Geometric Group Theory

Cornelia Druțu

University of Oxford

Part C course HT 2023, Oxford

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Part C course HT 2023, Oxford 1 / 9

Reduced words of HNN extensions

Suppose A_1 is a set of right coset representatives for A and A_2 is a set of right coset representatives for $\theta(A)$ such that $1 \in A_1 \cap A_2$.

A reduced word of $G*_A$ is some $(g_0, t^{\epsilon_1}, g_1, t^{\epsilon_2}, g_2, ..., t^{\epsilon_n}, g_n)$ such that

- $\epsilon = \pm 1$
- *g*₀ ∈ *G*
- $g_i \in A_1$ if $\epsilon_i = 1$, $g_i \in A_2$ if $\epsilon_i = -1$
- $g_i \neq 1$ if $\epsilon_{i+1} = -\epsilon_i$

A reduced element of $G*_A$ is an element of the form $g_0t^{\epsilon_1}g_1...t^{\epsilon_n}g_n$.

Theorem

Each $g \in G*_A$ is represented by a unique reduced word.

Reduced words of HNN extensions

Theorem

Each $g \in G_{*A}$ is represented by a unique reduced word.

Proof:

Existence of a representation: We induct on the length of g as a reduced word in $G \cup \{t, t^{-1}\}$. The length 1 case is obvious.

Assume true for *n*. Length n+1 means either $g = ut^{\pm 1}$, $length(u) \le n$, or

$$g \in \{wth, wt^{-1}h\}$$

where $length(w) \le n-1$ and $h \in G$. If $g = ut^{\pm 1}$, apply induction. If

$$g = wth = wtah_1 = wtat^{-1}th_1 = w\theta(a)th_1$$

then $length(w\theta(a)) \le n$ so we can apply the inductive assumption. The $g = wt^{-1}h$ case is similar.

Cornelia Druţu (University of Oxford)

Reduced words of HNN extensions

Uniqueness of representation: Let X be the set of reduced words. G_{*A} acts on it (i.e. there exists a group homomorphism $G_{*A} \rightarrow Bij(X)$) as follows:

$$\phi(g)(g_0, t^{\epsilon_1}, g_1, ..., t^{\epsilon_n}, g_n) = (gg_0, t^{\epsilon_1}, g_1, ..., t^{\epsilon_n}, g_n)$$

and $\phi(t)(g_0, t^{\epsilon_1}, g_1, ..., t^{\epsilon_n}, g_n)$ equals

$$\begin{cases} (\theta(g_0), t, 1, t^{\epsilon_1}, ..., t^{\epsilon_n}, g_n) & \text{if } g_0 \in A \text{ and } \epsilon_1 = 1 \\ (\theta(g_0)g_1, t^{\epsilon_2}, ..., t^{\epsilon_n}, g_n) & \text{if } g_0 \in A \text{ and } \epsilon_1 = -1 \\ (\theta(a), t, g'_0, t^{\epsilon_1}, ..., t^{\epsilon_n}, g_n) & \text{if } g_0 = ag'_0 \text{ and } g'_0 \in A_1 \setminus \{1\} \end{cases}$$

Exercise: Prove that $\phi(t)$ is a bijection.

We thus have a homomorphism $\phi : G * \langle t \rangle \rightarrow Bij(X)$. Exercise: prove that $\phi(tat^{-1}) = \phi(\theta(a)), \forall a \in A$. Hence ϕ defines $\overline{\phi}: G_{*A} \to Bij(X)$. And if $g = g_0 t^{\epsilon_1} g_1 \dots t^{\epsilon_n} g_n$ then $\phi(g)(1) = (g_0, t^{\epsilon_1}, g_1, ..., t^{\epsilon_n}, g_n).$ Cornelia Druțu (University of Oxford) Geometric Group Theory

4 / 9

Theorem

Each $g \in G_{*A}$ is represented by a unique reduced word.

Corollary The group G embeds into $G*_A$.

Corollary (Britton's lemma) If $g_0 t^{\epsilon_1} g_1 \dots t^{\epsilon_n} g_n$ is such that $g_i \in G \setminus A$ when $(\epsilon_i, \epsilon_{i+1}) = (1, -1)$ and $g_i \in G \setminus \theta(A)$ when $(\epsilon_i, \epsilon_{i+1}) = (-1, 1)$ then it is non-trivial.

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Definition

If $G = A *_H B$ or $G = A *_H$ then we say that G splits over H.

Definition

Let Y be an oriented graph such that the corresponding unoriented graph is connected and each of its edges appears with both orientations in Y.

A graph of groups is a pair (G, Y), where G is a map that assigns a group G_v to each vertex $v \in V(Y)$ and a group G_e to each edge $e \in E(Y)$ such that

$$\bullet \quad G_e = G_{\bar{e}}$$

② for all edges *e*, there exists an injective homomorphism α_e : $G_e \rightarrow G_{t(e)}$

where t(e) is the terminus of the edge e = [o(e), t(e)].

Graphs of groups appear naturally when G acts on a graph X without inversions.

When this happens, we define the quotient graph Y = X/G and the projection $p: X \to Y$ as follows:

- Vertices are orbits Gv, $v \in X$
- Gv, Gw are joined if there exists an edge $[v_1, w_1]$ such that $v_1 \in Gv$, $w_1 \in Gw$.

We define $p: X \to X/G$ by p(v) = Gv, $p(e) = \{Go(e), Gt(e)\}$.

In this case,

• $\forall v \in Y$, define $G_v = \operatorname{Stab}(\hat{v})$ where \hat{v} is some element of $p^{-1}(v)$ • $\forall e \in Y$, define $G_e = \operatorname{Stab}(\hat{e})$ where \hat{e} is some element of $p^{-1}(e)$

taking care that, whenever we can, \hat{v} is an endpoint of \hat{e} such that $G_e \subseteq G_v$.

For some edges, we might have to define α_e not as an inclusion, but as an inclusion composed with a conjugation.

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Definition

Let V = V(Y). The path group of the graph of groups (G, Y) is

$$F(G, Y) = \langle \bigcup_{v \in V} G_v \cup E(Y) | \overline{e} = e^{-1}, e\alpha_e(g)e^{-1} = \alpha_{\overline{e}}(g), \forall e \in E(Y), g \in G_e \rangle.$$

If $G_v = \langle S_v | R_v \rangle$ then

$$F(G,Y) = \langle \bigcup_{v \in V} S_v \cup E(Y) | \bigcup_{v \in V(Y)} R_v, \bar{e} = e^{-1}, e\alpha_e(g)e^{-1} = \alpha_{\bar{e}}(g) \rangle.$$

Definition

A path in (G, Y) is a sequence

$$c = (g_0, e_1, g_1, e_2, ..., g_{n-1}, e_n, g_n)$$

such that $t(e_i) = o(e_{i+1})$ and $g_i \in G_{t(e_i)} = G_{o(e_{i+1})}$. If $v_0 = o(e_1)$, $v_n = t(e_n)$ then we call this a path from v_0 to v_n . We call

$$v_0, v_1 = t(e_1) = o(e_2), ..., v_i = t(e_i) = o(e_{i+1}), ..., v_n$$

its sequence of vertices. We define |c| to be the element of the path group $g_0 e_1 g_1 \dots e_n g_n$.