ is free.

Amalgams and actions on trees

Corollary
If $F \leq A *_{H} B$ is such that $F \cap g A g^{-1}=\{1\}$ and $F \cap g B g^{-1}=\{1\}$ for every $g \in G$, then F is free.

Proposition
The kernel of the map $\varphi: A * B \rightarrow A \times B$ is free.

Proof.
$F=\operatorname{ker} \varphi$ intersects $g A g^{-1}$ and $g B g^{-1}$ trivially.

Corollary
If A, B finite, then $A * B$ is virtually free.

Amalgams and actions on trees

Theorem

Suppose $G \curvearrowright T$ with fundamental domain an edge $e=[P, Q]$. If $A=\operatorname{Stab}(P), B=\operatorname{Stab}(Q), H=\operatorname{Stab}(e)$ then $G=A *_{H} B$.

Proof

Since we have $\alpha_{1}: A \rightarrow G, \beta_{1}: B \rightarrow G$ agreeing on H, there exists some $\varphi: A *_{H} B \rightarrow G$, by the Universal Property of $A *_{H} B$.

Step 1: $G=\langle A, B\rangle$, that is, φ is onto.
For all $g \in G$, $g e$ is joined to e by a unique path of length n (counting e and $g e$). We will prove that $g \in\langle A, B\rangle$ by induction on n. If $n=1$ then $g \in H$.

Assume true for n, and let ge be joined to e by a path of length $n+1$. Let $g^{\prime} e$ be the previous edge on the path.

Amalgams and actions on trees

Assume true for n and let ge be joined to e by a path of length $n+1$. Let $g^{\prime} e$ be the previous edge on the path.

Then either $g P=g^{\prime} P$ or $g Q=g^{\prime} Q$ and so $g^{-1} g^{\prime} \in A \cup B$. Since $g^{\prime} \in\langle A, B\rangle$ we are done.

Step 2: φ is injective.
Let $h s_{1} \ldots s_{n} \in \operatorname{ker} \varphi$. We can prove by induction on n that $h s_{1} \ldots s_{n} e$ can be joined to e by an edge path with no spikes of length $n+1$. Hence $h s_{1} \ldots s_{n} \neq 1$ in G.

HNN extensions

Definition

Suppose we have $A \subseteq G$ and $\theta: A \rightarrow G$ an injective homomorphism. The HNN extension of G on A with respect to θ is

$$
\begin{aligned}
G *_{A} & :=\left\langle G, t \mid \operatorname{tat}^{-1}=\theta(a), \forall a \in A\right\rangle \\
& =G *\langle t\rangle /\left\langle\left\langle\left\{\operatorname{tat}^{-1} \theta(a)^{-1}: a \in A\right\}\right\rangle\right\rangle
\end{aligned}
$$

t is called the stable letter of the HNN extension.
The name comes from Graham Higman, Bernhard Neumann and Hanna Neumann.

HNN extensions

Definition

Let $A \subseteq G$ and $\theta: A \rightarrow G$ be injective homomorphism. The HNN extension of G on A with respect to θ is

$$
G *_{A}:=\left\langle G, t \mid t a t^{-1}=\theta(a), \forall a \in A\right\rangle
$$

Remark
If $G=\langle S \mid R\rangle$ then $G *_{A}=\left\langle S \cup\{t\} \mid R \cup\left\{\operatorname{tat}^{-1}=\theta(a): a \in A\right\}\right\rangle$.

Examples

- The Baumslag-Solitar groups $B S(m, n)=\left\langle a, t \mid t a^{m} t^{-1}=a^{n}\right\rangle$, where $m, n \in \mathbb{Z}$.
- When $m=n=1$, we have \mathbb{Z}^{2} (fundamental group of the torus.)
- When $m=1, n=-1$, the fundamental group of the Klein bottle.
- When $m=1$ (or $n=1)$ the group is solvable.

Reduced words of HNN extensions

Suppose A_{1} is a set of right coset representatives for A and A_{2} is a set of right coset representatives for $\theta(A)$ such that $1 \in A_{1} \cap A_{2}$.

A reduced word of $G *_{A}$ is some $\left(g_{0}, t^{\epsilon_{1}}, g_{1}, t^{\epsilon_{2}}, g_{2}, \ldots, t^{\epsilon_{n}}, g_{n}\right)$ such that

- $\epsilon= \pm 1$
- $g_{0} \in G$
- $g_{i} \in A_{1}$ if $\epsilon_{i}=1, g_{i} \in A_{2}$ if $\epsilon_{i}=-1$
- $g_{i} \neq 1$ if $\epsilon_{i+1}=-\epsilon_{i}$

A reduced element of $G *_{A}$ is an element of the form $g_{0} t^{\epsilon_{1}} g_{1} \ldots t^{\epsilon_{n}} g_{n}$.
Theorem
Each $g \in G *_{A}$ is represented by a unique reduced word.

