Further Partial Differential Equations (2023) Problem Sheet 4

Figure 1: Normalised temperature u and liquid fraction θ versus enthalpy h.

1. Enthalpy for mushy layers

Show that the free boundary problem (2.31) may be posed as

$$\frac{\partial h}{\partial t} = \frac{\partial^2 u}{\partial x^2} + q,$$

where $h = \operatorname{St} u + \theta$ is the (dimensionless) enthalpy. Deduce that u is a piecewise linear function of h, as indicated in Figure 1.

Solution

This is obtained straightforwardly by substituting in.

2. Unsteady electropainting

Consider the unsteady version of the model problem depicted in Figure 2.9, i.e., with the conditions on y = 0 replaced by

$$\frac{\partial \phi}{\partial y} = \frac{\phi}{h}, \quad \frac{\partial h}{\partial t} = \frac{\partial \phi}{\partial y} - \delta \qquad y = 0, \ |x| < c, \tag{1}$$

$$\phi = 0 \qquad y = 0, \ |x| > c, \tag{2}$$

$$\phi = 0 \qquad \qquad y = 0, \ |x| > c, \tag{2}$$

where now c = c(t).

- (a) By considering the set-up at t=0, show how the boundary conditions (1) simplify and hence find the solution for ϕ at t=0 using the method of images or otherwise.
- (b) By substituting this solution into (1) find the early time behaviour for h and thus show that painting commences provided $\delta < 1/\pi$, in which case the layer initially grows over a half-width $c_0 = \sqrt{1/(\delta\pi) - 1}$.

Solution

The unsteady problem is described by

$$\nabla^2 \phi = 0 \tag{3}$$

with

$$\frac{\partial \phi}{\partial y} = \frac{\phi}{h}, \qquad \frac{\partial h}{\partial t} = \frac{\partial \phi}{\partial y} - \delta, \qquad \qquad y = 0, \quad |x| < c,$$
 (4)

$$\phi = 0 \qquad \qquad y = 0 \quad |x| > c, \tag{5}$$

$$\phi \sim -\frac{1}{4\pi} \log \left(x^2 + (y-1)^2 \right)$$
 as $(x,y) \to (0,1)$. (6)

(a) At t = 0, h = 0 so (4) gives $\phi = 0$ and so we have

$$\nabla^2 \phi = 0 \tag{7}$$

with

$$\phi = 0 y = 0, (8)$$

$$\phi \sim -\frac{1}{4\pi} \log (x^2 + (y-1)^2)$$
 as $(x,y) \to (0,1)$. (9)

The solution to this problem is

$$\phi = \frac{1}{4\pi} \log \left(\frac{x^2 + (y+1)^2}{x^2 + (y-1)^2} \right),\tag{10}$$

using the method of images.

(b) So the growth is initially given by

$$\frac{\partial h}{\partial t} = \frac{\partial \phi}{\partial y} - \delta \tag{11}$$

$$= \frac{1}{\pi(1+x^2)} - \delta,\tag{12}$$

and so

$$h(x,t) \sim \left(\frac{1}{\pi(1+x^2)} - \delta\right)t. \tag{13}$$

This is valid provided $h \ge 0$ so

$$\frac{1}{\pi(1+x^2)} \ge \delta \qquad \Rightarrow \qquad |x| \le \sqrt{\frac{1}{\delta\pi} - 1} \tag{14}$$

as required.

3. One-dimensional welding

- (a) Derive the dimensionless one-dimensional welding problem (2.31).
- (b) Show that the normalised heating coefficient is given by

$$q = \frac{a^2 J^2}{\sigma k (T_{\rm m} - T_0)} = \frac{\sigma V^2}{k (T_{\rm m} - T_0)},$$

where V is the applied voltage. Assuming that we require q = O(1) to melt the plate, roughly how high must the voltage be to achieve melting?

Solution

(a) The dimensional problem is

$$\begin{split} \rho c \frac{\partial T}{\partial t} &= \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{J^2}{\sigma} & 0 \leq x \leq a, \\ \frac{\partial T}{\partial x} &= 0 & \text{on} \quad x = 0, t > 0, \\ T &= T_0 (< T_{\rm m}) & \text{on} \quad x = a, t > 0, \\ T &= T_0 (< T_{\rm m}) & 0 < x < a, t = 0. \end{split}$$

Non-dimensionalize via

$$T = T_{\rm m} + (T_m - T_0) u,$$

$$x = ax',$$

$$t = \left(\frac{\rho L a^2}{k(T_{\rm m} - T_0)}\right) t'.$$

This gives the dimensionless problem (2.31) with

$$q = \frac{J^2 a^2}{k\sigma(T_{\rm m} - T_0)}.$$

J = current per unit area = I/A.

V = IR.

 $R = a/\sigma A$ where a is the length of the material.

So $J = V\sigma/a$. So

$$q = \frac{V^2 \sigma}{k(T_{\rm m} - T_0)}.$$

We need q = O(1) for a chance to melt the plate, so we need

$$V \gtrsim \sqrt{\frac{k(T_{\rm m} - T_0)}{\sigma}}.$$

4. OPTIONAL (will not be marked) One-dimensional welding

- (a) Derive the dimensionless one-dimensional welding problem (2.31).
- (b) Show that the normalised heating coefficient is given by

$$q = \frac{a^2 J^2}{\sigma k (T_{\rm m} - T_0)} = \frac{\sigma V^2}{k (T_{\rm m} - T_0)},$$

where V is the applied voltage. Assuming that we require q = O(1) to melt the plate, roughly how high must the voltage be to achieve melting?

(c) Consider the dimensionless one-dimensional welding problem (2.31). Show that, before melting occurs, the solution is given by

$$u(x,t) = -1 + \frac{q}{2} \left(1 - x^2 \right) + \sum_{n=0}^{\infty} c_n \cos \left[\left(n + \frac{1}{2} \right) \pi x \right] e^{-\left(n + \frac{1}{2} \right)^2 \pi^2 t / \text{St}}$$
 (15)

and use Fourier series to evaluate the constants c_n .

(d) Deduce that the sample will eventually melt provided q > 2, at a time $t_{\rm m}$ that satisfies

$$q = \left(\frac{1}{2} - 2\sum_{n=0}^{\infty} \frac{(-1)^n e^{-\left(n + \frac{1}{2}\right)^2 \pi^2 t_{\text{m}}/\text{St}}}{\left(n + \frac{1}{2}\right)^3 \pi^3}\right)^{-1}.$$
 (16)

(e) Show that the leading-order asymptotic dependence of equation (16) between $t_{\rm m}/{\rm St}$ and q is

$$\begin{split} \frac{t_{\rm m}}{\rm St} \sim \frac{1}{q} & \text{as} \quad t_{\rm m}/{\rm St} \to 0, \\ \frac{t_{\rm m}}{\rm St} \sim \frac{4}{\pi^2} \log \left(\frac{64}{\pi^3 (q-2)} \right) & \text{as} \quad t_{\rm m}/{\rm St} \to \infty. \end{split}$$

(Hint: for the second limit, split up the summation (16) into $0 \le n \le m$ and $m \le n < \infty$ where $m^2 t_m / St \ll 1$ and $m \gg 1$.)

- (f) For $t > t_{\rm m}$, consider the free boundary problem (2.31). Explain why $s_2(t) = 0$ until $t = t_{\rm m} + 1/q$.
- (g) Now consider the limit St $\to 0$. Show that the plate will have melted entirely to a depth $x = 1 \sqrt{2/q}$ (so the mush has disappeared) after a time $t_c \sim t_m + 1/q + O(St)$.
- (h) Show that the subsequent leading-order behaviour of the solid–liquid free boundary x = s(t) is governed by

$$\frac{ds}{dt} = \frac{q}{2}(1+s) - \frac{1}{1-s},$$
 $s(t_c) = 1 - \sqrt{\frac{2}{q}}.$

(i) Deduce that the solid ahead of the free boundary is not superheated, and that the system approaches a steady state with the plate melted to a depth $x = \sqrt{1 - 2/q}$.

6

Solution

(a) The dimensional problem is

$$\rho c \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{J^2}{\sigma}$$

$$0 \le x \le a,$$

$$\frac{\partial T}{\partial x} = 0$$
on $x = 0, t > 0,$

$$T = T_0(< T_m)$$
on $x = a, t > 0,$

$$T = T_0(< T_m)$$

$$0 \le x \le a,$$

$$0 \le$$

Non-dimensionalize via

$$T = T_{\rm m} + (T_m - T_0) u,$$

$$x = ax',$$

$$t = \left(\frac{\rho L a^2}{k(T_{\rm m} - T_0)}\right) t'.$$

This gives the dimensionless problem (2.31) with

$$q = \frac{J^2 a^2}{k\sigma(T_{\rm m} - T_0)}.$$

J = current per unit area = I/A.

V = IR

 $R = a/\sigma A$ where a is the length of the material.

So $J = V\sigma/a$.

(b) From (a) we have

$$q = \frac{V^2 \sigma}{k(T_{\rm m} - T_0)}.$$

We need q = O(1) for a chance to melt the plate, so we need

$$V \gtrsim \sqrt{\frac{k(T_{\rm m} - T_0)}{\sigma}}.$$

(c) A particular solution to (2.31) is $u_p = -1 + q/2(1-x^2)$. We then seek a solution $u = u_p + v$ where v satisfies

$$\operatorname{St}\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2}, \qquad 0 \le x \le 1, \tag{17}$$

$$\frac{\partial v}{\partial x} = 0 \qquad \text{on} \quad x = 0, \tag{18}$$

$$v = 0 \qquad \qquad \text{on} \quad x = 1, \tag{19}$$

$$v = -\frac{q}{2}(1 - x^2)$$
 at $t = 0$. (20)

Separation of variables gives the general homogeneous solution to this problem as

$$v(x,t) = \sum_{n=0}^{\infty} c_n \cos((n+1/2)\pi x) \exp(-(n+1/2)^2 \pi^2 t/\text{St})$$

where

$$c_n = -q \int_0^1 (1 - x^2) \cos((n + 1/2)\pi x) = -\frac{2q(-1)^n}{(n + 1/2)^3 \pi^3}.$$

is obtained by multiplying v(x,t) by $\cos((m+1/2)\pi x)$ and integrating using the initial condition (20).

(d) The sample will melt if u=0. The first place that this happens will be at x=0. Here,

$$u = \frac{q}{2} - 1 - \sum_{n=0}^{\infty} \frac{2q(-1)^n}{(n+1/2)^3 \pi^3} \exp(-(n+1/2)^2 \pi^2 t/\text{St})$$
 (21)

As $t \to \infty$, $u \to q/2 - 1$ so we certainly need q > 2. Setting u = 0 in (21) and rearranging gives (16).

(e) When $t_{\rm m}/{\rm St} \gg 1$ we retain only the first term in the exponential, which gives

$$\frac{1}{q} = \frac{1}{2} - \frac{16}{\pi^2} \exp\left(-\pi^2 t_{\rm m}/4 \text{St}\right),\tag{22}$$

which may be rearranged to give

$$\frac{t_{\rm m}}{\rm St} \sim \frac{4}{\pi^2} \log \left(\frac{32q}{\pi^3 (q-2)} \right) \sim \frac{4}{\pi^2} \log \left(\frac{64}{\pi^3 (q-2)} \right) \qquad \text{as} \quad t_{\rm m}/\rm St \to \infty$$
 (23)

since $q \sim 2$ as $t_{\rm m}/{\rm St} \to \infty$. When $t_{\rm m}/{\rm St} \ll 1$ we split up the summation into $0 \le n \le m$ and $m \le n < \infty$ where $m^2 t_{\rm m}/{\rm St} \ll 1$ and $m \gg 1$. Then in the first summation we can expand the exponential while we can neglect the second summation since it is $O(1/m^3)$. This gives

$$\frac{1}{q} = \frac{1}{2} - 2\sum_{n=0}^{m} \frac{(-1)^n}{(n+1/2)^3 \pi^3} + 2\sum_{n=0}^{m} \frac{(-1)^n (n+1/2)^2 \pi^2}{(n+1/2)^3 \pi^3} \frac{t_{\rm m}}{\rm St}.$$
 (24)

Taking the limit as $m \to \infty$ gives

$$\frac{1}{q} = \frac{1}{2} - 2 \times \frac{1}{4} + 2 \times \frac{1}{2} \frac{t_{\rm m}}{\rm St},\tag{25}$$

and so

$$\frac{t_{\rm m}}{{
m St}} \sim \frac{1}{q}$$
 as $t_{\rm m}/{
m St} \to 0$. (26)

- (f) In the mushy region, $\partial \theta / \partial t = q$ so θ takes a time 1/q to go from $\theta = 0$ to $\theta = 1$ when a purely liquid region exists.
- (g) When all melting is done the mushy layer disappears and we are left with just solid and liquid and an interface x = s. In the solid we have

$$\frac{\partial^2 u}{\partial x^2} = -q, \qquad \text{in} \quad s(t) \le x \le 1,$$

$$u = -1, \qquad \text{on} \quad x = 1,$$

$$u = 0, \qquad \text{on} \quad x = s(t),$$

$$\frac{\partial u}{\partial x} = 0, \qquad \text{on} \quad x = s(t),$$

which gives $u = -q(x-s)^2/2$ and $s = 1 - \sqrt{2/q}$ as required.

(h) When all melting is done the mushy layer disappears and we are left with just solid and liquid and we have reached the previous state we are reduced to solving a regular Stefan problem again:

$$\frac{\partial^2 u}{\partial x^2} = -q \qquad 0 \le x \le s(t), \tag{27}$$

$$\frac{\partial^2 u}{\partial x^2} = -q \qquad \qquad s(t) \le x \le 1, \tag{28}$$

$$\frac{\partial u}{\partial x} = 0 x = 0, (29)$$

$$\frac{\mathrm{d}s}{\mathrm{d}t} = \frac{\partial u^+}{\partial x} - \frac{\partial u^-}{\partial x}, \qquad x = s(t)
 u^+ = u^- = 0 \qquad x = s(t), \qquad (30)$$

$$u^{+} = u^{-} = 0 x = s(t), (31)$$

$$u = -1, x = 1. (32)$$

This gives

$$u = \frac{q}{2}(s^2 - x^2) \qquad 0 \le x \le s(t), \tag{33}$$

$$u = (s - x) \left[\frac{1}{1 - s} + \frac{q}{2}(x - 1) \right],$$
 $s(t) \le x \le 1$ (34)

and so

$$\frac{ds}{dt} = \frac{q}{2}(1+s) - \frac{1}{1-s},\tag{35}$$

which finally gives

$$s = 1 - \sqrt{\frac{2}{a}} \qquad \text{at} \quad t = 0 \tag{36}$$

as required.

(i) The system is superheated if $\partial u^+/\partial x > 0$ at $x = s^+$. Now

$$\frac{\partial u^+}{\partial x}\Big|_{x=s^+} = -\frac{1}{1-s} + \frac{1}{2}q(1-s)$$
 (37)

$$= (1-s) \left[\frac{q}{2} - \frac{1}{(1-s)^2} \right]. \tag{38}$$

Now $s > 1 - \sqrt{2/q}$ for all time, so $q/2 - 1/(1-s)^2 < 0$ and $1-s^2 > 0$ and therefore $\partial u^+/\partial x < 0$ and the system is not superheated.

As $t \to \infty$, $ds/dt \to 0$ so

$$\frac{q}{2}(1+s) = \frac{1}{1-s} \qquad \Rightarrow \qquad s = \sqrt{1-\frac{2}{q}} \tag{39}$$

as required.