Geometric Group Theory

Cornelia Druțu

University of Oxford

Part C course HT 2023, Oxford

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Part C course HT 2023, Oxford 1 / 9

A quotation

Leo Moser: "A mathematician named Klein

Thought the Möbius band was divine.

Said he: "If you glue

The edges of two,

You'll get a weird bottle like mine."

Indeed, by glueing two Möbius bands one obtains a Klein bottle.

There is a second way of obtaining a Klein bottle, that relates to a construction we will introduce today: the HNN extension.

Theorem

 $G = A *_H B$ acts on a tree T with fundamental domain an edge [P, Q] such that Stab(P) = A, Stab(Q) = B, Stab([P, Q]) = H.

Corollary

If $F \leq A *_H B$ is such that $F \cap gAg^{-1} = \{1\}$ and $F \cap gBg^{-1} = \{1\}$ for every $g \in G$, then F is free.

Proof.

F acts on the tree T with trivial vertex or edge stabilisers and so it acts freely on the tree T.

Proposition

The kernel of the map $\varphi : A * B \rightarrow A \times B$ is free.

Cornelia Druțu (University of Oxford)

Corollary

If $F \leq A *_H B$ is such that $F \cap gAg^{-1} = \{1\}$ and $F \cap gBg^{-1} = \{1\}$ for every $g \in G$, then F is free.

Proposition The kernel of the map $\varphi : A * B \rightarrow A \times B$ is free.

Proof.

 ${\it F}=\ker\varphi$ intersects $g{\it A}g^{-1}$ and $g{\it B}g^{-1}$ trivially.

Corollary

If A, B finite, then A * B is virtually free.

Cornelia Druțu (University of Oxford)

Theorem

Suppose $G \curvearrowright T$ with fundamental domain an edge e = [P, Q]. If $A = \operatorname{Stab}(P)$, $B = \operatorname{Stab}(Q)$, $H = \operatorname{Stab}(e)$ then $G = A *_H B$.

Proof

Since we have $\alpha_1 : A \to G$, $\beta_1 : B \to G$ agreeing on H, there exists some $\varphi : A *_H B \to G$, by the Universal Property of $A *_H B$.

Step 1: $G = \langle A, B \rangle$, that is, φ is onto.

For all $g \in G$, ge is joined to e by a unique path of length n (counting e and ge). We will prove that $g \in \langle A, B \rangle$ by induction on n. If n = 1 then $g \in H$.

Assume true for n, and let ge be joined to e by a path of length n+1. Let g'e be the previous edge on the path.

Assume true for n and let ge be joined to e by a path of length n + 1. Let g'e be the previous edge on the path.

Then either gP = g'P or gQ = g'Q and so $g^{-1}g' \in A \cup B$. Since $g' \in \langle A, B \rangle$ we are done.

Step 2: φ is injective.

Let $hs_1...s_n \in \ker \varphi$. We can prove by induction on *n* that $hs_1...s_n e$ can be joined to *e* by an edge path with no spikes of length n + 1. Hence $hs_1...s_n \neq 1$ in *G*.

Definition

Suppose we have $A \subseteq G$ and $\theta : A \to G$ an injective homomorphism. The HNN extension of G on A with respect to θ is

$$egin{aligned} \mathsf{G}*_{\mathcal{A}} &:= \langle \mathsf{G}, t | tat^{-1} = heta(a), orall a \in \mathcal{A}
angle \ &= \mathsf{G}*\langle t
angle \ / \ \langle \langle \{tat^{-1} heta(a)^{-1}: a \in \mathcal{A}\}
angle
angle \end{aligned}$$

t is called the stable letter of the HNN extension.

The name comes from Graham Higman, Bernhard Neumann and Hanna Neumann.

Cornelia Druțu (University of Oxford)

HNN extensions

Definition

Let $A \subseteq G$ and $\theta : A \to G$ be injective homomorphism. The HNN extension of G on A with respect to θ is

$$\mathsf{G}*_{\mathsf{A}} := \langle \mathsf{G}, t | tat^{-1} = heta(\mathsf{a}), \forall \mathsf{a} \in \mathsf{A}
angle$$

Remark

If
$$G = \langle S | R
angle$$
 then $G *_A = \langle S \cup \{t\} | R \cup \{tat^{-1} = \theta(a) : a \in A\}
angle$.

Examples

- The Baumslag-Solitar groups $BS(m, n) = \langle a, t | ta^m t^{-1} = a^n \rangle$, where $m, n \in \mathbb{Z}$.
- When m = n = 1, we have \mathbb{Z}^2 (fundamental group of the torus.)
- When m = 1, n = -1, the fundamental group of the Klein bottle.

• When m = 1 (or n = 1) the group is solvable. Cornelia Drutu (University of Oxford) Geometric Group Theory

Part C course HT 2023, Oxford

8/9

Reduced words of HNN extensions

Suppose A_1 is a set of right coset representatives for A and A_2 is a set of right coset representatives for $\theta(A)$ such that $1 \in A_1 \cap A_2$.

A reduced word of $G*_A$ is some $(g_0, t^{\epsilon_1}, g_1, t^{\epsilon_2}, g_2, ..., t^{\epsilon_n}, g_n)$ such that

- $\epsilon = \pm 1$
- *g*₀ ∈ *G*
- $g_i \in A_1$ if $\epsilon_i = 1$, $g_i \in A_2$ if $\epsilon_i = -1$
- $g_i \neq 1$ if $\epsilon_{i+1} = -\epsilon_i$

A reduced element of $G*_A$ is an element of the form $g_0t^{\epsilon_1}g_1...t^{\epsilon_n}g_n$.

Theorem

Each $g \in G*_A$ is represented by a unique reduced word.