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Quotations

Ralph Waldo Emerson: “Life is a journey, not a destination.”

Donald Knuth:  “It would be nice if we could design a virtual reality in
Hyperbolic space, and meet each other there.”
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Graphs of groups and actions on trees

Theorem

H =m1(G,Y,ap) acts on a tree T without inversions and such that
© The quotient graph H\ T can be identified with Y;
@ Letq: T — Y be the quotient map:

@ Forallve V(T), Staby(v) is a conjugate in H of Gg(,y;
© Forall e € E(T), Stabp(e) is a conjugate in H of Gge).

Proof: For all a € V(Y), we define an equivalence relation on [ap, a] by
lc1| ~ || <= |c1| = |c2|g for some g € G,

Vertices of the tree:

V(T)= || nlao,al/ ~

acVv(y)
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Graphs of groups and actions on trees

V(T)= || nlao,al/ ~

acVv(yY)

Every element of 7[ag, a]/ ~ has a unique representative corresponding to
an S-reduced path of the form (s, e1,...,Sp, €n), o(e1) = ao, t(e,) = a.
Thus V(T) can also be identified with S-reduced paths as above.

Edges of the tree: {(s1,€1,...,Sn, €n), (S1, €1, .-, Sn, €ny Sn+1, €nt1)}-
Connectedness is obvious.

By our definition of edges, a cycle/circuit gives an S-reduced path with
corresponding element 1 € 7[ag, a] contradicting the uniqueness of the
representation of a reduced path.
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Graphs of groups and actions on trees

Action of H = 7m1(G, Y, ap) = m[ao, ao] on T: For all h € w[ap, ag] and for
all [g] € V(T) (equivalence classes of r[ag, a]/ ~) define the action

h-[g] = [hg]

o If [g1], [g2] are such that h- [g1] = [g2] then a1 = a2 where
gi € mlao, ajl.
o Conversely, if [g1], [g2] € 7[ao, a] then h = grg; * € 7[ag, a0] and
hlgi] = [g2]-
Thus H\V/(T) can be identified with V/(Y). And likewise H\E(T) can be
identified with E(Y).

v
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Graphs of groups and actions on trees

Stabilisers of vertices: For all [v] € V(T) with v € 7[ap, b],

h € Stab([v]) <= hv ~v <= hv = vg for some gp € Gp
<= h=vgyv ! for some gy € Gp
Thus Stab([v]) = vGpv L.
Stabilisers of edges: Every edge in E(T) is of the form § = [[v], [vge]],
v € mlag, al,g € G5,6 = [a,b]. Then

Stab(d) = Stab(v) N Stab(vge) = vG,v ' N (vge) Gp(vge) !
= vg(G,NeGre Hg v = vg(as(Ge))g vt
We denote the tree thus obtained 7(G, Y, ap) and we call it the universal
covering tree or the Bass—Serre tree of the graph of groups (G, Y). O
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Graphs of groups and actions on trees

Theorem

H =71(G, Y, ap) acts on a tree T without inversions and such that
@ The quotient graph H\T can be identified with Y;
@ Letq: T — Y be the quotient map:

@ Forallv e V(T), Staby(v) is a conjugate in H of Gg(,y;
O Forall e € E(T), Stabp(e) is a conjugate in H of Gge).
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Graphs of groups and actions on trees

Conversely, if a group I acts on a tree T with quotient Y then there exists
a graph of groups (G, Y) such that I ~ 71(G, Y, ap). Indeed, suppose
FT~T,Y=T/Tandp: T — Y. Let XCS C T besuch that p(X) is

a maximal tree of Y, p(S§) =Y and p‘edges of 5 15 1-to-1.

Notation: If v is a vertex of Y and e is an edge of Y then let vX be the
vertex of X such that p(vX) = v and similarly let e be the edge of S
such that p(e®) = e.

A graph of groups with graph Y

Q@ The map G:
o Let G, = Stabr(vX);
o Let G, = Stabr(e®).
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Graphs of groups and actions on trees

Q@ The map G:
o Let G, = Stabr(vX);
o Let G, = Stabr(e®).

@ For each edge e, we define ae : Ge — Gy(e): Forall x € V(S), define

1 if x € V(X)
&~ some gy such that gyx € V(X) otherwise.
Define ae : Ge — Gy(e), e(g) = gt(e)ggt_(i).

We can define a homomorphism ¢ : F(G,Y) — T by:
e Yae V(Y), ('D’Ga = inclg,;

o Vec E(Y), e=ly,x], ¢(e) = gyg .
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Graphs of groups and actions on trees

We can define a homomorphism ¢ : F(G,Y) — T by:
e Vae V(Y), 90’6 = inclg,;

o Veec E(Y), e=y,x], o(e) = gyg; "
It satisfies the relations:

pleae(g)e™) = (g8 )(exge )exgy ') = gygg, = v(ae(g))
Also, Ve € p(X), ¢(e) = 1. Hence, ¢ defines a homomorphism

¢ :m(G,Y,p(X)) ~m(G,Y,a) =T
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Graphs of groups and actions on trees

Hence, ¢ defines a homomorphism

¢ :m(G,Y,p(X)) ~m(G,Y,a) =T

Theorem

The homomorphism @ is an isomorphism. If T is the universal covering
tree of (G, Y') then there exists a graph isomorphism f : T — T such that
Vg € 7Tl(G, Y, ao), Vv € \/(T),

Proof: Not provided and non-examinable.
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-
Subgroups

Theorem

Let T = 71(G, Y, a0). If B<T then there exists (H,Z) a graph of groups
such that B = m1(H, Z, by) and

o forallve V(Z), H, < gG,g™! forsomeac V(Y), gcT;
o foralle € E(Z), He < yGyy~1, for somey € E(Y), vy €T,

Proof.

[ acts on a tree T with quotient a graph of groups (G, Y). The subgroup
B acts on T, Stabg(v) < Stabr(v) for all v € V(T) and
Stabg(e) < Stabr(e) for all e € E(T). O

o
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-
Subgroups

Theorem (Kurosh)
Suppose G = Gy * ... x G,. If H < G then

H = (xjc1H;) * F

where | is finite or countable, F is a free group and the H; are subgroups
of conjugates of G;.
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Unique decomposition |

We say that G is indecomposable if G # A x B.
Theorem (Grushko)

Suppose G is finitely generated. There exists indecomposable Gy, ..., Gy
such that

G=Gy*..x G * F,

Moreover, if there exist other indecomposable Hy, ..., H,, such that

G=Hi*..xHpnx*F,

then m = k, r = n and, after reordering, H; is conjugate to G; for all i.
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Unique decomposition ||

Theorem (Dunwoody)

Suppose I is finitely presented. Then I can be written as m1(G, Y, ap)

where (G, Y) is a finite graph of groups such that all edge groups are
finite and all the G, do not split over finite groups.
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Quasi-isometry

Definition
Let f : X — Y be a map between metric spaces.

@ We say that f is an (L, A)-quasi-isometric embedding if for some
constants L > 1, A > 0 and for all x;,x» € X we have

%d(xl,xz) L A< d(F(x), F(50)) < Ld(x1, %) + A

It is called a quasi-isometry if moreover we have that for all y € Y,
there exists some x € X such that d(y, f(x)) < A.

@ If | C R is an interval, then an (L, A)-quasi-isometric embedding
v : 1 — X is called an (L, A)-quasi-geodesic.

© If there exists a quasi-isometry f : X — Y between two metric spaces
then we say that X and Y are quasi-isometric.

v
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-
Quasi-isometry

Examples
@ 72 and R? are quasi-isometric.

@ If G is a finitely generated group with finite generating sets S, S’ then
the Cayley graphs T'(S, G), T(S’, G) are quasi-isometric.
© If T, is the n-valent tree, then T, ~ T3 for all n € N.

The following theorem implies the first example above and is our main
source of quasi-isometries.
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