Geometric Group Theory

Cornelia Druțu

University of Oxford

Part C course HT 2023, Oxford

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Part C course HT 2023, Oxford 1 / 17

Ralph Waldo Emerson: "Life is a journey, not a destination."

Donald Knuth: "It would be nice if we could design a virtual reality in Hyperbolic space, and meet each other there."

Theorem

 $H = \pi_1(G, Y, a_0)$ acts on a tree T without inversions and such that

- The quotient graph $H \setminus T$ can be identified with Y;
- ② Let q: T → Y be the quotient map:
 ③ For all v ∈ V(T), Stab_H(v) is a conjugate in H of G_{q(v)};
 ④ For all e ∈ E(T), Stab_H(e) is a conjugate in H of G_{q(e)}.

Proof: For all $a \in V(Y)$, we define an equivalence relation on $\pi[a_0, a]$ by

$$|c_1| \sim |c_2| \iff |c_1| = |c_2|g \text{ for some } g \in G_a$$

Vertices of the tree:

$$V(T) = \bigsqcup_{a \in V(Y)} \pi[a_0, a] / \sim$$

Geometric Group Theory

$$V(T) = \bigsqcup_{a \in V(Y)} \pi[a_0, a] / \sim$$

Every element of $\pi[a_0, a]/\sim$ has a unique representative corresponding to an S-reduced path of the form $(s_1, e_1, ..., s_n, e_n)$, $o(e_1) = a_0$, $t(e_n) = a$. Thus V(T) can also be identified with S-reduced paths as above.

Edges of the tree:
$$\{(s_1, e_1, ..., s_n, e_n), (s_1, e_1, ..., s_n, e_n, s_{n+1}, e_{n+1})\}$$
.
Connectedness is obvious.

By our definition of edges, a cycle/circuit gives an *S*-reduced path with corresponding element $1 \in \pi[a_0, a]$ contradicting the uniqueness of the representation of a reduced path.

Cornelia Druţu (University of Oxford)

Action of $H = \pi_1(G, Y, a_0) = \pi[a_0, a_0]$ on T: For all $h \in \pi[a_0, a_0]$ and for all $[g] \in V(T)$ (equivalence classes of $\pi[a_0, a]/\sim$) define the action

 $h \cdot [g] = [hg]$

- If $[g_1]$, $[g_2]$ are such that $h \cdot [g_1] = [g_2]$ then $a_1 = a_2$ where $g_i \in \pi[a_0, a_i]$.
- Conversely, if $[g_1], [g_2] \in \pi[a_0, a]$ then $h = g_2 g_1^{-1} \in \pi[a_0, a_0]$ and $h[g_1] = [g_2]$.

Thus $H \setminus V(T)$ can be identified with V(Y). And likewise $H \setminus E(T)$ can be identified with E(Y).

Stabilisers of vertices: For all $[v] \in V(T)$ with $v \in \pi[a_0, b]$,

$$h \in \operatorname{Stab}([v]) \iff hv \sim v \iff hv = vg_b \text{ for some } g_b \in G_b$$

 $\iff h = vg_bv^{-1} \text{ for some } g_b \in G_b$

Thus
$$\operatorname{Stab}([v]) = vG_bv^{-1}$$
.

Stabilisers of edges: Every edge in E(T) is of the form $\delta = [[v], [vge]]$, $v \in \pi[a_0, a], g \in G_a, \delta = [a, b]$. Then

$$\begin{aligned} \operatorname{Stab}(\delta) &= \operatorname{Stab}(v) \cap \operatorname{Stab}(vge) = vG_a v^{-1} \cap (vge)G_b(vge)^{-1} \\ &= vg(G_a \cap eG_b e^{-1})g^{-1}v^{-1} = vg(\alpha_{\bar{e}}(G_e))g^{-1}v^{-1} \end{aligned}$$

We denote the tree thus obtained $\mathcal{T}(G, Y, a_0)$ and we call it the universal covering tree or the Bass–Serre tree of the graph of groups (G, Y).

Cornelia Druțu (University of Oxford)

Theorem

 $H = \pi_1(G, Y, a_0)$ acts on a tree T without inversions and such that

• The quotient graph $H \setminus T$ can be identified with Y;

2 Let
$$q: T \rightarrow Y$$
 be the quotient map:

- For all $v \in V(T)$, $\operatorname{Stab}_H(v)$ is a conjugate in H of $G_{q(v)}$;
- For all $e \in E(T)$, $\operatorname{Stab}_H(e)$ is a conjugate in H of $G_{q(e)}$.

Conversely, if a group Γ acts on a tree T with quotient Y then there exists a graph of groups (G, Y) such that $\Gamma \simeq \pi_1(G, Y, a_0)$. Indeed, suppose $\Gamma \curvearrowright T$, $Y = T/\Gamma$ and $p: T \to Y$. Let $X \subset S \subset T$ be such that p(X) is a maximal tree of Y, p(S) = Y and $p|_{\text{edges of } S}$ is 1-to-1.

Notation: If v is a vertex of Y and e is an edge of Y then let v^X be the vertex of X such that $p(v^X) = v$ and similarly let e^S be the edge of S such that $p(e^S) = e$.

A graph of groups with graph Y:

• The map G:

• Let
$$G_v = \operatorname{Stab}_{\Gamma}(v^X);$$

• Let $G_e = \operatorname{Stab}_{\Gamma}(e^{S})$.

1 The map *G*:

Let G_ν = Stab_Γ(ν^X);
 Let G_e = Stab_Γ(e^S).

2 For each edge e, we define $\alpha_e : G_e \to G_{t(e)}$: For all $x \in V(S)$, define

$$g_x = egin{cases} 1 & ext{if } x \in V(X) \ ext{some } g_x ext{ such that } g_x x \in V(X) & ext{otherwise.} \end{cases}$$

Define $\alpha_e : G_e \to G_{t(e)}, \alpha_e(g) = g_{t(e)}gg_{t(e)}^{-1}$.

We can define a homomorphism $\varphi : F(G, Y) \to \Gamma$ by:

•
$$\forall a \in V(Y), \varphi |_{G_a} = \operatorname{incl}_{G_a};$$

•
$$\forall e \in E(Y)$$
, $e = [y, x]$, $\varphi(e) = g_y g_x^{-1}$.

We can define a homomorphism $\varphi : F(G, Y) \to \Gamma$ by:

- $\forall a \in V(Y), \varphi |_{G_a} = \operatorname{incl}_{G_a};$
- $\forall e \in E(Y)$, e = [y, x], $\varphi(e) = g_y g_x^{-1}$.

It satisfies the relations:

$$\varphi(e\alpha_{e}(g)e^{-1}) = (g_{y}g_{x}^{-1})(g_{x}gg_{x}^{-1})(g_{x}g_{y}^{-1}) = g_{y}gg_{y}^{-1} = \varphi(\alpha_{\bar{e}}(g))$$

Also, $\forall e \in p(X)$, $\varphi(e) = 1$. Hence, φ defines a homomorphism

$$ar{arphi}:\pi_1({\sf G},{\sf Y},{\sf p}({\sf X}))\simeq\pi_1({\sf G},{\sf Y},{\sf a}_0)
ightarrow{\sf \Gamma}$$

Cornelia Druțu (University of Oxford)

Hence, φ defines a homomorphism

$$ar{arphi}:\pi_1({\sf G},{\sf Y},{\sf p}({\sf X}))\simeq\pi_1({\sf G},{\sf Y},{\sf a}_0)
ightarrow{\sf \Gamma}$$

Theorem

The homomorphism $\overline{\varphi}$ is an isomorphism. If \widetilde{T} is the universal covering tree of (G, Y) then there exists a graph isomorphism $f : \widetilde{T} \to T$ such that $\forall g \in \pi_1(G, Y, a_0), \forall v \in V(\widetilde{T}),$

$$f(g \cdot v) = \bar{\varphi}(g) \cdot f(v)$$

Proof: Not provided and non-examinable.

Cornelia Druțu (University of Oxford)

Part C course HT 2023, Oxford

Subgroups

Theorem

Let $\Gamma = \pi_1(G, Y, a_0)$. If $B \leq \Gamma$ then there exists (H, Z) a graph of groups such that $B = \pi_1(H, Z, b_0)$ and

• for all
$$v \in V(Z)$$
, $H_v \leq gG_ag^{-1}$ for some $a \in V(Y)$, $g \in \Gamma$;

• for all
$$e\in E(Z)$$
, $H_e\leq \gamma {\sf G}_y\gamma^{-1}$, for some $y\in E(Y)$, $\gamma\in {\sf \Gamma}.$

Proof.

 Γ acts on a tree T with quotient a graph of groups (G, Y). The subgroup B acts on T, $\operatorname{Stab}_B(v) \leq \operatorname{Stab}_{\Gamma}(v)$ for all $v \in V(T)$ and $\operatorname{Stab}_B(e) \leq \operatorname{Stab}_{\Gamma}(e)$ for all $e \in E(T)$.

Subgroups

Theorem (Kurosh) Suppose $G = G_1 * ... * G_n$. If $H \le G$ then

 $H = (*_{i \in I} H_i) * F$

where I is finite or countable, F is a free group and the H_i are subgroups of conjugates of G_j .

Unique decomposition I

We say that G is indecomposable if $G \neq A * B$.

Theorem (Grushko)

Suppose G is finitely generated. There exists indecomposable $G_1, ..., G_k$ such that

$$G = G_1 * \ldots * G_k * F_n$$

Moreover, if there exist other indecomposable $H_1, ..., H_m$ such that

$$G = H_1 * \dots * H_m * F_r$$

then m = k, r = n and, after reordering, H_i is conjugate to G_i for all i.

Cornelia Druțu (University of Oxford)

Theorem (Dunwoody)

Suppose Γ is finitely presented. Then Γ can be written as $\pi_1(G, Y, a_0)$ where (G, Y) is a finite graph of groups such that all edge groups are finite and all the G_v do not split over finite groups.

Cornelia Druțu (University of Oxford)

Quasi-isometry

Definition

Let $f: X \to Y$ be a map between metric spaces.

We say that f is an (L, A)-quasi-isometric embedding if for some constants L ≥ 1, A ≥ 0 and for all x₁, x₂ ∈ X we have

 $\frac{1}{L}d(x_1, x_2) - A \le d(f(x_1), f(x_2)) \le Ld(x_1, x_2) + A$

It is called a quasi-isometry if moreover we have that for all $y \in Y$, there exists some $x \in X$ such that $d(y, f(x)) \leq A$.

- If I ⊆ ℝ is an interval, then an (L, A)-quasi-isometric embedding γ : I → X is called an (L, A)-quasi-geodesic.
- If there exists a quasi-isometry f : X → Y between two metric spaces then we say that X and Y are quasi-isometric.

Quasi-isometry

Examples

- **1** \mathbb{Z}^2 and \mathbb{R}^2 are quasi-isometric.
- **2** If G is a finitely generated group with finite generating sets S, S' then the Cayley graphs $\Gamma(S, G)$, $\Gamma(S', G)$ are quasi-isometric.
- **③** If T_n is the n-valent tree, then $T_n \sim T_3$ for all $n \in \mathbb{N}$.

The following theorem implies the first example above and is our main source of quasi-isometries.

