Geometric Group Theory

Cornelia Druțu

University of Oxford

Part C course HT 2023, Oxford

Quotations

Ralph Waldo Emerson: "Life is a journey, not a destination."
Donald Knuth: "It would be nice if we could design a virtual reality in Hyperbolic space, and meet each other there."

Graphs of groups and actions on trees

Theorem

$H=\pi_{1}\left(G, Y, a_{0}\right)$ acts on a tree T without inversions and such that
(1) The quotient graph $H \backslash T$ can be identified with Y;
(2) Let $q: T \rightarrow Y$ be the quotient map:

- For all $v \in V(T), \operatorname{Stab}_{H}(v)$ is a conjugate in H of $G_{q(v)}$;
(0 For all $e \in E(T), \operatorname{Stab}_{H}(e)$ is a conjugate in H of $G_{q(e)}$.
Proof: For all $a \in V(Y)$, we define an equivalence relation on $\pi\left[a_{0}, a\right]$ by

$$
\left|c_{1}\right| \sim\left|c_{2}\right| \Longleftrightarrow\left|c_{1}\right|=\left|c_{2}\right| g \text { for some } g \in G_{a}
$$

Vertices of the tree:

$$
V(T)=\bigsqcup_{a \in V(Y)} \pi\left[a_{0}, a\right] / \sim
$$

Graphs of groups and actions on trees

$$
V(T)=\bigsqcup_{a \in V(Y)} \pi\left[a_{0}, a\right] / \sim
$$

Every element of $\pi\left[a_{0}, a\right] / \sim$ has a unique representative corresponding to an S-reduced path of the form $\left(s_{1}, e_{1}, \ldots, s_{n}, e_{n}\right), o\left(e_{1}\right)=a_{0}, t\left(e_{n}\right)=a$. Thus $V(T)$ can also be identified with S-reduced paths as above.

Edges of the tree: $\left\{\left(s_{1}, e_{1}, \ldots, s_{n}, e_{n}\right),\left(s_{1}, e_{1}, \ldots, s_{n}, e_{n}, s_{n+1}, e_{n+1}\right)\right\}$. Connectedness is obvious.

By our definition of edges, a cycle/circuit gives an S-reduced path with corresponding element $1 \in \pi\left[a_{0}, a\right]$ contradicting the uniqueness of the representation of a reduced path.

Graphs of groups and actions on trees

Action of $H=\pi_{1}\left(G, Y, a_{0}\right)=\pi\left[a_{0}, a_{0}\right]$ on T : For all $h \in \pi\left[a_{0}, a_{0}\right]$ and for all $[g] \in V(T)$ (equivalence classes of $\pi\left[a_{0}, a\right] / \sim$) define the action

$$
h \cdot[g]=[h g]
$$

- If $\left[g_{1}\right],\left[g_{2}\right]$ are such that $h \cdot\left[g_{1}\right]=\left[g_{2}\right]$ then $a_{1}=a_{2}$ where $g_{i} \in \pi\left[a_{0}, a_{i}\right]$.
- Conversely, if $\left[g_{1}\right],\left[g_{2}\right] \in \pi\left[a_{0}, a\right]$ then $h=g_{2} g_{1}^{-1} \in \pi\left[a_{0}, a_{0}\right]$ and $h\left[g_{1}\right]=\left[g_{2}\right]$.
Thus $H \backslash V(T)$ can be identified with $V(Y)$. And likewise $H \backslash E(T)$ can be identified with $E(Y)$.

Graphs of groups and actions on trees

Stabilisers of vertices: For all $[v] \in V(T)$ with $v \in \pi\left[a_{0}, b\right]$,

$$
\begin{aligned}
h \in \operatorname{Stab}([v]) \Longleftrightarrow h v \sim v & \Longleftrightarrow h v=v g_{b} \text { for some } g_{b} \in G_{b} \\
& \Longleftrightarrow h=v g_{b} v^{-1} \text { for some } g_{b} \in G_{b}
\end{aligned}
$$

Thus $\operatorname{Stab}([v])=v G_{b} v^{-1}$.
Stabilisers of edges: Every edge in $E(T)$ is of the form $\delta=[[v],[v g e]]$, $v \in \pi\left[a_{0}, a\right], g \in G_{a}, \delta=[a, b]$. Then

$$
\begin{aligned}
\operatorname{Stab}(\delta) & =\operatorname{Stab}(v) \cap \operatorname{Stab}(v g e)=v G_{a} v^{-1} \cap(v g e) G_{b}(v g e)^{-1} \\
& =v g\left(G_{a} \cap e G_{b} e^{-1}\right) g^{-1} v^{-1}=v g\left(\alpha_{\bar{e}}\left(G_{e}\right)\right) g^{-1} v^{-1}
\end{aligned}
$$

We denote the tree thus obtained $\mathcal{T}\left(G, Y, a_{0}\right)$ and we call it the universal covering tree or the Bass-Serre tree of the graph of groups (G, Y).

Graphs of groups and actions on trees

Theorem
$H=\pi_{1}\left(G, Y, a_{0}\right)$ acts on a tree T without inversions and such that
(1) The quotient graph $H \backslash T$ can be identified with Y;
(2) Let $q: T \rightarrow Y$ be the quotient map:

- For all $v \in V(T), \operatorname{Stab}_{H}(v)$ is a conjugate in H of $G_{q(v)}$;
- For all $e \in E(T), \operatorname{Stab}_{H}(e)$ is a conjugate in H of $G_{q(e)}$.

Graphs of groups and actions on trees

Conversely, if a group Γ acts on a tree T with quotient Y then there exists a graph of groups (G, Y) such that $\Gamma \simeq \pi_{1}\left(G, Y, a_{0}\right)$. Indeed, suppose $\Gamma \curvearrowright T, Y=T / \Gamma$ and $p: T \rightarrow Y$. Let $X \subset S \subset T$ be such that $p(X)$ is a maximal tree of $Y, p(S)=Y$ and $\left.p\right|_{\text {edges of } S}$ is 1-to-1.
Notation: If v is a vertex of Y and e is an edge of Y then let v^{X} be the vertex of X such that $p\left(v^{X}\right)=v$ and similarly let e^{S} be the edge of S such that $p\left(e^{S}\right)=e$.

A graph of groups with graph Y :
(1) The map G :

- Let $G_{v}=\operatorname{Stab}_{\Gamma}\left(v^{X}\right)$;
- Let $G_{e}=\operatorname{Stab}_{\Gamma}\left(e^{S}\right)$.

Graphs of groups and actions on trees

(1) The map G :

- Let $G_{v}=\operatorname{Stab} \Gamma\left(v^{X}\right)$;
- Let $G_{e}=\operatorname{Stab}_{\Gamma}\left(e^{S}\right)$.
(2) For each edge e, we define $\alpha_{e}: G_{e} \rightarrow G_{t(e)}$: For all $x \in V(S)$, define

$$
g_{x}= \begin{cases}1 & \text { if } x \in V(X) \\ \text { some } g_{x} \text { such that } g_{x} x \in V(X) & \text { otherwise }\end{cases}
$$

Define $\alpha_{e}: G_{e} \rightarrow G_{t(e)}, \alpha_{e}(g)=g_{t(e)} g g_{t(e)}^{-1}$.
We can define a homomorphism $\varphi: F(G, Y) \rightarrow \Gamma$ by:

- $\forall a \in V(Y),\left.\varphi\right|_{G_{a}}=\operatorname{incl}_{G_{a}}$;
- $\forall e \in E(Y), e=[y, x], \varphi(e)=g_{y} g_{x}^{-1}$.

Graphs of groups and actions on trees

We can define a homomorphism $\varphi: F(G, Y) \rightarrow \Gamma$ by:

- $\forall a \in V(Y),\left.\varphi\right|_{G_{a}}=\operatorname{incl}_{G_{a}}$;
- $\forall e \in E(Y), e=[y, x], \varphi(e)=g_{y} g_{x}^{-1}$.

It satisfies the relations:

$$
\varphi\left(e \alpha_{e}(g) e^{-1}\right)=\left(g_{y} g_{x}^{-1}\right)\left(g_{x} g g_{x}^{-1}\right)\left(g_{x} g_{y}^{-1}\right)=g_{y} g g_{y}^{-1}=\varphi\left(\alpha_{\bar{e}}(g)\right)
$$

Also, $\forall e \in p(X), \varphi(e)=1$. Hence, φ defines a homomorphism

$$
\bar{\varphi}: \pi_{1}(G, Y, p(X)) \simeq \pi_{1}\left(G, Y, a_{0}\right) \rightarrow \Gamma
$$

Graphs of groups and actions on trees

Hence, φ defines a homomorphism

$$
\bar{\varphi}: \pi_{1}(G, Y, p(X)) \simeq \pi_{1}\left(G, Y, a_{0}\right) \rightarrow \Gamma
$$

Theorem
The homomorphism $\bar{\varphi}$ is an isomorphism. If \tilde{T} is the universal covering tree of (G, Y) then there exists a graph isomorphism $f: \tilde{T} \rightarrow T$ such that $\forall g \in \pi_{1}\left(G, Y, a_{0}\right), \forall v \in V(\tilde{T})$,

$$
f(g \cdot v)=\bar{\varphi}(g) \cdot f(v)
$$

Proof: Not provided and non-examinable.

Subgroups

Theorem
Let $\Gamma=\pi_{1}\left(G, Y, a_{0}\right)$. If $B \leq \Gamma$ then there exists (H, Z) a graph of groups such that $B=\pi_{1}\left(H, Z, b_{0}\right)$ and

- for all $v \in V(Z), H_{v} \leq g G_{a} g^{-1}$ for some $a \in V(Y), g \in \Gamma$;
- for all $e \in E(Z), H_{e} \leq \gamma G_{y} \gamma^{-1}$, for some $y \in E(Y), \gamma \in \Gamma$.

Proof.
Γ acts on a tree T with quotient a graph of groups (G, Y). The subgroup B acts on $T, \operatorname{Stab}_{B}(v) \leq \operatorname{Stab}_{\Gamma}(v)$ for all $v \in V(T)$ and $\operatorname{Stab}_{B}(e) \leq \operatorname{Stab}_{\Gamma}(e)$ for all $e \in E(T)$.

Subgroups

Theorem (Kurosh)
Suppose $G=G_{1} * \ldots * G_{n}$. If $H \leq G$ then

$$
H=\left(*_{i \in I} H_{i}\right) * F
$$

where I is finite or countable, F is a free group and the H_{i} are subgroups of conjugates of G_{j}.

Unique decomposition I

We say that G is indecomposable if $G \neq A * B$.
Theorem (Grushko)
Suppose G is finitely generated. There exists indecomposable G_{1}, \ldots, G_{k} such that

$$
G=G_{1} * \ldots * G_{k} * F_{n}
$$

Moreover, if there exist other indecomposable H_{1}, \ldots, H_{m} such that

$$
G=H_{1} * \ldots * H_{m} * F_{r}
$$

then $m=k, r=n$ and, after reordering, H_{i} is conjugate to G_{i} for all i.

Unique decomposition II

Theorem (Dunwoody)
Suppose Γ is finitely presented. Then 「 can be written as $\pi_{1}\left(G, Y, a_{0}\right)$ where (G, Y) is a finite graph of groups such that all edge groups are finite and all the G_{v} do not split over finite groups.

Quasi-isometry

Definition

Let $f: X \rightarrow Y$ be a map between metric spaces.
(1) We say that f is an (L, A)-quasi-isometric embedding if for some constants $L \geq 1, A \geq 0$ and for all $x_{1}, x_{2} \in X$ we have

$$
\frac{1}{L} d\left(x_{1}, x_{2}\right)-A \leq d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq L d\left(x_{1}, x_{2}\right)+A
$$

It is called a quasi-isometry if moreover we have that for all $y \in Y$, there exists some $x \in X$ such that $d(y, f(x)) \leq A$.
(2) If $I \subseteq \mathbb{R}$ is an interval, then an (L, A)-quasi-isometric embedding $\gamma: I \rightarrow X$ is called an (L, A)-quasi-geodesic.
(3) If there exists a quasi-isometry $f: X \rightarrow Y$ between two metric spaces then we say that X and Y are quasi-isometric.

Quasi-isometry

Examples

(1) \mathbb{Z}^{2} and \mathbb{R}^{2} are quasi-isometric.
(2) If G is a finitely generated group with finite generating sets S, S^{\prime} then the Cayley graphs $\Gamma(S, G), \Gamma\left(S^{\prime}, G\right)$ are quasi-isometric.
(3) If T_{n} is the n-valent tree, then $T_{n} \sim T_{3}$ for all $n \in \mathbb{N}$.

The following theorem implies the first example above and is our main source of quasi-isometries.

