
Prelims Dynamics

EA Gaffney

These notes are based extensively on the lecture notes of James Sparks, and also include material
from lecture notes by Jon Chapman and David Acheson.

Please send comments and corrections to gaffney@maths.ox.ac.uk.
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1 Newtonian Mechanics

1.1 Space and Time

In Newtonian mechanics Space is Euclidean R3.
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Figure 1: The position vector r = (x, y, z) of a point P , as measured in a reference frame S.

Definition A reference frame S is specified by a choice of origin O, together with a set of orthogonal
(right handed) 3D Cartesian coordinate axes at O.

A point P may be specified in this reference frame by its position vector r =
−→
OP .

The distance between two points with respective position vectors r1 = (x1, y1, z1) and r2 = (x2, y2, z2)
is (

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2
)1/2

.

In Newtonian mechanics Time is the same for all observers in all reference frames and can be measured
by a clock.

In Newtonian physics it is further assumed that

� distances measured in two distinct reference frames are the same

Hence the mapping between two distinct reference frames is an isometry, though the reference frames
may be such that the isometry changes with time.

From Prelims Geometry An isometry is a combination of a translation and an orthogonal
transformation, and the latter can be represented by an orthogonal matrix R. Preserving the right
handedness of the reference frame entails det R = 1 and hence the orthogonal transformation is a
rotation.

Definition A point particle is an idealised object, modelled as being located at position r(t) at time
t relative to a reference frame.

Note that r(t) is a curve in 3D space, parameterised by time, t, and the trajectory of the particle.
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Definition Some other basic definitions

Velocity = v =
dr

dt
= ṙ =

(
dx

dt
,
dy

dt
,
dz

dt

)
= (ẋ, ẏ, ż) ,

Speed = v = |v| = (ẋ2 + ẏ2 + ż2)1/2,

Acceleration = a =
dv

dt
=

d2r

dt2
= r̈ =

(
d2x

dt2
,
d2y

dt2
,
d2z

dt2

)
= (ẍ, ÿ, z̈) .

Example (Motion with constant acceleration).

� Suppose a particle has a constant acceleration q and starts at time t = 0 at the origin, with
initial velocity u. Find its trajectory.

� Simplify the expression for the trajectory if q and u are parallel.

Solution

We have r̈ = q, constant.

Integrating, and using ṙ(0) = u, we have

ṙ = qt+ u.

Integrating again and using r(0) = 0 yields

r =
1

2
qt2 + ut.

If u and q are parallel, WLOG let q = qk, u = uk where k is the unit vector in the increasing z
direction (appropriately chosen). Then

r(t) =

(
1

2
qt2 + ut

)
k =

(
0, 0,

1

2
qt2 + ut

)
.

1.2 Newton’s Laws

Definition A point particle has a (inertial) mass m > 0. Its linear momentum, often abbreviated
to momentum, is

p = mv = mṙ.

Aside As we will see from Newton’s laws below we have that, loosely, inertial mass measures how
difficult it is to accelerate the particle.

Definition Newton’s first law states that

� In an inertial reference frame a particle moves with constant momentum, unless acted on by a
non-zero total external force.
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Not all reference frames are inertial.

On a stationary train a particle will rest on the floor, with gravity balanced by the normal reaction
force from the floor, so that the total external force is zero. This is an inertial reference frame.

The same particle in a braking train will, to observers in the train, move forward and yet is subject
to essentially zero external force if the floor has minimal friction.

Thus, an origin and axes fixed in the train do not constitute an inertial frame though they can
mapped to the inertial frame with origin and axes fixed in the train station by a time dependent
translation.

Aside Strictly, a reference frame at rest relative to the earth’s surface is actually not an inertial frame. The

Earth moves around the Sun and rotates on its own axis. The gravitational force due to the Sun is balanced

by the acceleration required to remain in orbit around the sun and thus has no impact on whether or not

the Earth’s surface is an inertial frame. The Earth’s rotation on its axis can be important though, for most

purposes, approximating a reference frame at rest relative to the earth’s surface as inertial has excellent

accuracy. However with long range projectiles that are airborne for a long time, for example, an inertial

reference frame is not legitimate. We return to this later.

Definition Newton’s second law states that

� In an inertial reference frame the dynamics of a point particle is such that the rate of change
of linear momentum is equal to the net force acting on the particle:

F = ṗ =
d

dt
(mv).

Given constant particle mass, this reduces to

F = ma = mr̈.

Finally, with more than one particle we have

Definition Newton’s third law states that

� If particle 1 exerts a force F = F21 on particle 2, then particle 2 also exerts a force F12 = −F
on particle 1, so that

F12 = −F21.

This is often summarised as “every action has an equal and opposite reaction.”

1.3 Galilean transformations

Inertial reference frames are not unique. Suppose we have an inertial frame S, with respect to
which positions are specified by a vector r = (x, y, z) from the origin O. Consider the following
transformations to a different frame S ′, with positions specified by r′:

spatial translations, r′ = r− x, where x is a constant vector,

constant rotations, r′ = R r, where R is a constant 3× 3 rotation matrix,

Galilean boosts, r′ = r− u t, where u is a constant velocity.
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The first and second transformations simply translate the origin by a fixed distance, and rotate the
axes by a fixed rotation, respectively. The final transformation has the origins O, O′ moving at a
fixed relative velocity u.

If r(t) is the trajectory of a free particle – by definition, no forces act on it – in the frame S, then

d2

dt2
r = 0.

For each r′(t) above one has
d2

dt2
r′ = 0,

and hence the particle also moves with constant velocity in the new frame S ′.

Any combination of the above transformations thus maps an inertial frame to another inertial frame,
generating the Galilean transformation group.

The insight of Galileo was that physics is invariant under Galilean transformations: the laws of
motion are the same in any inertial frame. This is known as Galileo’s principle of relativity.

1.4 Dimensions

With square bracket notation to denote the dimension of a variable, the fundamental dimensions in
mechanics are:

[length] = L, [time] = T, [mass] = M.

Aside Electric Charge, Q, is also required for electromagnetism.

Dimensions of other quantities may then be derived from these. For example, the dimensions of
force, F, are given by

[F] = [ma] = [mr̈] = MLT−2.

In particular 1 kg m s−2 defines the unit of force, the Newton.

It is useful to note:

� A given dimension may be measured in a number of different standard units. For example,
length may be measured in centimetres, or metres, or kilometers, etc.

� We may only add two quantities if they have the same dimensions and the units must match
before adding.

� Functions that add terms of different powers, e.g.

ex = 1 + x+ x2/2 + . . . ...

or sin, cos, tan etc., must act on dimensionless variables so that x above has dimensions of
M0L0T0.

� A convenient and powerful check on any equation you write down is whether the dimensions
on both sides are the same.
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1.4.1 Dimensional Analysis

A knowledge of the dimensions of the parameters a problem depends on can sometimes be used to
construct scaling laws without needing to solve any differential equations.

Example (Maximum height for constant acceleration): For the previous example of a particle moving
along the z axis, starting at the origin at time t = 0 with velocity u = uk, and constant acceleration
qk, we showed

r(t) = (
1

2
qt2 + ut)k.

Suppose that u > 0 but the constant acceleration q = −g < 0 is negative. Find the maximum height,
zmax attained by the particle.

Solution It will reach a maximum height zmax at time tmax, when ṙ(tmax) = 0:

0 = ṙ(tmax) = (−g tmax + u)k =⇒ tmax =
u

g
. (1.1)

Hence tmax = u/g, and thus .

zmax = −1

2
g t2max + u tmax =

u2

2g
. (1.2)

However note that the answer must be in terms of u, q = −g as these are the only parameters in
problem statement.

We have [u] = LT−1, [g] = LT−2. The only way to obtain a quantity with dimensions of L is[
u2

g

]
=

L2T−2

LT−2
= L . (1.3)

Hence zmax must be a dimensionless number times u2/g.

6



2 Forces and dynamics: a first look

In this section we introduce a number of different forces, and solve the differential equation given by
Newton’s second law to find the particle trajectory r(t).

Note that if forces F1,F2, . . . ,Fn all act on a particle, the force F appearing in Newton’s second law
is the total force given by the vector sum

F =
n∑

i=1

Fi . (2.1)

2.1 Examples of forces

2.1.1 Gravity

1. The gravitational force on a particle near the Earth’s surface is F = mgg, where mg is the
gravitational mass of the particle, and g is the gravitational acceleration, a vector pointing
downward with magnitude g = |g| = 9.81m s−2.

In an inertial frame fixed on the Earth’s surface, with z pointing up, Newton’s second law
becomes

mgg = −mggk = F = mI r̈ = mI z̈k,

where mI = m is the inertial mass.

It is an experimental fact that mI = mG, as demonstrated famously by Galileo throwing items
off the tower of Pisa, and confirmed to over 10 significant figures more generally. Henceforth
we assume mI = mg = m.

Hence Newton’s laws give r̈ = −gk, which we considered in the previous constant acceleration
example.

2. The gravitational force on the Earth due to the Sun is

F = −Gm1m2

r2
er (2.2)

where m1 and m2 are the masses of the Sun and Earth respectively, r is the position vector of
the Earth relative to the centre of the Sun, with magnitude r and in the direction of the unit
vector er. G is the universal gravitational constant (G = 6.67× 10−11m3 kg−1 s−2).

Example Suppose that a small projectile is thrown with velocity V at an angle α to the horizontal,
from a height h above the ground. Find the curve traced out by the trajectory of the projectile, and
its horizontal range.

We choose the origin O at ground level, and a unit vector k pointing vertically, and i horizontally
along the ground. The only force acting is gravity, with F = −mg k, so that Newton’s second law
gives the equation of motion

mr̈ = −mg k . (2.3)
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Figure 2: Throwing a projectile.

The initial conditions are

At time t = 0: r(0) = hk , ṙ(0) = V = V cosα i+ V sinαk . (2.4)

Integrating (2.3) twice and using (2.4) we find the solution

r(t) = −1

2
g t2 k+ tV + hk = −1

2
g t2 k+ tV cosα i+ tV sinαk+ hk . (2.5)

This is the trajectory of the projectile. We can find the curve that this traces out in the (x, z) plane
by eliminating time t. Writing r = x i+ z k, reading off the components of (2.5) gives

x(t) = tV cosα , z(t) = −1

2
g t2 + tV sinα + h . (2.6)

Using the first equation we may solve for t in terms of x, and then substitute into the second equation,
giving the parabola

z = − g

2V 2
x2 sec2 α + x tanα + h . (2.7)

The projectile hits the ground when z = r ·k = 0. From (2.7) this gives a quadratic equation for the
horizontal range x, with solution

x =
V 2 cosα

g

[
sinα +

√
sin2 α + 2gh/V 2

]
. (2.8)

2.1.2 Normal Reaction Force and Friction

When a particle rests on a table, it experiences a force mg due to gravity. This is balanced exactly
by a normal reaction force, often denoted N, and ultimately of electrostatic origin.

If the particle is slides across the table, or is acted on by a force tangential to the table top, friction
can be generated which tends to act to oppose this motion and force.
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2.1.3 Fluid drag

A particle moving through a fluid (such as air or water) experiences a drag force. Usually this is
taken to act in the direction −v, where v is the particle velocity.

For example, Stokes’ law for a small sphere moving through a viscous liquid says the drag force is

F = −6πµRv,

where µ is the dynamic viscosity of the liquid, R is the radius of the sphere.

A quadratic drag often holds for streamlined shapes such as aerofoils, whence

F = −D |ṙ| ṙ , (2.9)

where the constant D > 0 and depends on the geometry of the aerofoil and the fluid density.

Example (Linear drag): Consider a particle falling under gravity with a linear drag force, F = −bv,
with b > 0. The particle is released from rest at time t = 0. Determine its trajectory and terminal
velocity.

mg

i
O

x

bx

Figure 3: A particle falling under gravity with a linear drag.

Solution We choose an inertial frame with origin O, at the starting location of the particle and
(unconventionally) take i to be a unit vector in the downwards direction, so that r(t) = x(t)i.

The force due to gravity is mg i and the drag force is −b ṙ = −bẋi.
Newton’s second law gives the equation of motion

mẍ i = mg i− b ẋ i . (2.10)

We hence deduce the one-dimensional equation

ẍ +
b

m
ẋ = g, (2.11)

with initial conditions x(0) = ẋ(0) = 0.

There are many ways to proceed. For instance with q = ẋ we have q̇ + (b/m)q = g, which has a
general solution of a multiple, A, of the homogeneous solution and a particular integral:

q =
mg

b
+ Ae−bt/m. (2.12)
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Imposing the initial condition q(0) = ẋ(0) = 0 fixes A and we have

ẋ = q =
mg

b

(
1− e−bt/m

)
. (2.13)

Integrating again, with the initial condition x(0) = 0 yields

x(t) =
mgt

b
+
m2

b2
g
(
e−bt/m − 1

)
. (2.14)

x(t) =
m2g

b2

(
e−

b
m
t − 1

)
+
mg

b
t , (2.15)

giving the trajectory. The terminal velocity is given by

lim
t→∞

ẋ(t) =
mg

b
.

2.1.4 Spring force

A spring is fixed at one end and attached to a particle at the other. The particle will experience a
force, F, directed along the line of the spring with a magnitude that depends on the extension of the
spring from its equilibrium length.

Hooke’s linear law states that the force is proportional to the extension, so that

F = −k(x− l)t,

where t is the unit vector along the spring pointing towards the particle, x is the length of the spring,
l is the equilibrium length, and k is the spring constant.

l

fixed

x

F

mg

N

Figure 4: The forces acting on a particle attached to a spring on a table top. The normal reaction
force, N and gravity, mg cancel so there is zero total force perpendicular to the x-axis.

Example Suppose a particle of mass m is attached to a spring that possesses a spring constant k, a
length l, and is fixed by its opposing end to the origin, while aligned along the x-axis of a table top
with no friction. Initially the particle is at location x(0) = l, with speed ẋ(0) = u in the positive x
direction. Determine its trajectory.
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Solution Resolving Newton’s second law along the x axis gives the equation of motion

mẍ = −k(x− l) , (2.16)

and x(0) = l, ẋ(0) = u. With x = l + q we have

q̈ = −ω2q, ω2 =
k

m
> 0. (2.17)

Thus q = A sin(ωt+ψ), where A is the amplitude and ψ the phase of the ensuing oscillation. Imposing
the initial conditions gives Aω = u, ψ = 0 and hence

x(t) = l +
u

ω
sinωt.

2.1.5 Charged particle in electric and magnetic fields

For a charged particle moving in an electric field the force on the particle is the Lorentz force, given
by

F = eE+ ev ∧B,

where e is the charge on the particle, E is the electric field, v is the velocity of the particle, and B
is the magnetic induction.

Example (Charged particle moving in a constant magnetic field): Ignoring gravity, determine the
trajectory of a particle of charge q moving in constant magnetic field B.

Solution Without loss, we take the initial location of the particle at time t = 0 to be the origin. We
also denote its initial velocity by V. From Newton’s second law the equations of motion are:
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3 Motion in one dimension

3D problems often reduce to lower dimensions and thus we first consider Newton’s laws in more
detail for one dimensional point particle mechanics.

3.1 Energy

Definition The kinetic energy of a point particle is

T =
1

2
mṙ2.

Energy is measured in Joules J, with 1 J = 1 kgm2 s−2.

Consider a particle of constant mass, m, restricted to move along the x-axis, subject to a force
F = F (x)i, as exemplified by the spring example of Section 2.1.4. First we define the potential
energy:

Definition With x0 an arbitrary fixed location, the particle’s potential energy is

V (x) = −
∫ x

x0

F (s) ds.

Note that V (x) is defined only up to an additive constant and that dV/dx = −F (x).

3.1.1 Conservation of energy

Resolving Newton’s second law in the x-direction for the above point particle gives the second order
ODE

mẍ = F (x) = −dV

dx
(x), (3.1)

where x = x(t) is a function of time. Multiplying both sides by ẋ gives

d

dt

(
1

2
mẋ2

)
= mẋẍ = −ẋdV

dx
(x) = −dV (x(t))

dt
,

with the first and last equalities from the product and chain rules of differentiation respectively.
Hence

1

2
mẋ2 + V (x) = E, constant . (3.2)

This equation describes CONSERVATION OF ENERGY:

Kinetic Energy, T + Potential Energy, V = Constant, E .
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3.1.2 Work

For a small increment in the particle location, δx, the work done by the Force is F (x)δx. Hence more
generally

Definition The work done W by the force in moving the particle from x1 to x2 is

W =

∫ x2

x1

F (x) dx . (3.3)

Suppose the particle starts at position x1 at time t1, and finishes at x2 at time t2. Then combining
the definition of work done with dV/dx = −F (x) immediately gives

W = −V (x2(t2)) + V (x1(t1)).

As T + V is constant the change in V is minus the change in T for the particle trajectory and hence
we have:

The Work-Energy Relation The work done by the force is the change in kinetic energy:

W = T (x2(t2))− T (x1(t1)) . (3.4)

3.1.3 Examples

Examples of the potential associated with forces, with suitable choices for the additive constant,
include:

1. For gravity, F (x) = −mg, a choice of potential is V (x) = mgx.

2. For Hooke’s law F (x) = −k(x− l) a choice of potential is V (x) = 1
2
k(x− l)2.

3. If the force, F , also depends on t or ẋ, as occurs with fluid drag and friction, it will often
not be possible to write the integral of F over the trajectory as a function of x only. Then
the conservation rules above will not hold in general. For example with friction, the system
will lose energy as the particle moves (unless the heat energy generated by the friction is also
accounted for). However the Lorentz force F = eE+ ev ∧B is an exception.

Example (Maximum height under gravity, again): Consider once more a particle moving vertically
under gravity, which at time t = 0 starts at height z = 0 with velocity ż = u > 0 upwards. What is
the maximum height of the particle?

The potential is V (z) = mgz. The conserved energy E may be calculated from the initial conditions,
which gives E = T (0) = 1

2
mu2. Thus conservation of energy gives

1

2
mż2 +mgz =

1

2
mu2 . (3.5)

The maximum height occurs when ż = 0, which immediately gives

zmax =
u2

2g
. (3.6)
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3.2 Motion in a general potential

Rearranging the equation for conservation of energy, (3.2), gives us

ẋ2 =
2

m
(E − V (x)) . (3.7)

This is a first order ODE, which we can in principle solve as

t = ±
∫

dx(
2
m
(E − V (x)

)1/2 . (3.8)

for t as a function of x. We then invert to find x(t).

This is often of limited utility in practice; apart from in very simple problems, we often cannot
determine the integral nor invert.

Example (Quadratic potential – the simple harmonic oscillator): With V (x) = kx2/2, which gives
Hooke’s law after a constant translation of x, we have Newton’s second law reduces to

ẍ+ ω2x = 0 . (3.9)

with ω2 = k/m. This is the equation of motion for a simple harmonic oscillator.

We have already seen and solved this ODE, via Eqn. (2.17). Here we use Eqn. (3.8) which gives

t = ±
∫

dx

ω
√

2E
mω2 − x2

. (3.10)

We may solve this by making the substitution

x =

√
2E

mω2
cos θ , (3.11)

which gives

t = ∓
∫

1

ω
dθ =⇒ t− t0 = ∓ 1

ω
cos−1

(
x√

2E/mω2

)
. (3.12)

Here t0 is an integration constant. The solution is hence simple harmonic motion

x(t) =

√
2E

mω2
cos [ω(t− t0)] . (3.13)

Notice that in this case it is much easier to solve the second order equation of motion, than to
integrate the first order conservation of energy equation.

Example Consider a particle moving in the general potential V (x) shown in Figure 5. We can
deduce qualitative aspects motion, using only conservation of energy.
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Figure 5: A potential V (x). The force acting on the particle is F (x) = −V ′(x).

� Suppose at t = 0 the particle starts from rest at x0. Thus its energy is E0.

It experiences a force, and thus accelerates in the positive x-direction as V ′(x0) < 0. Thus it
gains velocity in the positive x-direction.

For t > 0 its velocity is bound away from zero as V (x) never attains E0 again. Hence the
particle passess xmax and x→ ∞ as time increases.

� Suppose at t = 0 the particle starts from rest at x1. Thus its energy is E1.

It accelerates in the positive x-direction as V ′(x1) < 0, gaining a velocity in the x-direction.
This velocity is bound away from zero until the approach to x = x2.

Does the particle reach x2 in finite time. In particular if the particle is at xmin at time tmin and
it reaches x2 at time t2, possibly unbounded, we have

t2 − tmin =

∫ t2

tmin

dt = ±
∫ x2

xmin

dx(
2
m

)1/2
(E1 − V (x))1/2

.

The positive root is required as t2 > tmin. Of more interest, the integral is potentially unbounded
as the denominator tends to zero as x → x2 since V (x2) = E1. If the integral is unbounded
then so is t2 and the particle does not reach x2 in finite time.

However, for x ≈ x2 we have from a Taylor expansion

E1 − V (x) ≈ (x2 − x)V ′(x2) + higher orders

and the integrand is of the form

1(
2
m

)1/2
(E1 − V (x))1/2

=
1(

2
m

)1/2
(V ′(x2))1/2 (x2 − x)1/2 (1 + higher orders)1/2

,

16



which generates a finite integral, as ∫ x2

xmin

dx

(x2 − x)1/2
<∞.

Hence t2 is finite, i.e. the particle reaches x2 in finite time.

Further, at x = x2 the velocity is zero, and the particle accelerates is to the left since V ′(x2) > 0;
the process thus repeats. Hence the particle simply moves back and forth between x1 and x2.

3.3 Motion near equilibrium

We continue our consideration of one-dimensional motion on the x axis.

Definition An equilibrium configuration is a solution to Newton’s second law (3.1) with x = xe =
constant. Since this implies ẍ = 0 for all time t, Newton’s second law implies that F (xe) = 0, and
there is no net force acting on the particle.

When there is a potential with F = −dV/dx = −V ′ then the equilibrium point xe is a critical point
of the potential V (x), with V ′(xe) = 0.

Motion near an equilibrium point x = xe. Expanding Newton’s second law around x = xe,
assuming F (x) is suitably smooth and using F (xe) = 0 yields

mẍ = F (x) = F (xe) + (x− xe)F
′(xe) +O((x− xe)

2) (3.14)

= (x− xe)F
′(xe) +O((x− xe)

2) . (3.15)

where O((x− xe)
2) means higher order terms, which are not larger than

Constant× (x− xe)
2

for x sufficiently close to xe.

We change variables to ξ ≡ x− xe, so that the equilibrium point is now at ξ = 0.

Assuming we are sufficiently close to the latter, so that the higher order terms in (3.14) are small,
we have the approximate linear differential equation for ξ:

mξ̈ = F ′(xe)ξ . (3.16)

Definition Equation (3.16) is called the linearized equation of motion and its solutions are labelled
as linearized solutions.

For any point of equilibrium in one spatial dimension there are three qualitatively different cases for
the behaviour of the linearised solutions, depending on the sign of the constant

K ≡ −F ′(xe) . (3.17)
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� K > 0

With ω =
√
K/m > 0 we have the simple harmonic oscillator equation

ξ̈ + ω2ξ = 0.

The general solution is ξ(t) = A cos (ωt+ ϕ)and ξ = 0 is a point of stable equilibrium.

For amplitude A small enough so that it is consistent to ignore the higher order terms in the
expansion of the force (3.14), the system executes small oscillations around the equilibrium
point.

The frequency of these oscillations is ω.

� K < 0

With p =
√

−K/m > 0. the linearized equation of motion (3.16) now reads

ξ̈ − p2ξ = 0 , (3.18)

with general solution

ξ(t) = A ept +B e−pt , (3.19)

where A and B are integration constants.

A generic small displacement and small velocity for the system at time t = 0 will have both A
and B non-zero, and the solution grows exponentially with t, for both t > 0 and t < 0.

Such equilibria are hence termed unstable.

The higher order terms in the Taylor expansion, which we ignored, quickly become relevant.

� K = 0

Finally, if K = 0 the first two terms in the Taylor expansion in (3.14) are zero, and we need to
expand to higher order to determine what happens (although not in this course!).

We may rephrase all of the above discussion in terms of potentials. We similarly expand

V (x) = V (xe) + (x− xe)V
′(xe) +

1

2
(x− xe)

2 V ′′(xe) +O((x− xe)
3) . (3.20)

Without loss of generality we may choose the arbitrary additive constant in V so that V (xe) = 0.
Moreover, V ′(xe) = −F (xe) = 0. This means that near equilibrium the potential is approximately
quadratic:

Vquad(x) =
1

2
K(x− xe)

2 , (3.21)

where K = V ′′(xe) = −F ′(xe), as in (3.17).

A stable equilibrium point with K > 0 is then a local minimum of the potential, while an unstable
equilibrium point with K < 0 is a local maximum.

Example From the Examination paper, 2003.

A bead of mass m slides along a smooth, straight horizontal wire which passes through the origin O.
The bead is attached to a light, straight elastic spring of natural length l and spring constant k, and
the other end of the spring is attached to a fixed point P , which is a distance d vertically above O.
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(i) If x denotes the coordinate of the bead, relative to O, explain why the tension in the spring is
T = k

(√
d2 + x2 − l

)
, and show that

ẍ =
k

m
x

(
l√

d2 + x2
− 1

)
. (3.22)

(ii) Find the equilibrium solutions of this equation, and determine whether they are stable or
unstable, distinguishing carefully between the two cases l < d and l > d.

d

fixed

x

T

O

P

θ

m

Figure 6: The spring-bead system. The bead of mass m is constrained to move along the x axis.

Solution (i)

The spring is depicted in Fig. 6; its extension from natural length is
√
d2 + x2 − l.

Thus T = k(
√
d2 + x2 − l), by Hooke’s law.

Resolving Newton’s second law in the x direction gives

mẍ = −T cos θ = − Tx√
d2 + x2

= −kx
(
1− l√

d2 + x2

)
≡ F (x) . (3.23)

Dividing both sides by m gives the required gives the equation of motion.

Solution (ii) Equilibrium solutions have the right hand side of (3.23) equal to zero, namely F (xe) = 0
where

F (x) = kx

(
l√

d2 + x2
− 1

)
. (3.24)

The zeros are at x0e = 0 and where l =
√
d2 + (x±e )

2 so that x±e = ±
√
l2 − d2. The latter makes sense

only if l ≥ d.

Note also that the configuration is symmetric under taking x 7→ −x, so the behaviour of the two
equilibria x±e is the same.

With

F ′(x) = k

(
l√

d2 + x2
− 1

)
− x2 kl

(d2 + x2)3/2
, (3.25)
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we have

F ′(x0e) = F ′(0) = k

(
l

d
− 1

)
. (3.26)

Hence the equilibrium at x0e = 0 is stable if l < d and unstable if l > d.

On the other hand

F ′(x±e ) = − (x±e )
2 kl

(d2 + (x±e )
2)3/2

< 0 , (3.27)

so that K > 0.

Hence x±e only exist as equilibria when l > d, and if they exist, they are stable.

3.4 Coupled oscillations

So far we have only considered one dimensional systems. In this section we briefly consider the
stability of systems in two dimensions.

Suppose we have a dynamical system, i.e. a system of ODEs, described by

ẍ = F (x, y) , ÿ = G(x, y) , (3.28)

where we shall assume that F and G are suitably smooth and here x and y may general variables,
rather than only Cartesian coordinates.

Definition An equilibrium point is a solution to (3.28) with x = xe, y = ye both constant. Thus
F (xe, ye) = 0 = G(xe, ye).

To determine the stability of such an equilibrium point, we again linearize the equations of motion.
This means that we write

x = xe + ξ , y = ye + η , (3.29)

where ξ and η are small, and then Taylor expand the right hand sides of (3.28), leading to

ξ̈ = F (xe + ξ, ye + η) = F (xe, ye) + ξ
∂F

∂x
(xe, ye) + η

∂F

∂y
(xe, ye) + · · · ,

η̈ = G(xe + ξ, ye + η) = G(xe, ye) + ξ
∂G

∂x
(xe, ye) + η

∂G

∂y
(xe, ye) + · · · , (3.30)

where · · · denote terms of quadratic and higher order in ξ, η. The linearized equations of motion are
hence

ξ̈ = a ξ + b η ,

η̈ = c ξ + d η , (3.31)
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where we have introduced the constants

a =
∂F

∂x
(xe, ye) , b =

∂F

∂y
(xe, ye) ,

c =
∂G

∂x
(xe, ye) , d =

∂G

∂y
(xe, ye) . (3.32)

One could solve (3.31) by e.g. differentiating the equation for ξ̈ twice, eliminating η̈ using its equation

and then eliminating for η using the equation for ξ̈. This gives a fourth order ODE in ξ.

However, it is usually more convenient to write (3.31) as a matrix equation(
ξ̈

η̈

)
=

(
a b

c d

)(
ξ

η

)
. (3.33)

We then seek solutions to (3.33) of the form(
ξ(t)

η(t)

)
=

(
α

β

)
eλt , (3.34)

where α, β and λ are constant. Substituting (3.34) into (3.33) and cancelling the overall factor of
eλt gives

λ2

(
α

β

)
=

(
a b

c d

)(
α

β

)
. (3.35)

Thus λ2 is an eigenvalue of

(
a b

c d

)
, with corresponding eigenvector

(
α

β

)
.

The characteristic equation is

det

[
λ2

(
1 0

0 1

)
−

(
a b

c d

)]
= λ4 − (a+ d)λ2 + (ad− bc) = 0 , (3.36)

which gives the eigenvalues

λ2 =
1

2

(
a+ d±

√
(a+ d)2 − 4(ad− bc)

)
. (3.37)

For a general system (3.28) the solutions for λ2 in (3.37) can be complex, in general also leading to
complex λ. Note there are two roots for λ2 and thus four roots for λ.

Remark If λ does not have repeated roots, the general solution is a linear superposition (i.e. a
weighted linear sum) of the solutions of the form of Eqn. (3.33), where the summation is over all
possible roots for λ.

Remark If λ possesses repeated roots converting the equations to a fourth order ODE in ξ will often
be a convenient way of generating the general solution.

Stable and unstable solutions. If any of the four roots for λ has positive real part then the
solutions have exponential growth and are unstable. If all roots for λ have real part less than or
equal to zero then the solutions decay or oscillate and are stable.
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Definition If all solutions for λ = ±λ± given by (3.37) are pure imaginary, we write λ = ±iω±,
where ω± > 0 are called the normal frequencies of the system.

Note as λ pure imaginary for a normal frequency, λ2 is real and hence the associated eigenvector(
α

β

)
(3.38)

is real. Thus, writing eλt = e±iω±t in terms of trigonometric functions, the linearized solution is(
ξ(t)

η(t)

)
=

(
α+

β+

)
cos (ω+t+ ϕ+) +

(
α−

β−

)
cos (ω−t+ ϕ−) , (3.39)

where (
α±

β±

)
are the eigenvectors corresponding to the eigenvalues λ2±, respectively, and ϕ± are constants.

A normal mode is defined to be the solution for a given eigenvector.

Figure 7: The system of masses and springs. The upper diagram shows the equilibrium configuration,
with all springs at natural length l. In the lower diagram the horizontal displacements x and y of the
two masses from their equilibrium positions are shown, together with the various Hooke’s law forces.
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Example:

Consider two particles of mass m attached to three identical springs with spring constant k, as shown
in Fig. 7. In the upper plot, the springs are in equilibrium and all at their natural length l. The
system is characterised by x, y, as shown with the associated tension forces in the lower plot.

Show that x = y = 0 is the only equilibrium point, find the equations of motion, determine the
normal frequencies and find the general solution.

Solution By Hooke’s law the forces shown in Figure 7 are

F1 = −kxi, F2 = k(y − x)i (Left Particle), F3 = −kyi, (3.40)

with −F2 on the Right Particle given by −k(y − x) i.

Resolving Newton’s second law in the x-direction for each particle thus gives

mẍ = −kx+ k(y − x) = k(y − 2x) ,

mÿ = −k(y − x)− ky = k(x− 2y) . (3.41)

We see that the equations are already linear, and that there is a unique equilibrium point at x = y = 0.

Thus in this case we may identify x = ξ, y = η. In matrix form (3.41) reads(
ẍ

ÿ

)
=

(
−2k

m
k
m

k
m

−2k
m

)(
x

y

)
. (3.42)

The characteristic equation is

0 = det

[(
λ2 + 2k

m
− k

m

− k
m

λ2 + 2k
m

)]
=

(
λ2 +

2k

m

)2

−
(
k

m

)2

, (3.43)

and hence

λ2 =
k

m
(−2± 1). (3.44)

Thus

λ = ±i

√
k

m
, ±i

√
3k

m
. (3.45)

and the linearized modes (3.34) are oscillatory with normal frequencies

ω+ =

√
k

m
, ω− =

√
3k

m
. (3.46)

The two values of λ2 in (3.44) correspond to the two eigenvectors (1,±1)T of the matrix in (3.42),
respectively. Hence the general solution is(

x(t)

y(t)

)
=

(
1

1

)
P cos

(√
k

m
t+ φ

)
+

(
1

−1

)
Q cos

(√
3k

m
t+ ψ

)
,
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where P , Q, φ and ψ are constants. The lower frequency ω+ normal mode has the two masses
oscillating together, while the higher frequency ω− normal mode has the two masses oscillating in
opposite directions.

Aside Note that near a stable equilibrium point the system behaves like two independent one-
dimensional harmonic oscillators, of frequencies ω±.
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4 Motion in higher dimensions

In this section we develop some general formalism that is useful for analysing dynamics in two and
three dimensions.

In particular we introduce velocity and acceleration in plane polar coordinates and angular momen-
tum, together with conservative forces, central forces.

The dynamics for each of these two types of force leads to a conserved quantity, i.e. a quantity that
is constant during the motion.

4.1 Planar motion in polar coordinates

Motion in a plane is sometimes conveniently described using polar coordinates.

y

O x

r

θ

er
eθ

i

j

(a) Cartesian and polar coordinates.

y

O x

r

θ

(t)

r
r

(b) Velocity in polar coordinates.

Figure 8

Recall that Cartesian coordinates (x, y) are related to polar coordinates (r, θ) by (Fig. 8a)

x = r cos θ , y = r sin θ , (4.1)

so that
r =

√
x2 + y2, θ = tan−1 y/x, r ≥ 0, θ ∈ [0, 2π).

Definition

� er is the unit vector in direction of increasing r.

� eθ is unit vector in direction of increasing θ.

Hence (Fig. 8a)

er = cos θi+ sin θj, eθ = − sin θi+ cos θj, er · eθ = 0, (4.2)

Except at the origin {er, eθ} form an orthonormal basis – it is important to note that er, eθ vary
in space and, in particular, are functions of θ.

The position of a particle is simply given by

r = (x, y) = r er.
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For a time-dependent trajectory r(t) of the particle we thus have

ṙ = ṙ er + r ėr . (4.3)

But from (4.2) we have

ėr = −θ̇ sin θ i+ θ̇ cos θ j = θ̇ eθ ,

ėθ = −θ̇ cos θ i− θ̇ sin θ j = −θ̇ er . (4.4)

Hence we have the velocity of the particle can be written as (see Figure 8b).

ṙ = ṙ er + rθ̇ eθ , (4.5)

where θ̇ is referred to as the angular velocity of the particle.

The second term has arisen because {er, eθ} depend on θ and thus inherit the time-dependence of
θ(t) on the trajectory r(t).

We may find the analogous expression for acceleration by taking another time derivative, using (4.4):

r̈ = r̈ er + ṙ ėr + ṙθ̇ eθ + rθ̈ eθ + rθ̇ ėθ ,

= (r̈ − rθ̇2) er + (2ṙθ̇ + rθ̈) eθ ,

= (r̈ − rθ̇2) er +
1

r

d

dt
(r2θ̇) eθ , (4.6)

using 2ṙθ̇ + rθ̈ = 1
r

d
dt
(r2θ̇) in the final equality.

Example (Uniform circular motion): Consider a particle moving in a circle of radius R, centre the
origin O, at constant speed v. Since r = R = constant we have ṙ = 0. Thus from (4.5) its velocity is

ṙ = R θ̇ eθ . (4.7)

This is tangent to the circle, with speed is v = |ṙ|,

Hence v = R|θ̇|, and the angular speed |θ̇| = v
R
is constant.

Since θ̇ is constant, θ̈ = 0, and similarly ṙ = 0 so that r̈ = 0.

Thus from (4.6) the acceleration is

r̈ = −R θ̇2 er = −v
2

R
er , (4.8)

which may be summarised as

acceleration in circular motion is
v2

r
towards the centre of the circle O.

Newton’s second law implies that in order to generate this acceleration we need a force of magnitude
F = mv2/R = mR θ̇2 directed towards the origin – this is called the centripetal force.
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4.2 Conservative forces

In section 3.1 we saw that for motion in one dimension and forces F = F (x) there is a conserved
energy.

In three dimensions this is no longer necessarily the case: we need an additional constraint on
F = F(r) in order for energy to be conserved.

One might anticipate this: energy is a scalar quantity, and without any further input there is no
natural way to construct a scalar from the vector F, analogously to the one dimensional case.

Definition The kinetic energy of a point particle with trajectory r(t) is

T =
1

2
m|ṙ|2,

where r(t) is the particle’s position in an inertial frame.

We then have the following important result:

Conservation of Energy The quantity

E = T + V =
1

2
m|ṙ|2 + V (r) , (4.9)

is conserved for a point particle trajectory if the force F = F(r) takes the form

F = −∇V . (4.10)

That is, in Cartesian coordinates F = (−∂xV,−∂yV,−∂zV ).

Proof: From Newton’s second law

mr̈ = F(x) = −∇V, (4.11)

where r = r(t) is a function of time. Taking the dot product of both sides by ṙ gives

d

dt

(
1

2
mṙ2

)
= mṙ · r̈ = −ṙ · ∇V = −dV (r(t))

dt
,

with the first and last equalities from the product and chain rules of differentiation respectively.
Hence

1

2
mṙ2 + V (r) = E, constant . (4.12)

■

To further understand the condition (4.10) we generalize the notion of work to three dimensions:

Definition The work done by a force F in moving a particle from r1 to r2 along a curve C is

W =

∫
C

F · dr . (4.13)
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In contrast to the definition in 1D (3.3), the line integral (4.13) in higher dimensions depends on the
precise curve C, and not just on its endpoints r1, r2.

If we now suppose that r(t) is the trajectory of a particle satisfying Newton’s second law, starting
at position r1 = r(t1) and ending at r2 = r(t2), then we may write

W =

∫ t2

t1

F · ṙ dt = m

∫ t2

t1

r̈ · ṙ dt =
m

2

∫ t2

t1

d

dt
|ṙ|2 dt = T (t2)− T (t1). (4.14)

Thus, as in one dimension, the work done by the force is the change in kinetic energy.

Suppose now that the total energy E given by (4.9) is conserved, so that E = T (t1) + V (r1) =
T (t2) + V (r2). Hence (4.14) implies that

W =

∫
C

F · dr = V (r1)− V (r2) . (4.15)

The right hand side depends only on the endpoints r1, r2 of the curve C.

Hence if energy is conserved, then the work done is independent of the choice of curve C connecting
r1 to r2.

In the Prelims Multivariable Calculus course you prove that if this is true for all curves C then F
takes the form (4.10).1

Thus if energy is always conserved then there is a function V such that F = −∇V.

Definition A force F = F(r) is said to be conservative if there exists a potential energy function
V = V (r) such that

F = −∇V . (4.16)

Note that as in one dimension the potential V is only defined up to an additive constant.

Examples:

(i) Any constant force Fconst is conservative, with potential V (r) = −Fconst · r.
For gravity, F = −mg k, the corresponding potential function is simply V (r) = mg k ·r = mgz.

(ii) In section 6.1 we will show that any force of the form F = F (|r|) er is conservative, where
er = r/|r|.

Conservative forces enjoy the following equivalent definitions:

Theorem (Lectured in Prelims Multivariable Calculus) Let F : S → R3 be a vector field, where the
domain S ⊂ R3 is open and path connected. Then the following three statements are equivalent:

1. F is conservative, i.e. there exists a potential V : S → R such that F = −∇V .

1See the Theorem below.
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2. Given any two points r1, r2 in S, and any curve C in S starting at r1 and ending at r2, then
the integral

∫
C
F · dr is independent of the choice of C.

3. For any simple closed curve C in S we have
∫
C
F · dr = 0.

It is also shown in Multivariable Calculus that conservative forces satisfy ∇ ∧ F = 0, although we
will not need this fact.
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4.3 Central forces and angular momentum

Another important concept is that of a central force:

Definition A force that is always directed along the line joining a particle to a fixed position in an
inertial frame is called a central force.

Without loss, choose this point as the origin of the frame and hence

F ∝ r , (4.17)

where r is the position vector of the particle, measured from the origin O.

The importance of central forces is that they always lead to an associated conserved vector quantity.

Definition The angular momentum of a particle in an inertial reference frame about a point P ,
denoted L = LP , is the moment of linear momentum p = mṙ about P . That is,

LP ≡ (r− x) ∧ p = (r− x) ∧mṙ . (4.18)

Here x is the position vector of the point P , while r is the position of the particle (both measured
from the origin O).

It is important to note that ṙ is the velocity of the particle in the inertial frame, not the velocity
relative to P , which in general may be moving, x = x(t).

This definition makes it clear that the angular momentum depends on the point P . However, for
central forces there is a natural choice for P , namely P = O, the centre of the force.

r
O

L

r

Figure 9: The planar motion of a particle acted on by a central force, with centre O. When the
conserved angular momentum L is non-zero L is normal to the plane of motion through O.

Proposition If a particle is acted on by a central force with centre O then the angular momentum
L = LO is conserved, and the path of the particle lies entirely in a fixed plane through O. That is,
the motion is planar.

Proof: We have

L̇ =
d

dt
(r ∧mṙ) = ṙ ∧mṙ+ r ∧mr̈ = r ∧mr̈ = r ∧ F = 0 (4.19)
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where we have used a ∧ a = 0 for any vector a and Newton’s second law, while the last equality
holds since F ∝ r for a central force.

Thus L is constant.

� Suppose L ̸= 0. As seen in Prelims Geometry, r · L = 0 entails r is in the plane containing the
origin and perpendicular to L (see Figure 9).

In addition ṙ · L = 0 entails the velocity is always in this plane.

This means that the motion is confined to the plane through O with normal vector L.

� L = r ∧ mṙ = 0, a degenerate case. Then either the position, r and velocity ṙ are parallel,
where we include this to mean that one or both of these vectors are zero.

If ṙ is zero the particle rests at a fixed point; otherwise the particle trajectory is on a straight
line through the origin, both of which are (degenerate) examples of motion restricted to a plane
containing the origin.

■

Suppose that L = LO is conserved, as in the last Proposition. In particular the direction of L is
constant, and we may choose this as the z direction, so that LO ∝ k.

Introducing polar coordinates for the planar motion in the (x, y) plane, we have

L = r ∧mṙ = r er ∧m
(
ṙ er + rθ̇ eθ

)
,

= mr2θ̇ k , (4.20)

where we have used (4.5) in the first line, and k = i ∧ j = er ∧ eθ in the last step.

This proves the following result, which will be important later:

Proposition If angular momentum L is conserved, then the quantity

h ≡ r2θ̇ ≡ angular momentum per unit mass (4.21)

is conserved, where (r, θ) are polar coordinates in the plane of motion.

For completeness we conclude this section with a definition and brief discussion of torque, though it
will not be required until Section 7.

Definition The torque τ = τP of a force F, about a point P with position vector x, acting on a
particle with position vector r is

τP ≡ (r− x) ∧ F . (4.22)

In other words, the torque is the moment of the force about P . The direction of τP is normal to
the plane containing r − x and F, and may be regarded as the axis about which the force tends to
rotate the particle about P .

If P is a fixed point in the inertial frame, so that x = constant, then using (4.18) and Newton’s
second law we have

L̇P = (r− x) ∧mr̈ = (r− x) ∧ F = τP , (4.23)
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and the torque is the rate of change of angular momentum.

This can be compared with Newton’s second law itself, written in the form ṗ = F, which says that
the force is the rate of change of linear momentum.

5 Constrained systems

In this section we consider constrained dynamical systems, for example: beads threaded on smooth
wires and marbles rolling in smooth dishes.

If a particle is going to be constrained to move on a particular curve or surface in R3, there must
be a constraint force ensuring this, and this often the Normal Reaction Force though it can also be
string Tension as we will detail below

The dynamics happens in R3, but the constraints effectively reduce the motion to a one-dimensional
or two-dimensional dynamical system.

5.1 Constraint forces

Below we label the constraint force by N, for normal, i.e. perpendicular. In particular:

Assumption: The constraint force N is always perpendicular to the constraint space.

Since by definition the velocity of the particle ṙ is always tangent to the constraint space, we have

N · ṙ = 0 . (5.1)

The work done by the force N when the particle moves along a curve C in the constraint space is
defined as definition (Eqn. (4.13))

W =

∫
C

N · dr =

∫
N · ṙ dt = 0 . (5.2)

Thus such constraint forces do no work during the constrained motion of the particle.

Note it is assumed there is no component of the constraint force tangent to the constraint space. Thus
the assumption also requires the absence of friction with the surface associated with the constraint
force.

If we consider a particle of mass m, acted on by a force F0, that is then further constrained to move
on a smooth constraint space, Newton’s second law simply reads

mr̈ = F = F0 +N , (5.3)

where N is the normal reaction/constraint force. We have the following important result:

Conservation of Energy Theorem (Constrained motion) Suppose that the force F0 = −∇V is
conservative, with potential V = V (r). Then the total energy E = T +V for the constrained motion
of a point particle is conserved.
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Proof: From Newton’s second law

mr̈ = F0(x) +N = −∇V (r) +N, (5.4)

where r = r(t) is a function of time. Taking the dot product of both sides by ṙ on noting N · ṙ = 0
gives

d

dt

(
1

2
mṙ2

)
= mṙ · r̈ = −ṙ · ∇V = −dV (r(t))

dt
,

and, once more, we have energy conservation:

1

2
mṙ2 + V (r) = T + V = E, constant . (5.5)

■

5.2 The simple pendulum

x

T

z

O

mg

θ

er

eθ

length l

Figure 10: A simple pendulum.

Consider the simple pendulum. This consists of a mass m fixed to the end of a light (i.e. negligible
mass) rod of length l. The other end of the rod is hinged smoothly at a point O and is free to swing
in a vertical plane under gravity, Fig. 10.

The rod constrains the mass m to move on a circle of radius l in the (z, x) plane, centred on the
pivot point O. The constraint space in this case is hence a circle. See Figure 10

The constraint force for the motion is the tension T in the rod.

Given that the motion will lie on a circle, it is useful to introduce polar coordinates in the (z, x)
plane: z = −l cos θ, x = l sin θ. The corresponding unit vectors are

er = − cos θ k+ sin θ i , eθ = sin θ k+ cos θ i . (5.6)

Although these are marginally different to the polar coordinates in the (x, y) plane in Figure 8a, the

essential point is that as in (4.4) we again have ėr = θ̇ eθ, ėθ = −θ̇ er.
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It follows that the velocity and acceleration are again given by (Eqns. (4.5), (4.6))

ṙ = ṙ er + rθ̇ eθ , r̈ = (r̈ − rθ̇2) er +
1

r

d

dt
(r2θ̇) eθ , (5.7)

where r = (z, x).

The forces acting on the mass m are gravity and the constraint force: in the notation of section 5.1
we have

F0 = −mg k , N = −T er , (5.8)

where the total force acting is F = F0 +N.

Newton’s second law (5.3) is a vector equation. Resolving in the eθ direction gives

m

r

d

dt
(r2θ̇) = mr̈ · eθ = F · eθ = −mg sin θ , (5.9)

where the first equality is from Eqn. (5.7).

However, here r = l is constant, so that (5.9) reads mlθ̈ = −mg sin θ, which rearranges to

θ̈ = −g
l
sin θ , (5.10)

the equation of motion for the simple pendulum.

Resolving in the er direction gives

−mlθ̇2 = mr̈ −mrθ̇2 = mr̈ · er = F · er = mg cos θ − T . (5.11)

Thus

T = mlθ̇2 +mg cos θ . (5.12)

This says that the tension T balances the component of the weight along the rod mg cos θ, and the
centripetal force mlθ̇2 for circular motion about the origin O.

We cannot solve the equation of motion (5.10) in closed form, as simple as it looks, but we can look
at the equilibrium configurations, and conservation of energy.

Equilibria: Notice there are two equilibrium configurations, where the right hand side of (5.10) is
zero: θ = 0 and θ = π.

The former has the pendulum hanging down vertically, and for small oscillations (i.e. small θ) we
may approximate sin θ ≃ θ. In this linearized approximation (5.10) becomes the simple harmonic
motion

θ̈ = −ω2θ , where ω2 =
g

l
> 0 . (5.13)

Thus, as is intuitively obvious, θ = 0 is a stable equilibrium.

For small oscillations about this point the pendulum executes simple harmonic motion with angular
frequency ω, so that

θ(t) = A sin(ωt) +B sin(ωt)
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which has the period

T = 2
π

ω
= 2π

√
l

g
. (5.14)

To consider the second equilibrium position, θ = π, we set θ = π + ξ(t), with ξ(t) small, so that
sin θ = sin(π + ξ) ≃ − sin ξ ≃ −ξ. This yields

ξ̈ = −g
l
(−ξ) =

g

l
ξ . (5.15)

The general solution is ξ(t) = C e
√

g/l t +D e−
√

g/l t, and the equilibrium is unstable.

Conservation of energy: Total energy is conserved, as the gravitational force F0 = −mg k is
conservative, with potential V (r) = V (x, y, z) = mgz. The total energy is

E =
1

2
m|ṙ|2 + V (r) =

1

2
ml2θ̇2 −mgl cos θ . (5.16)

Thus we have E ≥ −mgl, with equality for the stable equilibrium at θ = 0. However, if E > mgl
then cos θ0 = −E/mgl has no solution, and hence θ̇ is never zero. In this case the system has so
much energy that the pendulum swings over the top of the pivot point.

Aside As in section 3.2, we may view (5.16) as a first order ODE for θ(t), and integrate it. Rerranging
we have

θ̇2 =
2E

ml2
+

2g

l
cos θ , (5.17)

which integrates to

t = ±
∫

dθ√
2E/ml2 + 2(g/l) cos θ

. (5.18)

If we assume that the pendulum starts at θ = 0 at time t = 0, and reaches a maximum angle of
θ0 > 0 in its swing, then we may compute the period of the swing:

T = 4

∫ θ0

0

dθ√
2E/ml2 + 2(g/l) cos θ

= 4

√
l

g

∫ θ0

0

dθ√
2 cos θ − 2 cos θ0

. (5.19)

Here we have noted that at the top of the swing θ̇ = 0, and hence from (5.17) cos θ0 = −E/mgl.
The factor of 4 in (5.19) arises because the integral from 0 to θ0 is only a quarter of one period.

Aside Compare to the result for small oscillations (5.14). One can derive this from the general
formula (5.19) by making the approximation cos θ ≃ 1 − 1

2
θ2 in the integral. More generally the

integral in (5.19) is an elliptic integral. We also see that the period T is a dimensionless number

times
√
l/g, where the dimensionless number in general depends on the initial conditions (via the

conserved energy E).
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Figure 11: A particle P is shown on a 3-dimensional Cartesian graph. The relationship between the
polar coordinates and the Cartesian coordinates is shown.

5.3 Motion on a surface of revolution under gravity

First we introduce a useful coordinate system, Cylindrical polars, before considering the motion of a
particle under gravity on a frictionless surface of revolution.

5.3.1 Cylindrical Polars

Cylindrical polar co-ordinates are (r, θ, z). The relationship between cylindrical polars and cartesians
(x, y, z) is given by (Figure 11)

x = r cos θ, y = r sin θ, z = z. (5.20)

The position vector is given by
r = rer + zez

where ez = k is the unit vector in the direction of increasing z.

Note that now |r| ≠ r. By Pythagoras’ theorem we have instead |r| = (r2 + z2)1/2. The particle’s
velocity is

ṙ = ṙ er + rθ̇ eθ + ż ez.

The acceleration is

r̈ = (r̈ − rθ̇2) er +
1

r

d

dt
(r2θ̇) eθ + z̈ ez.

These are the same as in plane polar coordinates but with the simple Cartesian terms relating to z
as ez does not vary in space.
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Figure 12: A particle on a surface of revolution about the z-axis. The surface is given by z = H(r).
The forces acting on the particle are mg (weight) and N, the normal reaction.

5.3.2 A mass m moving under gravity on a smooth surface of revolution

Consider a mass m moving under gravity on a frictionless smooth surface of revolution, as in Fig.
12, with height z given by z = H(r).

When there is no friction the only force exerted by the surface on the particle is the normal reaction
force N perpendicular to the surface. The total force on the particle is therefore

F = −mgez +N.

The surface of revolution or “bowl” has z as a symmetry axis, i.e. its equation is r = r(z) rather
than r = r(z, θ). Since this is independent of θ the resulting surface will be invariant under rotation
about the z axis, which rotates the θ coordinate. This also implies that eθ is tangent to the surface
at every point, and hence in particular we have N · eθ = 0.

Newton’s second law (5.3) thus reads

m

[(
r̈ − rθ̇2

)
er +

1

r

d

dt

(
r2θ̇
)
eθ + z̈ ez

]
= mr̈ = F = −mg ez +N . (5.21)

Since there is no θ-component of force we have

0 = eθ ·mr̈ =
m

r

d

dt
(r2θ̇),

so that mr2θ̇ = mh = constant, where h = r2θ̇ by definition. Hence

ez · (r ∧mṙ) = mez · ((rer + zez) ∧ (ṙ er + rθ̇ eθ + ż ez)) = mr2θ̇ = mh = Const,

and there is conservation of angular momentum about the z-axis.
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Exercise Use the equations of motion to determine the angular momentum in the z-direction, as a
function of r, for a particle rotating around the surface with ṙ = 0.

We have the angular momentum in the z-direction is mh = mr2θ̇ and ż = 0 as z = H(r) and ṙ = 0.
Thus z̈ = r̈ = 0 and we have the equation of motion reduces to

0 = −rθ̇2 er + g ez −
N

m
= −h

2

r3
er + g ez −

N

m
, (5.22)

Resolving in any direction other than a tangential one will be complicated by components of N. We
have resolved in the eθ direction already, so we need to resolve using another independent tangent
vector.

We have f(r, z, θ) = z −H(r) = 0 on the surface so a normal is2

n = ∇f = ez −H ′(r)er (5.23)

and hence
t = H ′(r)ez + er .

is a tangent vector that is perpendicular to both the normal and eθ.

Resolving in this direction will eliminate the normal reaction force N and gives

0 = t ·
[
−h

2

r3
er + g ez −

N

m

]
= −h

2

r3
+ gH ′(r), (5.24)

and hence the angular momentum is mh = m(gH ′(r)r3)1/2.

Aside Resolving

m

[(
r̈ − rθ̇2

)
er +

1

r

d

dt

(
r2θ̇
)
eθ + z̈ ez

]
= mr̈ = F = −mg ez +N . (5.25)

in the t direction and eliminating z via z = H(r) and eliminating θ̇ using r2θ̇ = h will generate an
equation of motion for r(t) for any general motion. If this is required, it can usually be derived more
easily via the conservation of energy.

5.3.3 Conservation of energy

From conservation of energy we have

E =
1

2
m|ṙ|2 +mgz = constant . (5.26)

In cylindrical polars

ṙ2 = ṙ · ṙ = |ṙ er + rθ̇ eθ + ż ez|2 = ṙ2 + r2θ̇2 + ż2 (5.27)

while θ̇ = h/r2(t) and z = H(r(t)), so that ż = H ′(r)ṙ by the chain rule.

2The gradient in cylindrical polar coordinates is ∇f = ∂f
∂r er +

1
r
∂f
∂θ eθ +

∂f
∂z ez. See Multivariable Calculus.
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Hence

E =
1

2
m

[
ṙ2 +

h2

r2
+ (H ′(r))

2
ṙ2
]
+mgH(r) . (5.28)

This is the first integral of the equation for r(t). Thus differentiate in time for the equation of motion
for r(t). Thus on factoring a mṙ we have

mṙ

{[
1 + (H ′(r))

2
]
r̈ +H ′(r)H ′′(r) ṙ2 − h2

r3
+ g H ′(r)

}
= 0 . (5.29)

Providing ṙ ̸= 0, dividing by mṙ gives{[
1 + (H ′(r))

2
]
r̈ +H ′(r)H ′′(r) ṙ2 − h2

r3
+ g H ′(r)

}
= 0 , (5.30)

the equation of motion for r(t).

Aside If ṙ is zero at a point in time, Eqn (5.30) is still valid at this point by the continuity of all of
its terms. Eqn (5.30) still holds if ṙ = 0 all time, as may be confirmed by comparison with the final
identity of Eqn (5.24) and as expected since the trajectory with ṙ = 0 is the limit of a trajectory
where ṙ is small but not zero.

Example (Motion on a paraboloid): A particle moves under gravity on the smooth inside surface
of the paraboloid z = r2/4a = H(r). Initially it is at a height z = a and is projected horizontally
with speed v along the surface of the paraboloid. Show that the particle moves between two heights
in the subsequent motion, and find them.

Solution: At t = 0, z = a. Since r2 = 4az (the particle is on the paraboloid), initially r = 2a. Also

rθ̇ = v

ṙ = 0

ż = 0

 at t = 0.

where Fig. 8b in particular highlights rθ̇ = v. Thus

h = r2θ̇ = r × rθ̇ = 2av. (5.31)

Conservation of energy, on use of the initial conditions, gives

1

2
mṙ2 +mgz = constant =

1

2
mv2 +mga. (5.32)

Thus

1

2
(ṙ2 + r2θ̇2 + ż2) + gz =

1

2
v2 + ga. (5.33)

Eliminate θ̇ and r to get a first order differential equation for z(t) only, as we are interested in heights
of the motion.
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We have

r = 2
√
az, ṙ =

√
a

z
ż . (5.34)

Substituting into (5.32) using θ̇ = h/r2, and eliminating r for z, gives

1

2

[(
1 +

a

z

)
ż2 +

4a2v2

4az

]
+ gz =

1

2
v2 + ga , (5.35)

and thus

1

2

(
1 +

a

z

)
ż2 =

1

2
v2
(
1− a

z

)
+ g(a− z) =

g

z
(z − a)

(
v2

2g
− z

)
. (5.36)

Since z > 0 and ż2 ≥ 0 it follows that(
v2

2g
− z

)
(z − a) ≥ 0 . (5.37)

Therefore the particle always stays between the two heights z = a and z = v2/2g, at which ż = 0.

In particular the particle is confined to z ≥ a if v2 > 2ga, or to z ≤ a if v2 < 2ga, or to the horizontal
circle z = a if v2 = 2ga. ■

6 The Kepler problem

In this section we introduce Newton’s law of universal gravitation. This is described by an inverse
square law force, and we show that a particle acted on by such a force moves on a conic section.
This was famously first shown by Newton in his Principia. We also derive Kepler’s laws of planetary
motion, and comment very briefly on the inverse square law force of electrostatics.

6.1 Inverse square law forces and potentials

In sections 4.2 and 4.3 we introduced the notions of conservative forces and central forces. These lead
to a conserved energy and conserved angular momentum, respectively. In this section we combine
the two. Specifically, we are interested in forces given by the following:

Proposition Denote r = |r| and er = r/r = r̂ a unit vector in the direction of r, where the latter
is the position vector of a particle. Then forces of the form

F = F (r) er , (6.1)

are conservative central forces, where the potential V = V (r) depends only on the distance r to the
origin.
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Proof: It is immediate that (6.1) is a central force. Let V (r) be a function of r = (x21 + x22 + x23)
1/2,

where (x1, x2, x3) are Cartesian coordinates. Then

−∇V = −
(
∂V

∂x1
,
∂V

∂x2
,
∂V

∂x3

)
= −dV

dr

(x1
r
,
x2
r
,
x3
r

)
= −dV

dr
er . (6.2)

Then we have F is conservative by setting V (r) = −
∫ r

r0
F (s) ds so that

F (r) = −dV

dr
. (6.3)

More specifically, for the remainder of this section we are interested in the following important
example:

Definition The inverse square law force is a conservative central force with

V (r) = −κ
r
, F = − κ

r2
er , (6.4)

where κ is constant, and we have used (6.1) and (6.3) to relate the potential to the force.

Newton’s law of universal gravitation

The gravitational force on a point particle at position r1 due to a point particle at position r2 is
given by

F = F12 = −GN
m1m2

|r1 − r2|2
(r1 − r2)

|r1 − r2|
= −GN

m1m2

|r1 − r2|2
r̂12 . (6.5)

Here m1, m2 are the (gravitational) masses of the two particles, we have defined the unit vector
r̂12 = (r1 − r2)/|r1 − r2|, and GN ≃ 6.67× 10−11Nm2 kg−2 is Newton’s gravitational constant.

Note

� We have F12 = −F21. This is Newton’s third law.

� If say particle 2 has much more mass, so that m2 ≫ m1, then particle 2’s trajectory can be
approximated as essentially stationary.

� This will be investigated in detail later, in the dynamics of systems of particles.

� We use this assumption regularly. We have already implicitly assumed the Earth is not moved
by a projectile and, later, we will also assume the Sun is not moved by the Earth.

� Placing the heavy mass at the origin, so that r2 = 0 and with the relabelling r = r1, m2 =M ,
m1 = m Eqn (6.5) collapses to the respective force and potential energy

F = − κ

r2
er , V (r) = −κ

r

with κ = GNmM, where for planetary examples M is usually the mass of the Sun.
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� As the force is conservative, energy is conserved.

� Aside The force and potential are singular at the origin; the point particle assumption breaks
down as the Sun, Earth and other bodies within the system are not point particles and cannot
occupy the same point in space. We exclude r = 0 from our considerations.

Remark: We now apparently have two different descriptions of the force of gravity: one given by
Newton’s inverse square law force, and the other given by F = −mg k.
The latter is valid on the Earth’s surface as an approximation to Newton’s inverse square law force in
the limit that the lengthscales of the dynamics are much smaller than the lengthscales over which the
Earth’s gravitational field varies, that is the Earth’s radius. Hence there is no variation in g = −gk
in the approximation.

Aside. Coulomb’s law of electrostatics.

Coulomb discovered a similar inverse square law force between two point charges at rest. Given two
such charges q1, q2 at positions r1, r2, respectively, the first charge experiences an electrostatic force
F12 due to the second charge, given by

F12 =
1

4πϵ0

q1q2
|r1 − r2|2

r̂12 . (6.6)

The constant ϵ0 ≃ 8.85 × 10−12 C2N−1m−2 is called the permittivity of free space. Unlike gravity,
the Coulomb force can be both attractive and repulsive, with opposite sign charges attracting, and
same sign charges repelling.

As we did for gravity, let us now suppose the second charge has much more mass and then can be
approximated as fixed at the origin (r2 = 0). With the relabelling q2 = Q, r1 = r and q1 = q we may
restate Coulomb’s law as:

A point charge Q at the origin O exerts an electrostatic force F on a point charge q at
position r given by (6.4), where κ = −Qq/4πϵ0.

6.2 The Kepler problem and planetary orbits

We now consider motion due to a conservative central force to enable an investigation of planetary
motion and Kepler’s laws.

Exercise Determine the equations of motion for a point particle of mass m in the conservative
central force (6.1),

F = F (r) er . (6.7)

Solution From Section 4.3, we know that the motion of the particle lies in a plane, which without
loss is the x-y plane, and we use plane polars r, θ below in this plane.

We already know from Section 4.3 that mr2θ̇, the z-component of the angular momentum about the
origin, L = LO, is conserved.
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Newton’s second law is

mr̈ = F (r) er (6.8)

and thus

m

[
(r̈ − rθ̇2) er +

1

r

d

dt
(r2θ̇) eθ

]
= F (r) er . (6.9)

Resolving in the eθ, er directions, we have

d

dt
(r2θ̇) = 0 , (6.10)

m(r̈ − rθ̇2) = F (r), (6.11)

and the first equation confirms mr2θ̇ = mh is conserved, as expected and discussed in Section 4.3.

Eliminating θ̇ in terms of h gives

m

(
r̈ − h2

r3

)
= F (r) . (6.12)

Solving this gives r(t), and we then have a first order ODE for θ(t) via θ̇ = h/r2(t). This generates
the trajectory, parameterised by time.

Here, it will in fact be easier to solve for the trajectory parameterised by θ, so we look instead to
solve for r(θ) directly.

It is much easier in practice with central force problems to work with

u(θ) ≡ 1

r(θ)
.

Proposition For a particle moving in a central force the equations of motion imply that, for h ̸= 0,

d2u

dθ2
+ u = −F (1/u)

mh2u2
, (6.13)

where u(θ) = 1/r(θ) gives the curve traced out by the path of the particle.

Proof: We have θ̇ = h/r2 = hu2, giving

ṙ =
d

dt

(
1

u

)
= − 1

u2
θ̇
du

dθ
= −hdu

dθ
. (6.14)

Differentiating again:

r̈ =
d

dt

(
−hdu

dθ

)
= −h d

dt

(
du

dθ

)
= −hθ̇ d

2u

dθ2
= −h2u2d

2u

dθ2
. (6.15)

Substituting this into (6.12) gives

m

(
−h2u2d

2u

dθ2
− h2u3

)
= F

(
1

u

)
, (6.16)
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which rearranges to (6.13). ■

Aside Eqn (6.13) is not valid when h = r2θ̇ = 0. Since r = 0 is excluded, we have θ̇ = 0 and straight
line motion with θ constant. Then the parametrization r = r(θ) does not make sense. Below in this

section, we assume r2θ̇ ̸= 0 and thus, by e.g. Eqn (4.20), LO ̸= 0.

The Kepler Problem We now examine the central inverse square law force for a particle of mass
m, with F (r) = −κ/r2, where κ = GNMm > 0; this is the Kepler problem.

Theorem (Due to Newton) For the Kepler problem the particle trajectories with non-zero angular
momentum are conic sections.

Proof: In terms of the variable u = 1/r we have F (r) = −κu2. Substituting this into (6.13) gives

d2u

dθ2
+ u =

κ

mh2
. (6.17)

Remarkably, the change of variable has reduced the problem to the same ODE we found for a particle
attached to a linear Hook law spring (c.f. equation (2.16)) which exhibits simple harmonic motion.

The general solution for u(θ) is

u(θ) =
κ

mh2
[1 + e cos (θ + ϕ)] , (6.18)

where e and ϕ are integration constants.

We can use the freedom to rotate the coordinate system axes to set either ϕ = 0 if e > 0, or ϕ = π
if e < 0 to obtain e cos(θ + π) = −e cos θ = |e| cos θ; hence without loss we take e ≥ 0 and ϕ = 0.

On the other hand, from the Prelims Geometry course we know that the general polar form of a
conic may be written as

r0
r

= r0u = 1 + e cos θ , (6.19)

where r0 is a constant and the origin at r = 0 is situated at one of the foci. Comparing to (6.18) and
recalling that κ > 0 we may thus identify

r(θ) =
r0

1 + e cos θ
, where r0 =

mh2

κ
=

h2

GM
> 0 . (6.20)

Regarding GM as fixed, the scale parameter r0 is thus determined by the specific angular momen-
tum h.

Note The integration constant e ≥ 0 is the eccentricity of the conic. This is

� an ellipse for 0 ≤ e < 1, with e = 0 being a circle,

� a parabola for e = 1,

� a hyperbola for e > 1. ■
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Time dependence The time dependence may be recovered by solving θ̇ = hu2(θ) as

h t =

∫
dθ

u2(θ)
= r20

∫
dθ

(1 + e cos θ)2
, (6.21)

which gives t as a function of θ.

Conics

We now show that the solution to the Kepler problem reduces to the normal form for a conic. We
begin by expressing the polar form of a conic (6.20) in Cartesian coordinates x = r cos θ, y = r sin θ,
whereby

r0 = e r cos θ + r = e x+ r, hence r = r0 − e x . (6.22)

Squaring both sides then gives

x2 + y2 = (r0 − e x)2 . (6.23)

Rearranging yields
x2 + y2 = r20 − 2er0x+ e2x2,

and hence

(1− e2)

[
x2 +

2er0
1− e2

x

]
+ y2 = r20.

With
x0 = − e r0

1− e2
, k = r0/e

completing the square gives

(1− e2)(x− x0)
2 + y2 = r20 +

e2r20
1− e2

=
r20

1− e2
=

e2k2

1− e2
,

which is the normal form for a conic section, with a shifted origin.

Its collapse onto an ellipse, hyperbola or parabola according to the value of e is lectured in detail in
Prelims Geometry. For completeness, the reduction is briefly reproduced below, but this will not be
lectured.

Ellipses: 0 ≤ e < 1: In this case we define

a =
r0

(1− e2)
, b =

r0
(1− e2)1/2

, x0 = − e r0
1− e2

= −e a < 0, (6.24)

Completing the square for (6.23) generates

(x− x0)
2

a2
+
y2

b2
= 1 , (6.25)

which is plotted in Figure 13a.

This is the equation of an ellipse centred at (x0, 0), with a semi-major axis of length a and a semi-
minor axis of length b ≤ a. One of the two foci is located at the origin (x, y) = (0, 0), the centre of
attraction r = 0 for the inverse square law force.
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(a) An ellipse. The large black dot is the origin, which is
one of the foci and also the centre of attraction of the inverse
square law force. The centre of the ellipse is (x0, 0), where
x0 = −e a ≤ 0. The semi-major axis has length a, while the
semi-minor axis has length b ≤ a.

F
a

x0y=(b/a)(x-

y=-(b/a)(x-

)

x0)

x0

r0

(b) A hyperbola. The large black dot is again the
origin, focus, and centre of the force. The two
asymptotes are y = ±(b/a)(x − x0), which meet at
the point (x0, 0), where now x0 = e a > 0.

Figure 13: Conic sections.

When e = 0, we have a = b = r0, x0 = 0 and the ellipse is a circle centred at the origin.

Hyperbolae: e > 1: In this case we similarly define

a =
r0

(e2 − 1)
, b =

r0
(e2 − 1)1/2

, x0 =
e r0
e2 − 1

= e a > 0. (6.26)

Some algebra reveals that (6.23) reduces to

(x− x0)
2

a2
− y2

b2
= 1 . (6.27)

This is the equation of a hyperbola, plotted in Figure 13b. .

There are two asymptotes y = ±(b/a)(x− x0), dropping the “1” from the right hand side of (6.27),
which meet at x = x0.

The focus is at the origin (x, y) = (0, 0), which is again the centre of the inverse square law force.

Notice from (6.20) that r → ∞ along the asymptotes for cos θ = −1/e, which has two solutions
θ = ±θ0, where θ0 = cos−1(−1/e) > π/2 and θ is the angle subtended at the origin.

Parabolae: e = 1: Equation (6.23) reads simply

y2 = r20 − 2r0x , (6.28)

which is the equation of a parabola. This is again an unbounded orbit, where now r → ∞ for
cos θ = −1, i.e. θ = ±π.
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The effective potential and energy

We now reconsider the original equation of motion (6.12) for r(t) from a context of energy. Recalling
that F (r) = −dV/dr and defining an effective potential

Veff(r) = V (r) +
mh2

2r2
, (6.29)

we have (6.12) may be written in the form

mr̈ = −dVeff
dr

. (6.30)

The equation of motion (6.30) now has the structure of motion in one dimension, with an effective
potential energy Veff .

Furthermore, as may be deduced from the original equation of motion (6.12) via the techniques of
Section (3.1), the energy

E =
1

2
m|ṙ|2 + V (r) =

1

2
m(ṙ2 + r2θ̇2) + V (r) (6.31)

=
1

2
m

(
ṙ2 +

h2

r2

)
+ V (r) =

1

2
mṙ2 + Veff(r)

is conserved, where h = r2θ̇ has been used.

O r

(r)Veff

r0

Figure 14: The effective potential Veff(r) for the Kepler inverse square law force problem, where Veff
has a unique local minimum at r = r0.

For the Kepler problem we have V (r) = −κ/r, the effective potential is shown in Figure 14.

A solution with r = r0 constant has r̈ = 0, and thus from (6.30) r0 is a turning point of the effective
potential.

One may easily check that

dVeff
dr

(r0) = 0 =⇒ r0 =
mh2

κ
. (6.32)

Of course the circular trajectory r = r0 constant is consistent with the general solution (6.20) with
eccentricity e = 0.
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Being a local minimum of the effective potential also means that this circular orbit is stable to small
perturbations of r, as we learned in section 3.3.

The Energy, in terms of the eccentricity, angular momentum and physical parameters

We already have the total energy, E in Eqn. (6.31), is conserved. To simplify this expression, given
the solution of the equation of motion (6.18), we need ṙ, which from Eqns. (6.14), (6.18), is given by

ṙ = −h du

dθ
=

he

r0
sin θ . (6.33)

Inserting this and r = r0/(1 + e cos θ) from Eqn (6.20) into

E =
1

2
mṙ2 − κ

r
+
mh2

2r2
, (6.34)

and, using r0 = mh2/κ from Eqn. (6.32), we find that E is indeed constant:

E =
(e2 − 1)κ2

2mh2
. (6.35)

■

In particular we see that the bound orbits with 0 ≤ e < 1 (i.e. ellipses) have E < 0.

This is also clear from the effective potential in Figure 14: for E < 0 the particle moves back and
forth between some rmin and rmax, and the orbit is bounded, as in the discussion of a general potential
in section 3.2.

On the other hand for e > 1 we have E > 0 and the particle has a minimum radius, but escapes to
infinity. These are the hyperbolic orbits.

The parabola e = 1 is the limiting case with zero energy, for which the particle only just escapes to
infinity, where the potential for the inverse square law is zero.

6.2.1 Examples

Example (Geostationary orbit): A geostationary orbit is a circular orbit in the plane containing the
Earth’s equator, which co-rotates with the Earth. Determine the altitude of a satellite of mass m on
this geostationary orbit.

Solution The angular velocity of the satellite on the geostationary orbit is the same as that of the
Earth’s rotation, namely θ̇ = 2π radians per day.

Using h = r20 θ̇, with κ = GNME m, where ME is the mass of the Earth, and m the mass of the
satellite, Eqn. (6.32) implies the radius satisfies

r0 =
mh2

κ
=

r40 θ̇
2

GNME

and hence

r0 =

(
GNME

θ̇2

)1/3

≃ 4.22× 107m = 42, 200 km , (6.36)
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using GN ≃ 6.67× 10−11Nm2 kg−2, ME ≃ 5.97× 1024 kg, θ̇ ≃ 7.27× 10−5 s−1.

Noting the radius of the Earth is rE ≃ 6370km we have the altitude of the satellite is

r0 − rE ≃ 35, 800km.

■

Example (Angle of deflection of a comet): A comet of mass m approaches the Sun, of mass MS,
from a very large distance with speed v. If the Sun exerted no force on the comet it would continue
with uniform velocity on an undeflected path, giving a distance of closest approach to the Sun of p.
Find the actual path of the comet and determine the angle through which it is deflected.

r

R

v
α

rθ

Sun

p
comet

undeflected path

Figure 15: A comet of mass m approaching the Sun from a very large distance with speed v. Without
the effect of gravity the comet travels undeflected with constant speed v, and its closest approach is
the distance p. At time t = −T with T ≫ p/v large, the particle is depicted. Here p = R sinα, and
the angle α is very small and T -dependent, tending to zero as T → ∞, while R → ∞ in the same
limit.

Solution: Figure 15 shows the comet’s path undeflected by gravity.

Initial conditions Let T be fixed, with dimensions of time and such that T ≫ p/v. Consider the
time with t = −T and let α, R be the T -dependent angle and radial distance in Figure 15, where
the comet is depicted at time T .

� We have initial conditions at time t = −T that

ṙ = −v cosα, rθ̇ = v sinα = p v/R,

where in the latter equation we have used p = R sinα.

� Note α → 0, R → ∞ when we take the limit T → ∞ below.

� The conserved specific angular momentum h may be computed from these initial conditions as

h = r2θ̇ = p v . (6.37)

� Thus at time t = −T we have the initial conditions

u =
1

R
,

du

dθ
= − ṙ

h
=

1

p
cosα. (6.38)
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� At time t = −T we rotate the axes without loss so that the comet is at angle θ = 0 at this
time.

The solution of the Kepler Problem and the path of the comet

The general solution to the Kepler problem may be written

u(θ) =
κ

mh2
+ C cos θ +D sin θ . (6.39)

We use the initial conditions (6.38) at t = −T , θ = 0, to determine C, D and hence

u(θ) =
κ

mp2v2
(1− cos θ) +

1

R
cos θ +

1

p
cosα sin θ . (6.40)

This holds for all sufficiently large T .

A posteriori, taking the limit T → ∞ after all other calculations are completed, and noting R → ∞,
α → 0 in this limit, we have the path of the comet is given by

u(θ) =
κ

mp2v2
(1− cos θ) +

1

p
sin θ . (6.41)

θ

actual comet path

=0

θ =2π -2δ

θ=π
2δ

undeflected path

Figure 16: The actual path of the comet. The origin is at the Sun (large black dot), with the θ = 0
axis horizontal, to the right (one should understand the dotted lines as extending to infinity).

The angle of deflection

The comet asymptotes to infinity at angles given by u = 1/r = 0. This gives

κ

mp2v2
(1− cos θ) +

1

p
sin θ = 0 . (6.42)

Using double angle formulas we may rewrite this as

κ

mp2v2
sin2 θ

2
+

1

p
sin

θ

2
cos

θ

2
= 0 . (6.43)
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Clearly one solution is θ = 0, corresponding to the t = −T → −∞ limit by construction.

We are thus interested in the other solution, which satisfies

κ

mp2v2
sin

θ

2
+

1

p
cos

θ

2
= 0 (6.44)

and hence

tan
θ

2
= −mpv

2

κ
. (6.45)

Noting the deflection depicted in Figure 16, we set θ = 2π − 2δ. Using

tan(π − δ) = − tan δ,

we thus have

tan δ =
mpv2

κ
=

p v2

GNMS

. (6.46)

Here in the second equality we have inserted the value κ = GNMS m, where MS is the mass of the
Sun.

As illustrated in Figure 16 the comet comes in at an angle θ = 0, goes past the Sun and proceeds to
infinity at an angle 2π − 2δ. Noting that no deflection would correspond to an outward asymptote
with angle π, it follows that the comet is deflected through an angle

(2π − 2δ)− π = π − 2δ = π − 2 tan−1

(
p v2

GNMS

)
.

■

6.3 Kepler’s laws

In the late 16th century the Danish nobleman Tycho Brahe made accurate and comprehensive
planetary observations, which Johannes Kepler was then able to analyse. Using this empirical data
Kepler remarkably deduced the following three laws (published between 1609 and 1619):

K1: The path of each planet is an ellipse with the Sun at the focus.

K2: A straight line joining the Sun and a planet sweeps out equal areas in equal times.

K3: The square of each planet’s period is proportional to the cube of the semi-major
axis of its elliptical orbit.

The force attracting a planet to the Sun is of course Newton’s inverse square law of gravitation.

In the below, we explicitly ignore the fact that in our solar system there are many planets, which
also attract each other and thus we treat each planet individually, neglecting all others. Like the
other approximations we have made thus far, for instance that the Sun does not move relative to an
inertial reference frame, this also has excellent accuracy.

Proof of K1 Putting the Sun at the origin, and neglecting all but of one of the planets to consider
its trajectory, we thus have shown K1 from Newton’s laws already, from the solution to Kepler’s
problem.
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6.3.1 Kepler’s laws K2 and K3

Figure 17: A particle moves from a point P at time t to a point Q at time t + δt, with the angle
subtended at the origin changing by a small amount δθ, sweeping out a region OPQO, of area δA
as shown in green. Let r denote the distance |OP |, with r + δr the distance |OQ|, P ′ the point on
OQ such that |OP ′| = r and Q′ the point on OP, such that |OQ′| = r + δr.

Proof of K2: Kepler’s second law is a simple consequence of conservation of angular momentum.

Recall from conservation of angular momentum we have r2θ̇ = h = constant.

A straight line from the Sun to a planet is simply the position vector r(t). In a small time interval
δt, as shown in Figure 17) the planet sweeps out a region OPQO that is approximately triangular.

In the first instance, with the points O, P, P ′, Q, Q′ as given in Figure 17, we consider δr =
|OQ| − |OP | ≥ 0, with r = |OP |.
Noting the area of the circular sector, of radius s, subtending an angle ψ between its radii, is given
by ψs2/2, we have

1

2
r2δθ ≤ δA ≤ 1

2
(r + δr)2δθ.

Dividing by δt and taking δt→ 0, so that δr → 0, δθ → 0, we have

Ȧ =
1

2
r2θ̇ =

1

2
h = constant, (6.47)

which also holds by an analogous argument when δr < 0. ■
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Aside Being a consequence only of conservation of angular momentum, Kepler’s second law holds
for any central force (even non-conservative ones).

Proof of K3:

Recall that the area of an ellipse with semi-major axis a and semi-minor axis b is

A = πab . (6.48)

We know from K2 that this area is swept out at a constant rate Ȧ = 1
2
h. Integrating this over one

period we obtain

A =

∫
dA =

1

2
h

∫
dt =

1

2
hT . (6.49)

Thus the square of the period T is

T 2 =
4A2

h2
=

4π2a2b2

h2
=

4π2

GNMS

· b
2

ar0
· a3 , (6.50)

where in the last step we have substituted h2 = κr0/m = GNMSr0 using (6.20), where κ = GNmMS,
m is the mass of the planet and MS is the mass of the Sun.

Recall from Eqn (6.24) for the equation of a Kepler problem ellipse, we have

a =
r0

(1− e2)
, b =

r0
(1− e2)1/2

, (6.51)

and thus
b2

ar0
= 1.

Hence

T 2 =
4π2

GNMS

a3, (6.52)

which is precisely Kepler’s third law. ■
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7 Systems of particles

So far we have mainly been studying the motion of a single particle. We now proceed to consider
many particles.

7.1 Centre of mass motion

Note on notation: Henceforth we will always denote our inertial frame, in which we write down
Newton’s second law, as Ŝ, with origin Ô.

Consider a system of N point particles. With respect to an inertial frame Ŝ, we denote the position
vector of the Ith particle from Ô by rI , which has mass mI and hence linear momentum pI = mI ṙI ,
I = 1, . . . , N .

We suppose that particle J exerts a force FIJ on particle I, for I ̸= J . Newton’s third law immediately
tells us that FJI = −FIJ for each I ̸= J .

Without loss set FII = 0.

On the other hand Newton’s second law for particle I reads

mI r̈I = ṗI = FI = Fext
I +

∑
J ̸=I

FIJ . (7.1)

Here we have included an external force Fext
I , i.e. a force acting on particle I that is not due to the

other N − 1 particles in the system. We refer to the FIJ as internal forces.

Aside. When considering a single particle, the force F = Fext in Newton’s second law is by
definition always external.

Definition The centre of mass of the system of particles is the point G, with position vector

RG ≡ 1

M

N∑
I=1

mIrI , (7.2)

where M =
∑N

I=1mI is the total mass. Similarly the total momentum of the system is

P ≡
N∑
I=1

pI = MṘG . (7.3)

Theorem The centre of mass of the system behaves like a point particle of mass M acted on by the
total external force. In particular, the dynamics of the centre of mass is independent of the internal
forces.

Proof: We have

MR̈G = Ṗ =
N∑
I=1

ṗI =
N∑
I=1

(
Fext

I +
∑
J ̸=I

FIJ

)
. (7.4)
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However, due to Newton’s third law FIJ = −FJI , the N(N − 1) terms in the sum

N∑
I=1

∑
J ̸=I

FIJ = 0 (7.5)

cancel pairwise.

Thus (7.4) becomes

MR̈G = Ṗ =
N∑
I=1

Fext
I = Fext , (7.6)

where Fext is by definition the total external force. ■

This result explains why we can often so accurately model objects as point particles, even when they
manifestly are not. Whatever internal forces are acting within our object, for example holding it
together, they will cancel out of the centre of mass motion. In most of the problems we have studied
we have really been modelling the centre of mass motion of an object, and applying Newton’s second
law in the form (7.6).

Definition A closed system is one in which all forces are internal, acting between the constituents
of the system. That is, Fext

I = 0, I = 1, . . . , N .

Hence, for a closed system the total momentum is conserved, Ṗ = 0. and hence the centre of mass
moves with constant velocity ṘG = constant. Without loss, we may then take the centre of mass to
be RG = 0, the origin of our inertial reference frame.

Definition A centre of mass reference frame has its origin at the centre of mass, RG = 0. When
Fext = 0, this is also an inertial reference frame.

Definition The total angular momentum L = LP of the system about a point P is

LP =
N∑
I=1

(rI − x) ∧ pI , (7.7)

where P has position vector x from the origin Ô. That is, L is the vector sum of the angular momenta
LI = (rI − x) ∧ pI for each particle I about P .

As noted previously, Eqn. (4.18), pI = mI ṙI is the velocity of the particle in the inertial frame, not
the velocity relative to P , which in general may be moving, x = x(t).
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Using the definition (7.7) we begin by computing

L̇P =
N∑
I=1

[(ṙI − ẋ) ∧ pI + (rI − x) ∧ ṗI ]

= −ẋ ∧P+
N∑
I=1

(rI − x) ∧ ṗI

= −ẋ ∧P+
N∑
I=1

(rI − x) ∧
(
Fext

I +
∑
J ̸=I

FIJ

)
. (7.8)

Here in the second equality we have used ṙI ∧ pI = ṙI ∧mI ṙI = 0.

The third equality uses Newton’s second law (7.1).

In
∑N

I=1(rI − x) ∧
∑

J ̸=I FIJ we again have 1
2
N(N − 1) pairs of terms, which look like

(rI − x) ∧ FIJ + (rJ − x) ∧ FJI = (rI − rJ) ∧ FIJ , (7.9)

and we have used Newton’s third law. To get any further we need the strong form of Newton’s third
law:

N3 (strong form): If particle 1 exerts a force F = F21 on particle 2, then particle 2
also exerts a force F12 = −F on particle 1. In addition, this force acts along the vector
connecting particle 1 to particle 2, F12 ∝ (r1 − r2).

r
O

I

rJ
FIJ

FJI

particle I

particle J

Figure 18: The strong form of Newton’s third law.

This clearly holds for the inverse square law forces of Newton (6.5) and Coulomb (6.6), but there are
examples that don’t satisfy this.3

Returning to (7.9), we see that if the strong form of Newton’s third law holds this is zero, and hence
(7.8) gives

L̇P = −ẋ ∧P+
N∑
I=1

(rI − x) ∧ Fext
I = −ẋ ∧P+ τ ext

P , (7.10)

3Notably the magnetic component of the Lorentz force.
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where τ ext
P is by definition the total external torque about P , c.f. (4.22).

There are two special cases where the first term on the right hand side of (7.10) is zero:

(i) taking P = Ô, the inertial frame origin, giving x = 0,

(ii) taking instead P = G we have ẋ ∧P = ṘG ∧P = ṘG ∧MṘG = 0.

We have thus proven:

Theorem Provided the strong form of Newton’s third law holds, the rate of change of total angular
momentum about either the inertial reference frame origin, Ô, or the centre of mass, G, equals the
total external torque about the same respective point. That is,

L̇Ô = τ ext
Ô

, L̇G = τ ext
G . (7.11)

Corollary For a closed system satisfying the strong form of Newton’s third law, the total angular
momentum about the origin of an inertial frame, or about the centre of mass, is conserved.

The main application of (7.11) will be to rigid body motion, which is considered later below.

In particular the following result will be useful:

Proposition Consider the system of particles in a uniform gravitational field, with acceleration due
to gravity −gk. Assuming this is the only external force acting, the total external torque about a
point P with position vector x is

τ ext
P = −(RG − x) ∧Mg k . (7.12)

This is the same as the torque for a particle of massM at the centre of mass RG (compare to (4.22)).
In particular, the torque about G (for which x = RG) is zero.

Proof: We have

τ ext
P ≡

N∑
I=1

(rI − x) ∧ Fext
I =

N∑
I=1

(rI − x) ∧ (−mIg k) = −(RG − x) ∧Mg k ,

where we have used the definitions M =
∑N

I=1mI , MRG =
∑N

I=1mIrI in the final equality. ■

7.2 The two-body problem

The two-body problem is a closed system of two point particles. Newton’s second and third laws give

m1r̈1 = F12 , m2r̈2 = F21 = −F12 . (7.13)

Adding these two equations implies that the centre of mass

RG =
m1r1 +m2r2
m1 +m2

(7.14)
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moves with constant velocity, as also deduced in the last subsection.

On the other hand, if we define r ≡ r1 − r2 so that

r1 = RG +
m2

m1 +m2

r , r2 = RG − m1

m1 +m2

r , (7.15)

then from (7.13) we deduce

r̈ = r̈1 − r̈2 =

(
1

m1

+
1

m2

)
F12 =

m1 +m2

m1m2

F12 . (7.16)

Definition The reduced mass for the two-body problem is µ =
m1m2

m1 +m2

.

In terms of this the equation of motion (7.16) reads

µr̈ = F12 . (7.17)

Example: For the inverse square law force, with r = |r|, we have

F12 = − κ

|r1 − r2|3
(r1 − r2) = − κ

r2
r

r
.

We have thus effectively reduced the two-body problem to a problem for a single particle, with
position vector r(t) satisfying (7.17). The force on the right hand side is then effectively an external
force.

Having solved this, the solution to the original two-body problem is given by (7.15).

We may thus view what we did in solving the Kepler problem in Section 6.2 in two different ways:

� If we take the mass m = µ in (6.8), then in section 6.2 we were really solving (7.17) for the
two-body problem. This describes the exact internal relative motion of the two bodies.

� Suppose instead we focus on the case mass m1 ≪ m2, as we implicitly did in Section 6.2 on
Kepler’s problem and planetary orbits.

Without loss, RG = 0 since the centre of mass reference frame is also an inertial reference
frame as there is no external force. Hence

µr̈ = − κ

r2
r

r
, µ = m1

(
1

1 + m1

m2

)
≃ m1,

r1 =

(
1

1 + m1

m2

)
r ≃ r, r2 = −

(
m1

m2

1 + m1

m2

)
r ≃ 0.

Once m1/m2 is sufficiently small, we thus have that the solution in Section 6.2, with m = m1

the smaller mass and the larger mass at the origin, accurately approximates the two body
solution which accommodates Newton’s third law and the motion of the larger body.

What is remarkable about the two-body problem is that the exact solution and approximate solution
we have described are mathematically equivalent, differing only in which mass to use in Newton’s
second law.
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8 Rotating frames and rigid bodies

In this final section we discuss two topics that involve rotation: the dynamics of rigid bodies in
sections 8.2 and 8.3, and Newton’s laws in a rotating (i.e. non-inertial) frame from section 8.4.

8.1 Rotating frames

Throughout this section there will always be two reference frames:

� A fixed reference inertial frame Ŝ: this has origin Ô and fixed coordinate axes with correspond-
ing right handed Cartesian basis vectors êi, i = 1, 2, 3.

� A general reference frame S, with origin O at position vector x relative to Ô, and right handed
Cartesian coordinate axes associated with the basis vectors ei, i = 1, 2, 3. Typically in these
sections ei, i = 1, 2, 3 will be rotating relative to the axes of Ŝ.

Newton’s laws of motion are written in the inertial reference frame Ŝ, also sometimes referred as
the laboratory frame, though the laws of motion may then be subsequently be modified so as to be
relative to the axes of the non-inertial reference frame S.
Without loss we can take the origin of inertial reference frame, Ô, to be fixed. The Cartesian axes
are also time-independent so that that the Cartesian basis vectors êi are independent of time,

d

dt
êi = 0, i = 1, 2, 3.

For example, when rigid bodies are introduced, the frame S will be chosen to rotate with the body,
and thus the Cartesian basis vectors {ei} will rotate relative to the inertial reference frame, with
non-zero time derivatives.

frame S

e

x

O

O

frame S

1

e2

e3

e1

e
2

e
3

(t)

Figure 19: The reference frame Ŝ is a fixed inertial reference frame, and Newton’s laws of motion
are written in this reference frame. With respect to Ŝ, a general reference frame S has origin O
at position vector x = x(t) as measured from Ô, and its coordinate axes may be rotating, so that
ei = ei(t).
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Thus, we may write the Cartesian orthonormal basis vectors {ei} of the frame S as

ei(t) =
3∑

j=1

Rij(t) êj , i = 1, 2, 3 . (8.1)

As you learned in the Geometry course, the fact that both bases are orthonormal and right handed
means that R = (Rij) is an orthogonal rotation matrix. The main result of this subsection is:

Proposition There is a (unique) vector ω = ω(t) such that

ėi = ω ∧ ei , i = 1, 2, 3 . (8.2)

ω = ω(t) is called the angular velocity of the frame S with respect to fixed inertial frame Ŝ.
This result is lectured in extensive detail in Section 5, Video 11 of Prelims Geometry.

Proof: Take the time derivative of (8.1) to find

ėi =
3∑

j=1

Ṙij êj =
3∑

j,k=1

ṘijRkj ek =
3∑

k=1

(ṘRT)ik ek , (8.3)

where in the second equality we have used the fact that R is orthogonal, and hence R−1 = RT.

Noting RRT = I, the identity, we have ṘRT +RṘT = 0, and hence

ṘRT = −RṘT = −(ṘRT )T .

Hence (ṘRT) is an anti-symmetric matrix, so we can write

ṘRT =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 . (8.4)

Then (8.3) is equivalent to (8.2) with ω = (ω1, ω2, ω3) as may be confirmed by comparing the
expressions after expanding. For example both give

ė1 = ω3e2 − ω2e3.

■

This formula, ėi = ω ∧ ei (i = 1, 2, 3), is most useful for modifying the equations of motion for use
in rotating non-inertial reference frames.

To proceed, we suppose for simplicity that the two origins coincide for all time, so that O = Ô and
the reference frame S is thus rotating relative to the inertial frame, Ŝ.
We have two Cartesian bases, {ei} and {êi}, and we may expand the same vector r in both bases as

r =
3∑

i=1

ri ei =
3∑

i=1

r̂i êi.
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Here ri are the components of r in the reference frame S, while r̂i are the components in the reference
frame Ŝ.
The velocity of the particle is

ṙ =
3∑

i=1

dr̂i
dt

êi =
3∑

i=1

(ṙi ei + ri ėi) =
3∑

i=1

ṙi ei +
3∑

i=1

ri ω ∧ ei

=

(
dr

dt

)
S
+ ω ∧ r , (8.5)

where we have introduced:

Definition The time derivative of r = r(t), as would be measured by an observer co-rotating with
the frame S, is (

dr

dt

)
S
≡ ṙ1 e1 + ṙ2 e2 + ṙ3 e3.

That is, we differentiate the components of r in the orthonormal basis {ei} for S.

One should always clarify the meaning of “ṙ” when there are two general reference frames being
used. We will always mean the time derivative in the inertial reference frame Ŝ and hence we have
shown:

Proposition (The Coriolis formula)

ṙ =
3∑

i=1

dr̂i
dt

êi ≡
(
dr

dt

)
Ŝ
=

(
dr

dt

)
S
+ ω ∧ r , (8.6)

where ω is the angular velocity of S relative to Ŝ.
For rigid body dynamics we will be interested in the velocity of points r that are fixed relative to the
rotating frame S. By definition this means that the first term on the right hand side of (8.6) is zero,
and hence we may simply write

ṙ ≡
(
dr

dt

)
Ŝ

= ω ∧ r . (8.7)

Definition In general we may write ω = ω n, where ω = ω(t) is the angular velocity, and n = n(t)
is of unit magnitude and the instantaneous axis of rotation.

Note For ω > 0, the direction of rotation is given by the right hand rule (point your right thumb in
the direction of n and the direction of rotation is that of your right hand fingers, from proximal to
distal).

In particular for cylindrical polars with ω = ωk, the rotation is about the direction k with θ̇ = ω.
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Aside (Not lectured) For geometric intuition, consider the change δr in r in a small time interval

δt, i.e. δr = ω ∧ r δt. As seen in the inertial frame Ŝ and shown in Fig, (20), this is a rotation of r
through an angle |ω|δt about an axis parallel to the vector ω, with the direction as indicated. Hence
r rotates around a cone with its vertex at the origin and symmetry axis ω, with the orientation
shown and angular speed |ω|.

ω

r

δ

δt| |

ω

r

sinr|

α

α|

Figure 20: As seen in the inertial frame Ŝ, the position vector r of a point P fixed in the frame S
changes by δr = ω ∧ r δt in a small time interval δt. This is a rotation of r through an angle |ω|δt
about an axis parallel to the vector ω. The direction of rotation is as indicated and given by the
right hand rule.

8.2 Rigid bodies

A rigid body may be defined as any distribution of mass for which the distance between any two
points is fixed.

A simple model for this is to take a finite number of point particles, as in section 7.1, but with the
constraint that the position vectors rI (I = 1, . . . , N) satisfy

|rI − rJ | = cIJ , constant,

thus ensuring that the body retains its size, shape and distribution of mass.

One might imagine the rI as the positions of atoms in a solid, with the constraints arising from
inter-molecular forces. We assume these constraint forces satisfy the strong form of Newton’s third
law.

For now we will use this point particle model, but later we will model a rigid body as a continuous
distribution of matter, which may be regarded as a limit of the point particle model in which the
number of particles tends to infinity.

Choose a point O that is fixed in the body. For example, in the point particle model this could be
one of the particles, although as we shall see below it will often be convenient to take this to be the
centre of mass. We denote the position vector of O as x = x(t), where this is measured from the

origin Ô of the inertial frame Ŝ. We may then write

RI = x+ rI , I = 1, . . . , N , (8.8)
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I
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Figure 21: We fix a point O in the rigid body, which is taken to be the origin of the rest frame S of
the body. The frame S has angular velocity ω, and its origin O has position vector x relative to the
origin Ô of an inertial frame Ŝ. The body particles PI have position vectors rI , measured from O.
Figures (i) and (ii) show the same body at two different times.

so that RI and rI are the positions of the body particles, as measured from Ô and O, respectively.
See Figure 21.

Definition The rest frame S of the rigid body is a reference frame, with origin O, with respect to
which the rI are fixed (at rest), i.e.(

drI
dt

)
S
= 0 for all I = 1, . . . , N.

Aside. The existence of such a frame is really equivalent to what we mean by a rigid body in the
first place. Provided the matter distribution is not all along a line, the rest frame is defined uniquely
by the body, up to a constant rotation of its axes and a translation of the origin by a constant vector
(relative to S).
Using Eqn. (8.7) we then have the important result that

ṘI = ẋ+ ṙI = vO + ω ∧ rI . (8.9)

Here vO = ẋ is the velocity of O, as measured in the inertial frame Ŝ, while ω is the angular velocity
of the rest frame S with respect to Ŝ.

As we already mentioned, a natural choice for O is the centre of mass G of the body. This means
that x = RG, in the notation of section 7.1.

With RI = RG + rI the position vectors of the particles relative to the inertial frame origin, so that
rI → RI in the definition of the centre of mass, we have

RG =
1

M

N∑
I=1

mIRI =
1

M

N∑
I=1

mI(RG + rI) = RG +
1

M

N∑
I=1

mIrI .
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Hence

N∑
I=1

mIrI = 0. (8.10)

We now re-examine the formulas for the total linear and angular momentum from section 7.1, and
also look at the total kinetic energy.

We take the origin of the general reference to be the rigid body centre of mass, O = G, unless
otherwise stated.

Linear momentum

We already know from Eqn (7.3) that P = MṘG = MvG, but it is interesting to see this explicitly
for a rigid body:

P =
N∑
I=1

mIṘI =
N∑
I=1

mI(ṘG + ω ∧ rI) = MṘG + ω ∧

(
N∑
I=1

mIrI

)
= MṘG .

where the last equality uses Eqn (8.10).

In summary: the total momentum is the same as if all the mass, M , was at the centre of mass G.

Angular momentum

The total angular momentum about the centre of mass O = G is by definition

LG =
N∑
I=1

rI ∧mIṘI =
N∑
I=1

mIrI ∧ (ṘG + ω ∧ rI) =
N∑
I=1

mIrI ∧ (ω ∧ rI) .

Using the vector identity rI ∧ (ω ∧ rI) = (rI · rI)ω − (rI · ω)rI , we may write

LG =
N∑
I=1

mI [(rI · rI)ω − (rI · ω)rI ] . (8.11)

Definition The inertia tensor I = I(O) = (I(O)
ij ) of the rigid body, about a point O fixed in the

body, is defined as

Iij =
N∑
I=1

mI [(rI · rI)δij − rI i rI j] . (8.12)

Here rI =
∑3

i=1 rI i ei are the position vectors of the body particles, in the rest frame basis {ei}.

Hence we may write the total angular momentum (8.11) in matrix notation as

LG = I(G) ω =
3∑

i,j=1

I(G)
ij ωj ei , (8.13)

where the coefficients of ω are given via ω =
∑3

k=1 ωkek.
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Note that

� The label “tensor” is a common nomenclature in theoretical physics that here simply emphasises
the inertia tensor maps a vector to a vector, in particular it maps angular velocity to angular
momentum.

� The inertia tensor is defined in the rest frame of the body, and so is intrinsic to the body itself,
and in particular independent of time t.

� The inertia tensor depends on a choice of origin O, fixed in the body.

� The inertia tensor need not be proportional to the identity so that angular momentum and
velocity are not parallel in general, leading to complex rigid body dynamics.

� The inertia tensor is symmetric, I = IT (and real). By the Spectral Theorem in Linear Algebra
II there is a change of basis by an orthogonal matrix P such that P I PT is diagonal, which
simplifies the dynamics (somewhat).

Kinetic energy. The total kinetic energy of the body, as measured in the inertial frame, is

T =
N∑
I=1

1

2
mI |ṘI |2 =

1

2

N∑
I=1

mI

[
|ṘG|2 + 2ṘG · (ω ∧ rI) + (ω ∧ rI) · (ω ∧ rI)

]
.

The middle term on the right hand side is again zero, as
∑

I mIrI = 0.

On the other hand we may rewrite the last term using a vector identify and the expression for the
inertia tensor

N∑
I=1

mI(ω ∧ rI) · (ω ∧ rI) =
N∑
I=1

mI [r
2
Iω

2 − (rI · ω)2] = ω · LG.

to give

T =
1

2
M |ṘG|2 +

1

2
ω · LG . (8.14)

Hence the total kinetic energy is the sum of

(i) the kinetic energy for the centre of mass motion relative to Ô

(ii) the rotational kinetic energy about G.

Definition The rotational kinetic energy about the centre of mass G is

Trot =
1

2
ω · LG =

1

2
ωTI(G)ω =

1

2

3∑
i,j=1

I(G)
ij ωi ωj . (8.15)

Continuous mass distributions

For a continuous distribution of matter, rather than a point particle model, we assume the distribu-
tion of mass in the body is defined by a density ρ(r).

Partition the volume in to a collection of small regions with volume δx δy δz centred at

r =
3∑

k=1

rkek = xe1 + ye2 + ze3,
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Linear motion Angular (rotational) motion

Mass M Inertia tensor I = “rotational mass”

Linear velocity Ṙ Angular velocity ω

Linear speed |Ṙ| Angular speed ω = |ω|
Linear momentum P =MṘ Angular momentum L = I ω

Kinetic energy 1
2
M |Ṙ|2 Rotational kinetic energy 1

2
ωTI ω

Equation of motion: Ṗ = Fext Angular equation of motion L̇ = τ ext

Table 1: Contrasting linear motion with angular (rotational) motion. Each linear quantity has a
corresponding angular counterpart. The inertia tensor may be viewed as a sort of “rotational mass”.
The equations of motion in the last line will be used in subsection 8.3 below.

with mass
δm = ρ(r) δx δy δz,

where r is measured from the reference fixed in the rigid body, O.

This effectively replaces
mI → δm = ρ(r)δV, rI → r

in the point particle model.

Summing over these regions and taking the limit that number of the individual integration regions
becomes increasing large but their size increasing small, while always still partitioning the volume,
the total mass becomes the volume integral

M =

∫∫∫
body

ρ(r) dx dy dz . (8.16)

Similarly, the inertia tensor (8.12) becomes

Iij =

∫∫∫
body

ρ(r) [(r · r)δij − rirj] dx dy dz . (8.17)

Here r = (r1, r2, r3) = (x, y, z), so that the last equation more explicitly reads

I =

∫∫∫
body

ρ(r)

 y2 + z2 −xy −zx
−xy z2 + x2 −yz
−zx −yz x2 + y2

 dx dy dz . (8.18)

Definition Themoment of inertia about an axis parallel to the unit vector n through O is I = nT I n.

In particular, the diagonal entries in (8.18) are the moments of inertia about the three axes. The
off-diagonal entries are called the products of inertia.
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8.2.1 Examples

Example Determine the inertia tensor about the centre of mass for a uniform rectangular cuboid of
mass M , and side lengths 2a, 2b, 2c.

The density ρ is constant as the cuboid is uniform, and hence ρ =M/(8abc).

The centre of mass is the origin of the cuboid by symmetry, and we take Cartesian axes aligned with
the edges.

It is then straightforward to see that the products of inertia in this basis are zero; for example

I(G)
12 = − M

8abc

∫ a

x=−a

∫ b

y=−b

∫ c

z=−c

xy dx dy dz = 0 , (8.19)

either by calculation or noting the integrand is of odd parity in x or y.

We next compute∫ a

x=−a

∫ b

y=−b

∫ c

z=−c

ρ x2 dx dy dz =
M

8abc

[
1

3
x3
]a
−a

2b · 2c =
Ma2

3
. (8.20)

The integrals involving y2 and z2 are of course similar, and we deduce that

I(G) =
M

3

 b2 + c2 0 0

0 c2 + a2 0

0 0 a2 + b2

 . (8.21)

■

The inertia tensor (8.21) is diagonal in this last example. One can always find a basis in which it is
diagonal, as already mentioned (Spectral Theorem, Linear Algebra II).

Definition On writing I with respect to a basis where it is diagonal, so that

I =

 I1 0 0

0 I2 0

0 0 I3

 ,

the eigenvalues Ii of I, i = 1, 2, 3, are called the principal moments of inertia. The corresponding
eigenvectors, with which the axes ei are aligned once I is diagonal, are called the principal axes.

A rigid body thus in general determines its own natural choice of rest frame: the origin is the centre
of mass G, while the axes are the principal axes. In this frame the inertia tensor about G is diagonal.
This is the natural choice of rest frame, but it may not always be the most convenient choice.

We may also consider two-dimensional bodies, such as a thin flat disc, or one-dimensional bodies
such as a rigid rod. In this case one replaces the density ρ by a surface density, or line density,
respectively, and integrates over the surface or curve, respectively.
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Two Dimensional Example. Determine the moment of inertia tensor about the centre of mass
for a thin uniform disc with radius a and mass M .

The surface density is ρ = M/(πa2), and by symmetry the centre of mass must be at the centre of
the disc.

Taking the centre of the disc to be the origin, with the disc lying in the (x, y) plane at z = 0, we
may introduce polar coordinates x = r cos θ, y = r sin θ in this plane.

We then have

I(G)
11 =

∫∫
ρ y2 dx dy =

M

πa2

∫ a

r=0

∫ 2π

θ=0

r2 sin2 θ r dr dθ =
1

4
Ma2 . (8.22)

Notice here that the integrand is ρ(y2 + z2) = ρ y2, as the body is two-dimensional and lies in the
plane z = 0.

By symmetry we must have I(G)
11 = I(G)

22 . We also need

I(G)
33 =

∫∫
ρ (x2 + y2) dx dy = I(G)

11 + I(G)
22 =

1

2
Ma2 . (8.23)

We have I(G)
13 = I(G)

23 = 0 as the disc lies in the plane z = 0. Also

I(G)
12 = −

∫∫
ρ xy dx dy = 0. (8.24)

by explicit calculation or by antisymmetry on the mapping x→ −x in the integrand.

Thus

I(G) =
Ma2

4

 1 0 0

0 1 0

0 0 2

 . (8.25)

■

One Dimensional Example. Determine the moment of inertia at one end of a uniform straight
rod of length l, mass M for any axis perpendicular to the rod.

The line density of the rod is ρ =M/l.

We take r = (x, 0, 0), so that x ∈ [0, l] parametrizes the distances of points in the rod from one end
at x = 0. Then we consider n = (0, 1, 0) as one axis perpendicular to rod.

Then

I22 =

∫ l

x=0

ρ x2 dx =
M

l
·
[
1

3
x3
]l
0

=
1

3
Ml2 .

We also note choosing any other axis perpendicular to (1, 0, 0) will generate the same results by
symmetry, as may be explicitly checked. ■
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8.3 Simple rigid body motion

In this section we study some simple examples of rigid body motion. In general the instantaneous
axis of rotation – the direction that ω = ω(t) points – can depend on time, e.g. throwing a chopping
board into the air. The inertia tensor in this case is modelled by the uniform rectangular cuboid
example.

Here we consider the simpler situation where the direction of the axis of rotation is fixed. Hence the
rotation is then described purely by the angular velocity ω(t) with ω = ω(t)n, where the direction
of rotation is the unit vector n.

Equations of Motion The centre of mass G of the rigid body satisfies Newton’s second law

MR̈G = Ṗ = Fext , (8.26)

where Fext is the total external force acting on the body (see Eqn. 7.6 for the derivation).

Its rotation can be determined via

L̇G = τ ext
G , (8.27)

where τ ext
G is the total external torque about G (see Eqn. 7.11 for the derivation).

Example. Cylinder rolling down an inclined plane. Consider a uniform circular cylinder
of length l, radius a and mass M . The cylinder rolls under gravity, without slipping, down a plane
inclined at an angle φ to the horizontal, such that every cylinder cross section lies in a plane spanned
by the gravitational acceleration, g, and the line of greatest slope of the inclined plane, as pictured
in Fig. 22. Determine the motion of the cylinder.

Solution: The motion is effectively two-dimensional by its symmetry, as shown Fig. 22, and hence
we only need to consider the vertical plane through a line of greatest slope of the inclined plane and
the centre of mass G of the cylinder.

The absence of slip for the cylinder entails that if x is the distance travelled down the slope and θ is
the angle through which the cylinder has turned then, for all times,

x = a θ . (8.28)

The rotation is purely along the axis of symmetry of the cylinder, which points into the page in
Figure 22, through G. Taking this to be the e3 direction of the cylinder body fixed reference frame
S, the angular velocity vector is

ω = (0, 0, θ̇) . (8.29)

We next need the inertia tensor of the cylinder, about G. This is of the form (see Problem Sheet 7)

I(G) =
1

2
Ma2

 ∗ 0 0

0 ∗ 0

0 0 1

 . (8.30)

Thus the angular momentum of the cylinder about G is simply

LG = (0, 0, I3 θ̇) , where I3 =
1

2
Ma2 . (8.31)
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Figure 22: A cross-section through a circular cylinder rolling down a plane inclined at angle φ to
the horizontal. The cylinder has radius a, and the distance travelled down the plane from a fixed
origin Ô is x. The point of contact with the plane is labelled P2, and a fixed point on the cylinder
is labelled P1. The angle between the radius vectors at P1 and P2 is θ, which is the angle through
which the cylinder has rolled. A frictional force F acts at P2 up the plane; a normal reaction N also
acts at P2. The gravitational force induces a total external force of Mg on the cylinder, depicted by
the arrow labelled Mg in the diagram.

The rotational form of Newton’s second law, Eqn. (8.27), requires us to find the external torque τ ext
G

about G.

There are three forces acting: the normal reaction N, gravity, and a frictional force F of magnitude
F = |F| at the point of contact P2 – see Figure 22. Physically, the friction force is required in order
for the cylinder not to slip.

The Normal reaction force pass through G, and thus have zero moments about G. Gravity does not
exert a torque about the Centre of Mass, as seen from Eqn. (7.12).

Thus the only contribution to the torque is from the friction force:

τ ext
G =

−−→
GP2 ∧ F = aF e3 . (8.32)

The sign here is easily determined using the right hand rule. Equation (8.27) thus gives

L̇G = (0, 0, I3 θ̈) = τ ext
G = (0, 0, a F ) =⇒ I3 θ̈ = aF . (8.33)

Noting the centre of mass motion is in a straight line down the plane, without loss we have RG(t) =

x(t)ê1 by choice of the Cartesian basis of the inertial reference frame Ŝ in which the slope is at rest.

Then, Newton’s second law for the linear momentum of the centre of mass (8.26), resolved in the ê1
direction, gives

Mẍ = −F +Mg sinφ . (8.34)
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Using θ = x/a and (8.33) we may eliminate F , θ to obtain giving

Mẍ = − I3
a2
ẍ+Mg sinφ (8.35)

and hence the equation of motion

ẍ =
2

3
g sinφ , (8.36)

and thus the motion is given by

x(t) =
1

3
g sinφ t2 + u0t+ x0,

where u0, x0 are constants. ■

In contrast, for a point particle sliding down the inclined plane without friction. The equation of
motion is ẍ = g sinφ and thus the acceleration of the rolling cylinder is thus reduced by a factor of
2/3 compared to the point particle.

One can equivalently solve the last problem by thinking about energy. For this we need to know the
gravitational potential energy of a rigid body:

Proposition The total gravitational potential energy of a rigid body in a uniform gravitational field
is as if all the mass was located at the centre of mass G. That is, with g = −gk, the the gravitational
potential energy is

V = MgZG , (8.37)

where ZG is the z coordinate of the centre of mass G.

Proof: Thinking of the rigid body as made up of masses δm = ρ(r) δx δy δz at positions R =

RG + r = (X, Y, Z) relative to the origin Ô of an inertial frame, these each have potential energy
δmg Z. The total potential energy is hence

V =

∫∫∫
body

ρ(r) g Z dx dy dz = MgZG , (8.38)

where the last step follows since by definition (7.2)

MRG =

∫∫∫
body

ρ(r)R dx dy dz , (8.39)

and RG = (XG, YG, ZG). ■

Recall from (8.14) and (8.15) that the kinetic energy is

T =
1

2
M |ṘG|2 +

1

2

3∑
i=1

I(G)
ij ωi ωj . (8.40)
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Example (Rolling cylinder again): The cylinder in our example rotates about a fixed axis e3 with
angular velocity ω = ωe3 and moment of inertia I33 = I3 =Ma2/2. Then, noting x = aθ by no-slip,
(8.40) simplifies to

T =
1

2
M |ṘG|2 +

1

2
I3 ω

2 =
1

2
Mẋ2 +

1

4
Ma2 θ̇2 =

3

4
Mẋ2. (8.41)

From (8.38) the gravitational potential energy is

V = MgZG = −Mg x sinφ . (8.42)

Thus the total energy is

E = T + V =
3

4
Mẋ2 −Mg x sinφ , (8.43)

where we have substituted for θ in terms of x using (8.28).

Since there is a frictional force F acting one might be worried that this energy is not conserved.
However, the point of contact P2 does not slip relative to the stationary slope and thus instantaneously
has the same speed as the slope, that is zero. Hence P2 is always instantaneously at rest, which means
that the friction does no work.

As usual the normal reaction also does no work, and so energy is indeed conserved.

Thus we find the equation of motion by setting the time derivative of (8.43) to zero, which yields:

0 = Ė =
3

2
Mẋ ẍ−Mg ẋ sinφ = Mẋ

[
3

2
ẍ− g sinφ

]
. (8.44)

generating the equation of motion via the term in the square bracket. Note the degenerate case of
ẋ = 0 at a point in time still entails 3ẍ/2− g sinφ = 0 by smoothness (but the case of ẋ = 0 for all

time gives θ̇ = 0 for all time and thus 0 = aF = F −mg sinφ from the force and angular momentum
balances, which has no solution for g sinφ > 0; thus ẋ = 0 is not a physical solution). ■

One may instead reinterpret the above as independent confirmation that the friction force does no
work given the equations of motion, i.e. 3ẍ/2− g sinφ = 0.

Example (Heavy pendulum): A heavy pendulum consists of a uniform rigid rod of mass M and
length l, pivoted freely at one end at the origin O. The rod swings freely in a vertical plane under
gravity. Determine the equation of motion for θ, the angle the rod makes with the vertical.

Solution: Notice in this example that we may take the origin Ô of the inertial frame to be the same
point as the end of the rod O. It is then easier to consider the angular momentum about O, rather
than about G.

We make use of polar coordinates in the plane of motion

er = − cos θ k+ sin θ i, eθ = sin θ k+ cos θ i,

where the vector j points into the page in Figure 23. The latter is the axis of rotation of the rod,
so we may immediately write the angular velocity vector ω = −θ̇ j. Here the sign is easily checked
using the right hand rule.
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Figure 23: A heavy pendulum consisting of a uniform heavy rod of length l, mass M , depicted as
the thick solid line. The polar coordinate system basis er, eθ used in the main text is also shown.

In the one dimensional rod example of Section (8.2.1) we calculated the moment of inertia about the
axis j through O for the heavy rod, giving I = 1

3
Ml2. Thus the angular momentum in the j direction

is

j · LO = −θ̇ j · I(O)j = −1

3
Ml2θ̇.

From Eqn (7.11) with P = O = Ô, a fixed point in an inertial reference frame, we have L̇O = τ ext
O .

The total external torque here just arises from the weight of the rod, and we may use Eqn (7.12) on
noting the centre of mass G is halfway along the rod, by symmetry, to give:

τ ext
O = −(RG −O) ∧ (Mg k) = − l

2
er ∧Mg k =

1

2
Mgl sin θ j , (8.45)

where in the last step we have used er ∧ k = − sin θ j. Putting everything together, the angular
equation of motion reads

L̇O = −I θ̈ j =
1

2
Mgl sin θ j = τ ext

O . (8.46)

Using I = 1
3
Ml2 hence gives the equation of motion

θ̈ = −3g

2l
sin θ . (8.47)

There is an extra factor of 3/2 compared with a simple pendulum of the same mass M and length l
– see (5.10). In other words, a heavy pendulum behaves exactly the same as a simple pendulum with
2/3 of the length. ■

8.4 Newton’s laws in a non-inertial frame

Throughout these lectures we have emphasized that Newton’s laws, in particular the second law,
should always be formulated in an inertial frame. By definition, this is a frame of reference in which
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Newton’s first law holds.

However, the Earth is rotating about its axis once per day. A fixed frame relative to the surface
of the Earth is then only approximately an inertial frame. What effect does this have, and more
generally can we formulate Newton’s laws in a general reference frame?

We begin with the same framework as section 8.1: Ŝ is a fixed inertial frame with origin Ô, and S
is another frame whose origin O is at position vector x(t), measured from Ô. See Figure 24.

frame S

e

x

O

O

frame S

1

e2

e3

e1

e
2

e
3

(t)

Figure 24: The reference frame Ŝ is a fixed inertial reference frame, and Newton’s laws of motion
are written in this reference frame. With respect to Ŝ, a general reference frame S has origin O
at position vector x = x(t) as measured from Ô, and its coordinate axes may be rotating, so that
ei = ei(t).

Suppose that a point particle has position vector R measured from Ô, and r measured from O, as
in (8.8). Then

R = x+ r . (8.48)

Recall also from section 8.1 that

Definition The time derivative of a vector q = q(t) in a frame S is(
d

dt

)
S
q =

3∑
i=1

q̇i ei , (8.49)

where q =
∑3

i=1 qi ei and {ei} is the orthonormal basis for S. That is, we differentiate the components
of q in this basis, with respect to time t.

The Coriolis formula (8.6) relates the time derivatives of the same vector q in S and Ŝ as(
dq

dt

)
Ŝ

=

(
dq

dt

)
S
+ ω ∧ q , (8.50)

where ω = ω(t) is the angular velocity of S relative to Ŝ.
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By definition then the accelerations â and a of our particle, as measured in the frames Ŝ and S,
respectively, are

â =

(
d

dt

)2

Ŝ
R =

(
d

dt

)2

Ŝ
(x+ r) =

(
d2x

dt2

)
Ŝ
+

(
d2r

dt2

)
Ŝ
,

a =

(
d

dt

)2

S
r . (8.51)

In order to write down Newton’s second law in the frame S we need the following result:

Proposition The accelerations in the two frames are related by

â = a+

(
dω

dt

)
S
∧ r+ 2ω ∧

(
dr

dt

)
S
+ ω ∧ (ω ∧ r) +A , (8.52)

where we have defined A =
(

d2x
dt2

)
Ŝ
, which is the acceleration of O relative to Ŝ.

Proof: We have, with use of the Coriolis formula (8.50),

â =

(
d

dt

)2

Ŝ
(x+ r) = A+

(
d

dt

)2

Ŝ
r

=

(
d

dt

)
Ŝ

[(
d

dt

)
S
+ ω∧

]
r+A =

[(
d

dt

)
S
+ ω∧

] [(
d

dt

)
S
+ ω∧

]
r+A

= a+ ω ∧
(
dr

dt

)
S
+

(
d

dt

)
S
(ω ∧ r) + ω ∧ (ω ∧ r) +A

= a+

(
dω

dt

)
S
∧ r+ 2ω ∧

(
dr

dt

)
S
+ ω ∧ (ω ∧ r) +A . (8.53)

■

Notice that using the Coriolis formula (8.50) we have(
dω

dt

)
Ŝ

=

(
dω

dt

)
S
+ ω ∧ ω =

(
dω

dt

)
S
, (8.54)

so that the time derivative of ω is the same in either reference frame.

Newton’s second law for a particle of mass m in the inertial frame Ŝ is

mâ = F , (8.55)

where F is the external force acting. Substituting for â in terms of a using (8.52) in Newton’s second
law, we thus have:

Theorem With r the particle’s position measured from the origin O of S Newton’s second law in
the frame S is

ma = F−m

(
dω

dt

)
S
∧ r− 2mω ∧

(
dr

dt

)
S
−mω ∧ (ω ∧ r)−mA . (8.56)
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where, relative to the inertial reference frame Ŝ, A is the acceleration of O and ω is the angular
velocity of S.

The additional terms on the right hand side of (8.56) may be interpreted as “fictitious forces”:

F1 = −m
(
dω

dt

)
S
∧ r , F2 = −2mω ∧

(
dr

dt

)
S
,

F3 = −mω ∧ (ω ∧ r) , F4 = −mA . (8.57)

These may be regarded as corrections to the force in F = ma due to the fact that the frame S is
accelerating.

F

ω

3

r
O

F1= -mωr

e3

e1

e2

e3

e2 =mω2r e1

Figure 25: The Euler force F1 and centrifugal force F3 in a roundabout frame. Here O = Ô, e1 is a
unit vector directed radially outwards, e2 is a unit vector orthogonal to this in the horizontal plane
of the roundabout, and e3 is a unit vector in the direction of the axis of rotation. The position vector
of particle of mass m is R = r = r e1. The Euler force is then F1 = −mω̇ e3 ∧ r = −mω̇r e2 while
the centrifugal force is −mω e3 ∧ (ω e3 ∧ r) = mω2r e1.

1. The force F1 is the Euler force, and arises from the angular acceleration of S; in particular it
is zero for a frame rotating at constant angular velocity. See Fig. 25.

2. The force F2 is the Coriolis force, and depends on the velocity

v =

(
dr

dt

)
S

of the particle as measured in S.
3. The force F3 is the centrifugal force. It lies in a plane through r and ω, is perpendicular to

the axis of rotation ω, and is directed away from the axis. This is the force you experience
standing on a roundabout, that seems to throw you outwards; see Fig. 25.

4. Finally, F4 is simply due to the acceleration of the origin O. For example, this force cancels
the Earth’s gravitational field in a freely falling frame.

Corollary The frame S is inertial if and only ifA = 0 = ω. That is, the origin O is not accelerating,
and the basis is not rotating.
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Proof (not lectured): First note that the frame S being inertial means that any particle with
no force acting (F = 0) moves at constant velocity in the frame S. If A = 0 = ω then (8.56)
with F = 0 immediately gives a = 0, and hence the particle moves with constant velocity in S.
Conversely, suppose that F = 0 and a particle moves with constant velocity r(t) = u t + r0 in S.
Here u and r0 are arbitrary constant vectors in S (effectively integration constants from integrating
a = 0). First setting u = r0 = 0 (so the particle is fixed at the origin of S), we immediately deduce
from substituting r ≡ 0 into (8.56) that A = 0. Next, for fixed time t = t0 we may set r0 = −u t0
(so the particle is at the origin of S at time t0), and again substitute for r(t) = u t+ r0 into (8.56).
Evaluated at time t = t0, the only term that survives is the Coriolis term −2mω(t0)∧u, which must
be zero for all u. But this implies that ω(t0) = 0, and since t0 was arbitrary hence ω ≡ 0. ■

8.4.1 Examples

In the two examples that follow the origin O of the rotating frame S may be taken to coincide with
Ô, so that x = 0 and the position vectors in the two frames are equal R = r.

Example Bead on a rotating, smooth, straight horizontal wire. Consider a bead (point particle), of

mass m, sliding on a frictionless straight horizontal wire that is fixed at O = Ô, and rotating in the
horizontal plane at constant angular velocity ω.

Show that the centrifugal force is in the direction of the wire away from O and determine the motion
of the bead.

O
x

ω = ωe3

mg

N

e1

e2

Figure 26: The bead on the rotating horizontal wire. The forces acting on the bead are −mg k and
the normal reaction N perpendicular to the wire.

Solution:

We choose a right-handed Cartesian basis {ei} for the wire-fixed frame, S, with

� e1 is a unit vector pointing along the wire

� e2 is a unit horizontal vector normal to the wire in the plane of rotation

� e3 is a unit vector vertically.
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� Note that e3 = k and without loss we take this to be ê3 of the inertial frame.

The position of the bead is r = R = x(t) e1, while the angular velocity of the frame is ω = ω e3.
With N the normal reaction of the wire on the bead, the total force on the bead for use of Newton’s
second law in an inertial reference frame is

F = N−mg e3 . (8.58)

However, as we are working in a frame that is rotating, so we must use Eqn. (8.56). Since ω is
constant and A = 0 we have

ma = F− 2mω ∧
(
dr

dt

)
S
−mω ∧ (ω ∧ r) . (8.59)

Noting (
dr

dt

)
S
= ẋe1

by the definition of the time derivative in the S frame, the Coriolis force is

F2 = −2mω ∧
(
dr

dt

)
S

= −2mω e3 ∧ ẋ e1 = −2mω ẋ e2 . (8.60)

The Centrifugal force is

F3 = −mω ∧ (ω ∧ r) = −mω2 e3 ∧ (e3 ∧ x e1) = mω2 x e1 . (8.61)

and we see that this acts to push the bead out along the wire away from O.

As in section 5.1, the wire being smooth means that the normal reaction N has no component along
the wire, N · e1 = 0. Thus taking the dot product of (8.69) with e1 gives

mẍ = mω2 x , (8.62)

with general solution

x(t) = A eωt +B e−ωt . (8.63)

For example, if the bead starts at a distance x = a from O with ẋ = 0 at time t = 0, then

x(t) =
a

2
(eωt + e−ωt) = a coshωt , (8.64)

and the bead flings outwards on the wire, with x(t) growing exponentially with t. ■

Example Bead on a rotating smooth hoop. A circular hoop of radius a rotates at constant angular
velocity ω about a vertical diameter. A bead slides smoothy on the hoop and has a position vector
which makes an angle φ with the vertical, as in Fig. 27. Show that the equation of motion is

φ̈+
(g
a
− ω2 cosφ

)
sinφ = 0 . (8.65)
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ω = ωe3

mg

N

e1
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φ r

Figure 27: The bead on the rotating hoop of radius a. Here the figure shows the hoop at the instant
at which it passes through the plane of the page. The radial component, Nr, of the normal reaction
N of the hoop on the bead is shown, while the N2 component points into the page at this instant,
which is the e2 direction.

Solution: We take the origins O = Ô to be the centre of the hoop, and the frame S to be the
hoop-fixed frame. In particular we take e1 to be a horizontal unit vector and e3 to be a vertical unit
vector, which define the (rotating) plane of the hoop.

Note as previously e3 = k and without loss we take this to be ê3 of the inertial frame.

The angular velocity is ω = ω e3 and we may then parametrize the position of the bead as

r = R = a sinφ e1 − a cosφ e3 . (8.66)

We then compute the velocity and acceleration of the bead with respect to the rotating, hoop-fixed,
frame: (

dr

dt

)
S

= a φ̇ cosφ e1 + a φ̇ sinφ e3 ,

a =

(
d2r

dt2

)
S

= a(φ̈ cosφ− φ̇2 sinφ) e1 + a(φ̈ sinφ+ φ̇2 cosφ) e3 . (8.67)

With N the normal reaction of the wire on the bead, the total force on the bead for use of Newton’s
second law in an inertial reference frame is

F = N−mg e3 . (8.68)

However, as we are working in a frame that is rotating, so we must use Eqn. (8.56). Since ω is

constant and A = 0, since O = Ô, we once more have

ma = F− 2mω ∧
(
dr

dt

)
S
−mω ∧ (ω ∧ r) . (8.69)
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Hence

ma = ma(φ̈ cosφ− φ̇2 sinφ) e1 +ma(φ̈ sinφ+ φ̇2 cosφ) e3 (8.70)

= F− 2mω e3 ∧ (a φ̇ cosφ e1 + a φ̇ sinφ e3)

−mω e3 ∧ [ω e3 ∧ (a sinφ e1 − a cosφ e3)]

= F− 2mω e3 ∧ a φ̇ cosφ e1 −mω e3 ∧ [ω e3 ∧ a sinφ e1]

= F− 2mωaφ̇ cosφ e3 ∧ e1 −mω2a sinφ e3 ∧ [ e3 ∧ e1]

= N−mg e3 − 2mω a φ̇ cosφ e2 +mω2 a sinφ e1 .

where in the latter lines the vector products have been simplified and determined, and Eqn. (8.68)
has been used.

The normal reaction N has a radial component Nr (see Figure 27) and a component N2 into the page.
We need to eliminate N, as N does not feature in the equation of motion. Noting N is perpendicular
to the tangent of the circular hoop,

t = cosφ e1 + sinφ e3 . (8.71)

we take the dot product of (8.70) with t.

This gives

ma φ̈ = −mg sinφ+mω2 a sinφ cosφ . (8.72)

Dividing through by ma then gives the required equation of motion. ■
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