
Further Partial Differential Equations (2023)

Problem Sheet 3

1. Asymptotic analysis of Stefan problems

(a) Show that the transcendental relation (2.12) between β and St may be parameterized
as

St =
√
πξeξ

2

erf(ξ), β =
2
√
ξe−ξ

2/2

π1/4
√

erf(ξ)
, (1)

where 0 < ξ < ∞. By taking the limits ξ → 0 and ξ → ∞, derive the asymptotic
expressions (2.13).
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Solution

Define ξ = β
√

St/2. Substituting into the transcendental equation (2.12) gives

√
πξeξ

2

erf(ξ) = St, (2)

β =
2ξ

St
=

2
√
ξe−ξ

2/2

π1/4
√

erf(ξ)
. (3)

As ξ → 0, erf(ξ) ∼ 2ξ/
√
π so St ∼ 2ξ2 in (2) and β →

√
2 in (3).

As ξ →∞, erf → 1, so (2) and (3) give respectively

St ∼
√
πξeξ

2

, (4)

β ∼ 2

π1/4
ξ1/2e−ξ

2/2. (5)

Equation (4) gives

log

(
St√
π

)
∼ ξ2 + higher order logarithmic terms, (6)

and so

β ∼ 2√
St

√
log

(
St√
π

)
. (7)
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2. Similarity solutions in the two-phase Stefan problem

Consider the two-phase Stefan problem (2.15) in the limit t→ 0. Show that the leading-order
behaviour is given by

u(x, t) ∼

{
f(η) 0 < η < β,

g(η) β < η <∞,
s(t) ∼ β

√
t, η =

x√
t
,

where

g(η) = θ

 erfc
(
η
√

St/2
√
κ
)

erfc
(
β
√

St/2
√
κ
) − 1

 , f(η) =

1−
erf
(
η
√

St/2
)

erf
(
β
√

St/2
)
 ,

and β satisfies the transcendental equation

β
√
π

2
√

St
=

e−β
2St/4

erf
(
β
√

St/2
) − Kθe−β

2St/4κ

√
κerfc

(
β
√

St/2
√
κ
) .
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Solution

Substitute in the similarity solution form given in the question. (Note that you can obtain the
form of this similarity solution by using a scaling argument.) This transforms the problem
to

f ′′ +
St

2
ηf ′ = 0, η < β, (8)

g′′ +
St

2κ
ηg′ = 0, η > β, (9)

f(0) = 1, (10)

g → −θ as η →∞, (11)

f(β) = g(β) = 0, (12)

Kg′(β)− f ′(β) =
β

2
. (13)

The solution follows straightforwardly from this.
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3. Linear stability of a two-dimensional Stefan problem
Consider the linear stability of the free boundary problem depicted in Figure 2.2 in the limit
St → 0. Assume that the free boundary is moving at constant speed V under a constant
temperature gradient −λ1,2 in each phase before being perturbed, so the solutions take the
form

u1(x, y, t) = −λ1(x− V t) + ũ1(x, y, t), u2(x, y, t) = −λ2(x− V t) + ũ2(x, y, t)

and the position of the free boundary is given by

x = V t+ ξ(y, t).

By linearising the problem with respect to ũ1, ũ2 and ξ, show that perturbations with
wavenumber k > 0 and growth rate σ are possible provided

σ

V k
= −λ1 +Kλ2

λ1 −Kλ2
.
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Solution

We consider the following problem with St→ 0:

SOLID LIQUID

Free boundaryx = 0 x = 1

u1 = 1 u1 = 0 u2 = 0
�u2
�x

= 0

Vn = K
�u2
�n

- �u1
�n

St
�

�u2
�t

= �2u2St
�u1
�t

= �2u1

x

y

LIQUID SOLID

We set

u1 = −λ1(x− V t) + ũ1,

u2 = −λ2(x− V t) + ũ2,

x = V t+ ξ(y, t).

If the free boundary is x = f(y, t) then the unit normal is

n =

(
1,−∂f

∂y

)
√

1 +

(
∂f

∂y

)2
,

the normal derivative is

∂u

∂n
=

1√
1 +

(
∂f

∂y

)2

(
∂u

∂x
− ∂f

∂y

∂u

∂y

)
,

and the normal velocity is

Vn =

∂f

∂t√
1 +

(
∂f

∂y

)2
.

Now in our case, f = V t+ ξ(y, t), so the free boundary conditions are

K

(
−λ2 +

∂ũ2
∂x
− ∂ξ

∂y

∂ũ2
∂y

)
−
(
−λ1 +

∂ũ1
∂x
− ∂ξ

∂y

∂u1
∂y

)
= V +

∂ξ

∂t

on x = V t+ ξ(y, t). Considering this at O(1) gives

−Kλ2 + λ1 = V on x = V t
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and at next order,

K
∂ũ2
∂x
− ∂ũ1

∂x
=
∂ξ

∂t
on x = V t.

Since u1 = u2 − 0 on the interface, this gives

−λ1ξ + ũ1 = −λ2ξ + ũ2 = 0 on x = V t.

The leading-order equations for St→ 0 are

∇2ũ1 = 0, x < V t,

∇2ũ2 = 0, x > V t,

We no longer need to consider the conditions on x = 0 and x = 1 since we are now just
performing a local analysis. Our only requirement is that the perturbations decay away so
we seek solutions of the form

ũ1 = Aexp(σt+ iky + k(x− V t)),
ũ2 = Bexp(σt+ iky − k(x− V t)),
ξ = Cexp(σt+ iky).

These satisfy Laplace’s equation and decay away from the interface. The interface conditions
give

−Kkλ1 −Bkλ2 = σ

and  Kk k σ
1 0 −λ1
0 1 −λ2

 A
B
C

 =

 0
0
0

 .

Non-trivial solutions require the determinant of this matrix to be zero, which gives

σ

kV
= − 1

V
(Kλ1 + λ2) = −Kλ1 + λ2

λ1 −Kλ2

as required.
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4. OPTIONAL (will not be marked) A solid–liquid interface with a density change

Consider the one-dimensional Stefan problem for melting of a solid considered in lectures.
The full system behaviour may be described by equations expressing conservation of mass,
momentum and total energy, which are given respectively by

∂ρ

∂t
+

∂

∂x
(ρv) = 0, (14)

∂

∂t
(ρv) +

∂

∂x

(
ρv2 + p

)
= 0, (15)

∂

∂t

(
ρh+

1

2
ρv2
)

+
∂

∂x

(
pv − k∂T

∂x
+ ρ

(
h+

1

2
v2
)
v

)
= 0, (16)

where ρ is the density, v the velocity, p the pressure, T the temperature and

h =

{
c(T − Tm) + L T > Tm
c(T − Tm) T < Tm.

is the enthalpy of the system, which is the total energy per unit mass, including heat. Here,
c is the specific heat and L the latent heat.

Suppose that liquid occupies a region 0 ≤ x ≤ s(t) and solid occupies a region x > s(t).

(a) Show that when the density of the fluid and the solid are the same then v = 0 and
the temperature in the liquid and the solid is described by the one-dimensional heat
equation

∂

∂t
(ρcT )− ∂

∂x

(
k
∂T

∂x

)
= 0. (17)

(b) Now suppose that the densities in the solid and the liquid phases are different. Integrate
(14) over a domain x1 < x < x2 that contains the interface (so x1 < s(t) and x2 > s(t)).
Divide the integral into x1 ≤ x ≤ s(t) and s(t) ≤ x ≤ x2 and take the limit as
x1 → s(t)− and x2 → s(t)+ to show that the following jump condition is satisfied by
the density:

[ρ]
+
−

ds

dt
= [ρv]

+
− . (18)

(c) By performing an identical process for (15) and (16) obtain the jump conditions

[ρv]
+
−

ds

dt
=
[
ρv2 + p

]+
− , (19)[

ρh+
1

2
ρv2
]+
−

ds

dt
=

[
pv − k∂T

∂x
+ ρ

(
h+

1

2
v2
)
v

]+
−
. (20)

(d) Explain how these reduce to the Stefan condition presented in lectures when the solid
and liquid densities are equal.

8



Solution

(a) Substitution of constant ρ into (14) gives v as an arbitrary function of time. Since the
liquid occupies the region 0 ≤ x ≤ s(t), the boundary x = 0 is fixed and so v = 0 here
and hence v = 0 everywhere. Substitution into (15) gives constant pressure gradient p.
Substitution into (16) gives the required heat equation.

(b) Equation (14) only applies provided the variables are continuous, and so does not hold
across jumps. We thus consider the integrated conservative version,

d

dt

∫ x2

x1

ρdx = [ρv]
x2

x1
,

where x1 < s(t) < x2. We divide the integral into parts to the left and right of the
jump,

d

dt

∫ s(t)

x1

ρdx+

∫ x2

s(t)

ρdx = [ρv]
x2

x1

∫ s(t)

x1

∂ρ

∂t
dx+ ρ|x1

ds

dt
+

∫ x2

s(t)

∂ρ

∂t
dx− ρ|x2

ds

dt
= [ρv]

x2

x1

using Leibniz’ rule. Then, taking the limit x1 → s(t)− and x2 → s(t)+ and recognizing
that

lim
x1→s(t)−

∫ s(t)

x1

∂ρ

∂t
dx = 0, lim

x2→s(t)+

∫ x2

s(t)

∂ρ

∂t
dx = 0,

we obtain the required result,

[ρ]
+
−

ds

dt
= [ρv]

+
− .

(c) This may be found easily by following the same steps as above.

(d) When the solid and liquid densities are equal, (19) gives [p]
+
− = 0, so the pressure is

continuous across the interface, and

ρL
ds

dt
= −

[
k
∂T

∂x

]+
−

(21)

if we assume that the temperature is continuous across the interface. This is precisely
the Stefan condition from the lectures.
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