Geometric Group Theory

Cornelia Druțu

University of Oxford

Part C course HT 2023, Oxford

Reduced paths of graphs of groups

Definition

Let (G, Y) be a graph of groups. A path $c=\left(g_{0}, e_{1}, g_{1}, e_{2}, \ldots, g_{n-1}, e_{n}, g_{n}\right)$ is reduced if
(1) $g_{0} \neq 1$ if $n=0$;
(2) If $e_{i+1}=\bar{e}_{i}$ then $g_{i} \notin \alpha_{e_{i}}\left(G_{e_{i}}\right)$.

We say that $g_{0} e_{1} \ldots e_{n} g_{n}$ is a reduced word.
Recall that $|c|$ is the element in $F(G, Y)$ represented by a path c.
Theorem
If c is a reduced path then $|c| \neq 1$ in $F(G, Y)$. In particular, $G_{v} \hookrightarrow F(G, Y)$ is injective for every $v \in V(Y)$.

Reduced paths of graphs of groups

Theorem
If c is a reduced path then $|c| \neq 1$ in $F(G, Y)$. In particular, $G_{v} \hookrightarrow F(G, Y)$ is injective for every $v \in V(Y)$.

Proof
First assume that Y is finite. We will argue by induction on the number of edges in Y. If there are no edges, then the theorem holds. So assume the theorem is true for graphs with n edges, and suppose that Y has $n+1$ edges.

Reduced paths of graphs of groups

Case 1: $Y=Y^{\prime} \cup\{e\}, o(e) \in V\left(Y^{\prime}\right), v=t(e) \notin V\left(Y^{\prime}\right)$. Then

$$
F(G, Y)=\left(F\left(G, Y^{\prime}\right) * G_{V}\right) *_{\alpha_{e}\left(G_{e}\right)}
$$

with stable letter e. A reduced word containing e corresponds to a reduced word in the HNN extension that is $\neq 1$.

Case 2: $Y=Y^{\prime} \cup\{e\},\{o(e), t(e)\} \subseteq V\left(Y^{\prime}\right)$. Then

$$
F(G, Y)=F\left(G, Y^{\prime}\right) *_{\alpha_{e}\left(G_{e}\right)}
$$

and the comment above applies again.
Now suppose that Y is infinite. Any reduced path c involves finitely many orbits of vertices and edges and so c lies within a finite subgraph Y_{1} of Y. c is a reduced path in $F\left(G, Y_{1}\right)$ and so $c \neq 1$ in $F\left(G, Y_{1}\right)$.

Reduced paths of graphs of groups

Theorem
If c is a reduced path then $|c| \neq 1$ in $F(G, Y)$. In particular, $G_{v} \hookrightarrow F(G, Y)$ is injective for every $v \in V(Y)$.

Corollary
For every $v \in V(Y)$, the homomorphism $G_{v} \rightarrow \pi_{1}(G, Y, T)$ is injective.

Proof.
$G_{v} \rightarrow F(G, Y)$ is injective and $\pi: \pi_{1}(G, Y, v) \rightarrow \pi_{1}(G, Y, T)$ is an isomorphism.

Graphs of groups

One can easily see that
(1) If Y has 2 vertices and one edge then

$$
\pi_{1}(G, Y, T)=G_{u} * G_{e} G_{v}
$$

(2) If Y has 1 vertex and 1 edge with stable letter ' e ' then

$$
\pi_{1}(G, Y, T)=G_{v} *_{\alpha_{e}\left(G_{e}\right)}
$$

and $\theta: \alpha_{e}\left(G_{e}\right) \rightarrow \alpha_{\bar{e}}\left(G_{e}\right) \in G_{v}, \theta(g)=\alpha_{\bar{e}} \circ \alpha_{e}^{-1}$.
(3) If $Y=Y^{\prime} \cup\{e\}$ and $t(e)=v \notin Y^{\prime}$ then

$$
\pi_{1}(G, Y, T)=\pi_{1}\left(G, Y^{\prime}, T^{\prime}\right) * G_{e} G_{v}
$$

(9) If $Y=Y^{\prime} \cup\{e\}$ and $v=t(e) \in Y^{\prime}$ then

$$
\pi_{1}(G, Y, T)=\pi_{1}\left(G, Y^{\prime}, T\right) *_{\alpha_{e}\left(G_{e}\right)}
$$

Reduced words of graphs of groups

We will find a choice of representatives for elements in $F(G, Y)$, where (G, Y) is a graph of groups. For each edge $e \in E(Y)$, pick a set S_{e} of left coset representatives of $\alpha_{\bar{e}}\left(G_{e}\right)$ in $G_{o(e)}$, with $1 \in S_{e}$.

Definition
An S-reduced path is a path $\left(s_{1}, e_{1}, \ldots, s_{n}, e_{n}, g\right)$ with

- $s_{i} \in S_{e_{i}} \forall i$;
- $s_{i} \neq 1$ if $e_{i}=\bar{e}_{i-1}$;
- $g \in G_{t\left(e_{n}\right)}$.

Lemma
Given $a, b \in V(Y)$, every element in $\pi[a, b]$ is represented by a unique S-reduced path.

Reduced words of graphs of groups

Lemma

Given $a, b \in V(Y)$, every element in $\pi[a, b]$ is represented by a unique S-reduced path.

Proof

Existence: Let $\gamma \in \pi[a, b]$ and consider the path
$c=\left(g_{0}, e_{1}, g_{1}, e_{2}, \ldots, g_{n-1}, e_{n}, g_{n}\right)$ such that $t\left(e_{i}\right)=o\left(e_{i+1}\right)$,
$g_{i} \in G_{t\left(e_{i}\right)}=G_{o\left(e_{i+1}\right)}$ and $\gamma=|c|$.
We will prove by induction on n that γ can be represented by an S-reduced path. For $n=0$ it is obvious. For $n=1$,

$$
\gamma=g_{0} e_{1} g_{1}=s_{0} \alpha_{\bar{e}_{1}}\left(h_{0}\right) e_{1} g_{1}=s_{0} e_{1} \alpha_{e_{1}}\left(h_{0}\right) g_{1}=s_{0} e_{1} g_{1}^{\prime}
$$

A similar argument holds for the inductive step.

Reduced words of graphs of groups

Uniqueness: Consider two reduced paths

$$
\begin{aligned}
c & =\left(s_{1}, e_{1}, \ldots, s_{n}, e_{n}, g\right) \\
c^{\prime} & =\left(\sigma_{1}, \eta_{1}, \ldots, \sigma_{k}, \eta_{k}, \gamma\right)
\end{aligned}
$$

such that $|c|=\left|c^{\prime}\right|$. Then

$$
\gamma^{-1} \eta_{k}^{-1} \sigma_{k}^{-1} \ldots \eta_{1}^{-1} \sigma_{1}^{-1} s_{1} e_{1} \ldots s_{n} e_{n} g=1
$$

We will prove that $c=c^{\prime}$ by induction on the length. The above word cannot be reduced hence $\eta_{1}^{-1}=e_{1}^{-1}$ and $\sigma_{1}^{-1} s_{1} \in \alpha_{\bar{e}_{1}}\left(G_{e_{1}}\right)$. So $\sigma_{1}=s_{1}$. And so we can apply the inductive assumption.

Graphs of groups and actions on trees

Theorem

$H=\pi_{1}\left(G, Y, a_{0}\right)$ acts on a tree T without inversions and such that
(1) The quotient graph $H \backslash T$ can be identified with Y;
(2) Let $q: T \rightarrow Y$ be the quotient map:

- For all $v \in V(T), \operatorname{Stab}_{H}(v)$ is a conjugate in H of $G_{q(v)}$;
(0 For all $e \in E(T), \operatorname{Stab}_{H}(e)$ is a conjugate in H of $G_{q(e)}$.
Proof: For all $a \in V(Y)$, we define an equivalence relation on $\pi\left[a_{0}, a\right]$ by

$$
\left|c_{1}\right| \sim\left|c_{2}\right| \Longleftrightarrow\left|c_{1}\right|=\left|c_{2}\right| g \text { for some } g \in G_{a}
$$

Vertices of the tree:

$$
V(T)=\bigsqcup_{a \in V(Y)} \pi\left[a_{0}, a\right] / \sim
$$

Graphs of groups and actions on trees

$$
V(T)=\bigsqcup_{a \in V(Y)} \pi\left[a_{0}, a\right] / \sim
$$

By the lemma, every element of $\pi\left[a_{0}, a\right] / \sim$ has a unique representative corresponding to an S-reduced path of the form $\left(s_{1}, e_{1}, \ldots, s_{n}, e_{n}\right)$,
$o\left(e_{1}\right)=a_{0}, t\left(e_{n}\right)=a$. Thus $V(T)$ can also be identified with S-reduced paths as above.

Edges of the tree: $\left\{\left(s_{1}, e_{1}, \ldots, s_{n}, e_{n}\right),\left(s_{1}, e_{1}, \ldots, s_{n}, e_{n}, s_{n+1}, e_{n+1}\right)\right\}$. Connectedness is obvious.

By our definition of edges, a cycle/circuit gives an S-reduced path with corresponding element $1 \in \pi\left[a_{0}, a\right]$ contradicting the uniqueness of the representation of a reduced path.

Graphs of groups and actions on trees

Action of $H=\pi_{1}\left(G, Y, a_{0}\right)=\pi\left[a_{0}, a_{0}\right]$ on T : For all $h \in \pi\left[a_{0}, a_{0}\right]$ and for all $[g] \in V(T)$ (equivalence classes of $\pi\left[a_{0}, a\right] / \sim$) define the action

$$
h \cdot[g]=[h g]
$$

- If $\left[g_{1}\right],\left[g_{2}\right]$ are such that $h \cdot\left[g_{1}\right]=\left[g_{2}\right]$ then $a_{1}=a_{2}$ where $g_{i} \in \pi\left[a_{0}, a_{i}\right]$.
- Conversely, if $\left[g_{1}\right],\left[g_{2}\right] \in \pi\left[a_{0}, a\right]$ then $h=g_{2} g_{1}^{-1} \in \pi\left[a_{0}, a_{0}\right]$ and $h\left[g_{1}\right]=\left[g_{2}\right]$.
Thus $H \backslash V(T)$ can be identified with $V(Y)$. And likewise $H \backslash E(T)$ can be identified with $E(Y)$.

