
Further Partial Differential Equations (2023)

Problem Sheet 4
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Figure 1: Normalised temperature u and liquid fraction θ versus enthalpy h.

1. Enthalpy for mushy layers

Show that the free boundary problem (2.31) may be posed as

∂h

∂t
=
∂2u

∂x2
+ q,

where h = Stu + θ is the (dimensionless) enthalpy. Deduce that u is a piecewise linear
function of h, as indicated in Figure 1.

Solution

This is obtained straightforwardly by substituting in.
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2. Unsteady electropainting

Consider the unsteady version of the model problem depicted in Figure 2.9, i.e., with the
conditions on y = 0 replaced by

∂φ

∂y
=
φ

h
,

∂h

∂t
=
∂φ

∂y
− δ y = 0, |x| < c, (1)

φ = 0 y = 0, |x| > c, (2)

where now c = c(t).

(a) By considering the set-up at t = 0, show how the boundary conditions (1) simplify and
hence find the solution for φ at t = 0 using the method of images or otherwise.

(b) By substituting this solution into (1) find the early time behaviour for h and thus show
that painting commences provided δ < 1/π, in which case the layer initially grows over
a half-width c0 =

√
1/(δπ)− 1.
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Solution

The unsteady problem is described by

∇2φ = 0 (3)

with

∂φ

∂y
=
φ

h
,

∂h

∂t
=
∂φ

∂y
− δ, y = 0, |x| < c, (4)

φ = 0 y = 0 |x| > c, (5)

φ ∼ − 1

4π
log
(
x2 + (y − 1)2

)
as (x, y)→ (0, 1). (6)

(a) At t = 0, h = 0 so (4) gives φ = 0 and so we have

∇2φ = 0 (7)

with

φ = 0 y = 0, (8)

φ ∼ − 1

4π
log
(
x2 + (y − 1)2

)
as (x, y)→ (0, 1). (9)

The solution to this problem is

φ =
1

4π
log

(
x2 + (y + 1)2

x2 + (y − 1)2

)
, (10)

using the method of images.

(b) So the growth is initially given by

∂h

∂t
=
∂φ

∂y
− δ (11)

=
1

π(1 + x2)
− δ, (12)

and so

h(x, t) ∼
(

1

π(1 + x2)
− δ
)
t. (13)

This is valid provided h ≥ 0 so

1

π(1 + x2)
≥ δ ⇒ |x| ≤

√
1

δπ
− 1 (14)

as required.
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3. One-dimensional welding

(a) Derive the dimensionless one-dimensional welding problem (2.31).

(b) Show that the normalised heating coefficient is given by

q =
a2J2

σk(Tm − T0)
=

σV 2

k(Tm − T0)
,

where V is the applied voltage. Assuming that we require q = O(1) to melt the plate,
roughly how high must the voltage be to achieve melting?
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Solution

(a) The dimensional problem is

ρc
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
+
J2

σ
0 ≤ x ≤ a,

∂T

∂x
= 0 on x = 0, t > 0,

T = T0(< Tm) on x = a, t > 0,

T = T0(< Tm) 0 < x < a, t = 0.

Non-dimensionalize via

T = Tm + (Tm − T0)u,

x = ax′,

t =

(
ρLa2

k(Tm − T0)

)
t′.

This gives the dimensionless problem (2.31) with

q =
J2a2

kσ(Tm − T0)
.

J = current per unit area = I/A.
V = IR.
R = a/σA where a is the length of the material.
So J = V σ/a. So

q =
V 2σ

k(Tm − T0)
.

We need q = O(1) for a chance to melt the plate, so we need

V &

√
k(Tm − T0)

σ
.
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4. OPTIONAL (will not be marked) One-dimensional welding

(a) Derive the dimensionless one-dimensional welding problem (2.31).

(b) Show that the normalised heating coefficient is given by

q =
a2J2

σk(Tm − T0)
=

σV 2

k(Tm − T0)
,

where V is the applied voltage. Assuming that we require q = O(1) to melt the plate,
roughly how high must the voltage be to achieve melting?

(c) Consider the dimensionless one-dimensional welding problem (2.31). Show that, before
melting occurs, the solution is given by

u(x, t) = −1 +
q

2

(
1− x2

)
+

∞∑
n=0

cn cos
[(
n+ 1

2

)
πx
]

e−(n+ 1
2 )

2
π2t/St (15)

and use Fourier series to evaluate the constants cn.

(d) Deduce that the sample will eventually melt provided q > 2, at a time tm that satisfies

q =

(
1

2
− 2

∞∑
n=0

(−1)ne−(n+ 1
2 )

2
π2tm/St(

n+ 1
2

)3
π3

)−1
. (16)

(e) Show that the leading-order asymptotic dependence of equation (16) between tm/St
and q is

tm
St
∼ 1

q
as tm/St→ 0,

tm
St
∼ 4

π2
log

(
64

π3(q − 2)

)
as tm/St→∞.

(Hint: for the second limit, split up the summation (16) into 0 ≤ n ≤ m andm ≤ n <∞
where m2tm/St� 1 and m� 1.)

(f) For t > tm, consider the free boundary problem (2.31). Explain why s2(t) = 0 until
t = tm + 1/q.

(g) Now consider the limit St→ 0. Show that the plate will have melted entirely to a depth
x = 1−

√
2/q (so the mush has disappeared) after a time tc ∼ tm + 1/q +O(St).

(h) Show that the subsequent leading-order behaviour of the solid–liquid free boundary
x = s(t) is governed by

ds

dt
=
q

2
(1 + s)− 1

1− s
, s(tc) = 1−

√
2

q
.

(i) Deduce that the solid ahead of the free boundary is not superheated, and that the
system approaches a steady state with the plate melted to a depth x =

√
1− 2/q.
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Solution

(a) The dimensional problem is

ρc
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
+
J2

σ
0 ≤ x ≤ a,

∂T

∂x
= 0 on x = 0, t > 0,

T = T0(< Tm) on x = a, t > 0,

T = T0(< Tm) 0 < x < a, t = 0.

Non-dimensionalize via

T = Tm + (Tm − T0)u,

x = ax′,

t =

(
ρLa2

k(Tm − T0)

)
t′.

This gives the dimensionless problem (2.31) with

q =
J2a2

kσ(Tm − T0)
.

J = current per unit area = I/A.
V = IR.
R = a/σA where a is the length of the material.
So J = V σ/a.

(b) From (a) we have

q =
V 2σ

k(Tm − T0)
.

We need q = O(1) for a chance to melt the plate, so we need

V &

√
k(Tm − T0)

σ
.

(c) A particular solution to (2.31) is up = −1 + q/2(1 − x2). We then seek a solution
u = up + v where v satisfies

St
∂v

∂t
=
∂2v

∂x2
, 0 ≤ x ≤ 1, (17)

∂v

∂x
= 0 on x = 0, (18)

v = 0 on x = 1, (19)

v = −q
2

(
1− x2

)
at t = 0. (20)

Separation of variables gives the general homogeneous solution to this problem as

v(x, t) =

∞∑
n=0

cn cos((n+ 1/2)πx)exp
(
−(n+ 1/2)2π2t/St

)
where

cn = −q
∫ 1

0

(1− x2) cos((n+ 1/2)πx) = − 2q(−1)n

(n+ 1/2)3π3
.

is obtained by multiplying v(x, t) by cos((m+ 1/2)πx) and integrating using the initial
condition (20).
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(d) The sample will melt if u = 0. The first place that this happens will be at x = 0. Here,

u =
q

2
− 1−

∞∑
n=0

2q(−1)n

(n+ 1/2)3π3
exp(−(n+ 1/2)2π2t/St) (21)

As t → ∞, u → q/2 − 1 so we certainly need q > 2. Setting u = 0 in (21) and
rearranging gives (16).

(e) When tm/St� 1 we retain only the first term in the exponential, which gives

1

q
=

1

2
− 16

π2
exp

(
−π2tm/4St

)
, (22)

which may be rearranged to give

tm
St
∼ 4

π2
log

(
32q

π3(q − 2)

)
∼ 4

π2
log

(
64

π3(q − 2)

)
as tm/St→∞ (23)

since q ∼ 2 as tm/St→∞. When tm/St� 1 we split up the summation into 0 ≤ n ≤ m
and m ≤ n <∞ where m2tm/St� 1 and m� 1. Then in the first summation we can
expand the exponential while we can neglect the second summation since it is O(1/m3).
This gives

1

q
=

1

2
− 2

m∑
n=0

(−1)n

(n+ 1/2)3π3
+ 2

m∑
n=0

(−1)n(n+ 1/2)2π2

(n+ 1/2)3π3

tm
St
. (24)

Taking the limit as m→∞ gives

1

q
=

1

2
− 2× 1

4
+ 2× 1

2

tm
St
, (25)

and so

tm
St
∼ 1

q
as tm/St→ 0. (26)

(f) In the mushy region, ∂θ/∂t = q so θ takes a time 1/q to go from θ = 0 to θ = 1 when
a purely liquid region exists.

(g) When all melting is done the mushy layer disappears and we are left with just solid and
liquid and an interface x = s. In the solid we have

∂2u

∂x2
= −q, in s(t) ≤ x ≤ 1,

u = −1, on x = 1,

u = 0, on x = s(t),

∂u

∂x
= 0, on x = s(t),

which gives u = −q(x− s)2/2 and s = 1−
√

2/q as required.

(h) When all melting is done the mushy layer disappears and we are left with just solid
and liquid and we have reached the previous state we are reduced to solving a regular
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Stefan problem again:

∂2u

∂x2
= −q 0 ≤ x ≤ s(t), (27)

∂2u

∂x2
= −q s(t) ≤ x ≤ 1, (28)

∂u

∂x
= 0 x = 0, (29)

ds

dt
=
∂u+

∂x
− ∂u−

∂x
, x = s(t) (30)

u+ = u− = 0 x = s(t), (31)

u = −1, x = 1. (32)

This gives

u =
q

2
(s2 − x2) 0 ≤ x ≤ s(t), (33)

u = (s− x)

[
1

1− s
+
q

2
(x− 1)

]
, s(t) ≤ x ≤ 1 (34)

and so

ds

dt
=
q

2
(1 + s)− 1

1− s
, (35)

which finally gives

s = 1−
√

2

q
at t = 0 (36)

as required.

(i) The system is superheated if ∂u+/∂x > 0 at x = s+. Now

∂u+

∂x

∣∣∣∣
x=s+

= − 1

1− s
+

1

2
q(1− s) (37)

= (1− s)
[
q

2
− 1

(1− s)2

]
. (38)

Now s > 1 −
√

2/q for all time, so q/2 − 1/(1 − s)2 < 0 and 1 − s2 > 0 and therefore
∂u+/∂x < 0 and the system is not superheated.

As t→∞, ds/dt→ 0 so

q

2
(1 + s) =

1

1− s
⇒ s =

√
1− 2

q
(39)

as required.
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