Geometric Group Theory

Cornelia Druțu

University of Oxford

Part C course HT 2023, Oxford

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Part C course HT 2023, Oxford 1 / 19

Quasi-isometry

Definition

Let $f: X \to Y$ be a map between metric spaces.

f is an (L, A)-quasi-isometric embedding, for L ≥ 1, A ≥ 0 if for all x₁, x₂ ∈ X we have

$$\frac{1}{L}d(x_1, x_2) - A \le d(f(x_1), f(x_2)) \le Ld(x_1, x_2) + A.$$

It is called a quasi-isometry if moreover for every $y \in Y$, there exists $x \in X$ such that $d(y, f(x)) \leq A$.

- If I ⊆ ℝ is an interval, then an (L, A)-quasi-isometric embedding γ : I → X is called an (L, A)-quasi-geodesic.
- If there exists a quasi-isometry f : X → Y between two metric spaces then we say that X and Y are quasi-isometric.

Quasi-isometry

Example

If T_n is the n-valent tree, then $T_n \sim T_3$ for all $n \in \mathbb{N}$.

The following theorem is our main source of quasi-isometries.

Theorem (Milnor-Švarc)

Suppose G acts by isometries on a metric space X such that

- X is geodesic;
 - X is proper (closed balls are compact);
- 2 the action is
 - properly discontinuous: i.e. given a compact K ⊆ X, the set {g ∈ G : g(K) ∩ K ≠ ∅} is finite;

o cocompact: i.e. there exists a compact $K' \subseteq X$ such that GK' = X;

then G is finitely generated and every orbit map $G \to X$, $g \mapsto g \cdot x_0$ is a quasi-isometry when G is endowed with a word metric.

Proof is non-examinable Cornelia Druțu (University of Oxford)

Quasi-isometry

Corollary

Suppose G is a finitely generated group with some word metric.

- If $H \leq G$ is a finite index subgroup then H is quasi-isometric to G.
- ② If N ⊲ G is a finite normal subgroup then G is quasi-isometric to G/N.
- Suppose M is a compact Riemannian manifold. Then $\pi_1(M)$ is quasi-isometric to the universal cover \tilde{M} .

Hyperbolic space

Definition

Let X be a geodesic metric space. Given $A \subseteq X$ and r > 0, the r-(closed) neighbourhood of A in X is the subset

$$\mathcal{N}_r(A) = \{x \in X : d(x, A) \leq r\} \subseteq X.$$

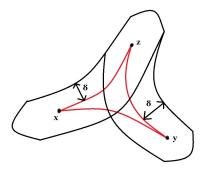
Let $x, y, z \in X$. A geodesic triangle [x, y, z] in X is the union of three geodesic paths [x, y], [y, z], [z, x]:

$$[x, y, z] = [x, y] \cup [y, z] \cup [z, x]$$

We say that a geodesic triangle [x, y, z] is δ -slim for some $\delta \ge 0$ if each side is within a δ -neighbourhood of the other two sides: for example $[x, y] \subseteq \mathcal{N}_{\delta}([y, z] \cup [z, x])$.

Slim triangles. Hyperbolic spaces

We say that a geodesic triangle [x, y, z] is δ -slim for some $\delta \ge 0$ if each side is within a δ -neighbourhood of the other two sides: for example $[x, y] \subseteq \mathcal{N}_{\delta}([y, z] \cup [z, x]).$



We say that X is δ -hyperbolic if every geodesic triangle is δ -slim.

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Thin triangles. Hyperbolic spaces

Equivalently:

If $\Delta = [x, y, z]$ is a triangle then:

- there exists a tripod $T_{\Delta} = [x', y'] \cup [y', z'] \cup [x', z'];$
- there exists an onto map $f_{\Delta} : \Delta \to T_{\Delta}$ which restricts to an isometry from each side [x, y], [y, z], [x, z] to the corresponding side [x', y'], [y', z'], [x', z'] in T_{Δ} .

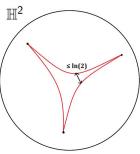
We say that Δ is δ -thin if for every $t \in T_{\Delta} = [x', y', z']$, diam $(f_{\Delta}^{-1}(t)) \leq \delta$.

We say that X is δ -hyperbolic if every geodesic triangle is δ -thin.

Examples of δ -hyperbolic spaces

Examples

- Any tree is 0-hyperbolic.
- Any metric space X with finite diameter is δ-hyperbolic (take δ to be the diameter of X).
- **3** \mathbb{R}^2 is not hyperbolic.
- \mathbb{H}^2 is $\ln(2)$ -hyperbolic; more generally, \mathbb{H}^n with $n \geq 2$:



$\delta\text{-hyperbolic spaces}$

Proposition (Morse lemma)

Let X be a δ -hyperbolic metric space. For any $\lambda \ge 1$ and $\mu \ge 0$, there exists some $M = M(\lambda, \mu)$ such that if

- $\alpha : [u, v] \to X$ is a (λ, μ) -quasigeodesic with endpoints $x = \alpha(u)$, $y = \alpha(v)$;
- $\gamma = [x, y]$ is a geodesic with the same endpoints as α ; then $\alpha \subseteq \mathcal{N}_{\mathcal{M}}(\gamma)$ and $\gamma \subseteq \mathcal{N}_{\mathcal{M}}(\alpha)$.

Corollary

Let X, Y be geodesic metric spaces. If X is δ -hyperbolic and Y is quasi-isometric to X then Y is δ' hyperbolic for some $\delta' \ge 0$.

$\delta\text{-hyperbolic spaces}$

Corollary

Let X, Y be geodesic metric spaces. If X is δ -hyperbolic and Y is quasi-isometric to X then Y is δ' hyperbolic for some $\delta' \ge 0$.

Proof.

Let $f: Y \to X$ be a (L, A)-quasi-isometry. For all geodesic triangles Δ in Y, $f(\Delta)$ is a triangle in X with quasigeodesic edges. By Morse Lemma, there exists a geodesic triangle Δ' such that

$$f(\Delta)\subseteq\mathcal{N}_{M}(\Delta')$$

Since Δ' is δ -slim, $f(\Delta)$ is $(\delta + 2M)$ -slim and so Δ is δ' -slim where $\delta' = \delta'(\delta, M, L, A)$.

Definition

A finitely generated group G is hyperbolic if some (equivalently, every) Cayley graph is hyperbolic.

Examples

- F_k is hyperbolic.
- **2** If $G \curvearrowright \mathbb{H}^n$ by isometries properly discontinuously and cocompactly, then G is hyperbolic.
- S Random groups (among finitely presented groups).

Dehn presentations

Definition

A group G has a Dehn presentation if there exists a finite presentation $G = \langle S | R \rangle$ such that every $w \in F(S)$ with $w =_G 1$ contains more than half of a word in R.

Lemma

Groups with Dehn presentations have solvable word problem.

Procedure: Check if $w \in F(S)$ contains more than half of a word in R.

- If the answer is no, then $w \neq 1$ in G.
- If the answer is yes, then w = aub where r = uv and $|u| > \frac{1}{2}|r| > |v|$. So in G, $w = \underbrace{av^{-1}b}_{}$ and |w'| < |w|.

The procedure terminates after finitely many steps.

12 19

Hyperbolic groups have Dehn presentations

Theorem

A hyperbolic group has a Dehn presentation. Hence, it is finitely presented and has solvable word problem.

Proof

There exists some $\delta \geq 0$ such that Cay(G, S) has δ -thin geodesic triangles. WLOG assume that $\delta \in \mathbb{N}$. Consider

$$R = \{ w \in F(S) : |w| \le 10\delta, w =_G 1 \}$$

Claim: $\langle S|R \rangle$ is a Dehn presentation.

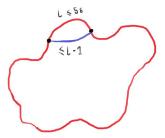
Cornelia Druțu (University of Oxford)

Hyperbolic groups have Dehn presentations

$$R = \{w \in F(S) : |w| \le 10\delta, w =_G 1\}$$

Claim: $\langle S|R \rangle$ is a Dehn presentation.

Take w = 1 in G. It labels a closed path in Cay(G, S) of length n. Let w(0) = e, w(1), ..., w(n-1) be the vertices of this path. If there exists a subpath of length $\leq 5\delta$ which is not geodesic then we are done.



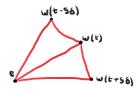
Cornelia Druţu (University of Oxford)

Geometric Group Theory

14 19

Hyperbolic groups

Otherwise, take w(t) such that d(e, w(t)) is maximal. Consider the geodesic triangles of vertices $[e, w(t), w(t-5\delta)]$ and $[e, w(t), w(t+5\delta)]$.



We have that $d(w(t \pm 5\delta), e) \le d(w(t), e)$. Therefore, since both the triangles are δ -thin,

$$d(w(t-2\delta), w(t+2\delta)) \leq 2\delta$$

and so $w|_{[t-2\delta,t+2\delta]}$ is not geodesic. Contradiction.

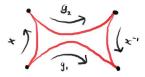
Hyperbolic groups

Lemma

Let $G = \langle S|R \rangle$ be a δ -hyperbolic group. If $g_1, g_2 \in G$ are conjugate then $g_1 = xg_2x^{-1}$ for some x with $|x| \leq (2|S|)^{2\delta + |g_1|} + |g_2|$.

Proof

Let x be of minimal length such that $g_1 = xg_2x^{-1}$.



The bound follows from minimality and thinness of the quadrilateral.

Hyperbolic groups

Lemma

Let $G = \langle S|R \rangle$ be a δ -hyperbolic group. If $g_1, g_2 \in G$ are conjugate then $g_1 = xg_2x^{-1}$ for some x with $|x| \leq (2|S|)^{2\delta + |g_1|} + |g_2|$.

Corollary

The conjugacy problem is solvable for hyperbolic groups.

Proof.

Given $w_1, w_2 \in F(S)$, check whether $w_2 = xw_1x^{-1}$ in *G* for all $x \in F(S)$ with $|x| \le (2|S|)^{2\delta + |w_1|} + |w_2|$. Can be done, because solvable word problem.

Theorem (Sela–Guirardel–Dahmani)

The isomorphism problem is solvable for hyperbolic groups.

Cornelia Druţu (University of Oxford)

More results

Theorem

Let G be an infinite hyperbolic group which is not virtually \mathbb{Z} . Then G contains a free subgroup of rank 2.

Theorem

Let G be a hyperbolic group and let $g_1, ..., g_n \in G$. Then there is some N > 0 such that the group $\langle g_1^N, ..., g_n^N \rangle$ is free.

Theorem (Sela) Torsion-free hyperbolic groups are Hopf.

Cornelia Druțu (University of Oxford)

Part C course HT 2023, Oxford

There are a number of open questions about hyperbolic groups:

- Are all hyperbolic groups residually finite?
- Let G be hyperbolic. Does G have a torsion-free subgroup of finite index?
- M. Gromov has conjectured that if G is torsion-free hyperbolic then G has finitely many torsion-free finite extensions.

