Lecture 11 and 12: Penalty methods and augmented Lagrangian methods for nonlinear programming

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization
Penalty methods for nonlinear programming
Nonlinear equality-constrained problems

\[
\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad c(x) = 0, \quad (\text{eCP})
\]

where \(f : \mathbb{R}^n \to \mathbb{R}, \ c = (c_1, \ldots, c_m) : \mathbb{R}^n \to \mathbb{R}^m \) smooth.

\[\text{attempt to find local solutions (at least KKT points).}\]

\[\text{constrained optimization} \implies \text{conflict of requirements: objective minimization \& feasibility of the solution.}\]

\[\text{easier to generate feasible iterates for linear equality and general inequality constrained problems;}\]

\[\text{very hard, even impossible, in general, when general equality constraints are present.}\]

\[\implies \text{form a single, parametrized and unconstrained objective, whose minimizers approach initial problem solutions as parameters vary}\]
A penalty function for (eCP)

\[
\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad c(x) = 0. \quad \text{(eCP)}
\]

The quadratic penalty function:

\[
\min_{x \in \mathbb{R}^n} \Phi_\sigma(x) = f(x) + \frac{1}{2\sigma} \|c(x)\|^2, \quad \text{(eCP}_\sigma)\]

where \(\sigma > 0\) penalty parameter.

- \(\sigma\): penalty on infeasibility;
- \(\sigma \to 0\): 'forces' constraint to be satisfied and achieve optimality for \(f\).
- \(\Phi_\sigma\) may have other stationary points that are not solutions for (eCP); eg., when \(c(x) = 0\) is inconsistent.

Lecture 11 and 12: Penalty methods and augmented Lagrangian methods for nonlinear programming – p. 4/25
The quadratic penalty function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2^2 = 1$
Contours of the penalty function Φ_σ - an example...

The quadratic penalty function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2 = 1$
A quadratic penalty method

Given \(\sigma^0 > 0 \), let \(k = 0 \). Until “convergence” do:

- Choose \(0 < \sigma^{k+1} < \sigma^k \).
- Starting from \(x^k_0 \) (possibly, \(x^k_0 := x^k \)), use an unconstrained minimization algorithm to find an “approximate” minimizer \(x^{k+1} \) of \(\Phi_{\sigma^{k+1}} \).

Let \(k := k + 1 \). \hfill \diamondsuit

Must have \(\sigma^k \rightarrow 0 \), \(k \rightarrow 0 \). \(\sigma^{k+1} := 0.1 \sigma^k \), \(\sigma^{k+1} := (\sigma^k)^2 \), etc.

Algorithms for minimizing \(\Phi_\sigma \):

- Linesearch, trust-region methods.
- \(\sigma \) small: \(\Phi_\sigma \) very steep in the direction of constraints’ gradients, and so rapid change in \(\Phi_\sigma \) for steps in such directions; implications for “shape” of trust region.
A convergence result for the penalty method

Theorem 25. (Global convergence of penalty method) Apply the basic quadratic penalty method to the (eCP). Assume that $f, c \in C^1$, $y_i^k = -c_i(x^k)/\sigma^k$, $i = 1, m$, and

$$\|\nabla \Phi_{\sigma^k}(x^k)\| \leq \epsilon_k^k$$

where $\epsilon_k^k \to 0$, $k \to \infty$, and also $\sigma^k \to 0$, as $k \to \infty$. Moreover, assume that $x^k \to x^*$, where $\nabla c_i(x^*)$, $i = 1, m$, are linearly independent.

Then x^* is a KKT point of (eCP) and $y^k \to y^*$, where y^* is the vector of Lagrange multipliers of (eCP) constraints.

- $\nabla c_i(x^*)$, $i = 1, m$, lin. indep. \iff the Jacobian matrix $J(x^*)$ of the constraints is full row rank and so $m \leq n$.

- $J(x^*)$ not full rank, then x^* (locally) minimizes the infeasibility $\|c(x)\|$.

[let $y^k \to \infty$ in \diamond on the next slide]
A convergence result for the penalty method

Proof of Theorem 25. \(J(x^*) \) full rank \(\implies \exists J(x^*)^+ = (J(x^*)J(x^*)^T)^{-1}J(x^*) \) pseudo-inverse. As \(x^k \to x^* \) and \(J \) cont. \(\Rightarrow \exists J(x^k)^+ \) bounded above and cont. for all suff. large \(k \). Let \(y^k = -c(x^k)/\sigma^k \) and \(y^* = J(x^*)^+ \nabla f(x^*) \).

\[
\| \nabla \Phi_{\sigma_k}(x^k) \| = \| \nabla f(x^k) - J(x^k)^T y^k \| \leq \epsilon_k \quad (\diamond)
\]

\[
\| J(x^k)^+ \nabla f(x^k) - y^k \| = \| J(x^k)^+ (\nabla f(x^k) - J(x^k)^T y^k) \| \leq \| J(x^k)^+ \| \cdot \| \nabla f(x^k) - J(x^k)^T y^k \| \leq \{ \| J(x^k)^+ - J(x^*)^+ \| + \| J(x^*)^+ \| \} \epsilon_k \leq 2 \| J(x^*)^+ \| \epsilon_k \quad (\bullet)
\]

where in the last \(\leq \) we used \(x^k \to x^* \) and \(J^+ \) continuous.

Triangle inequality (add and subtr \(J^+ \nabla f \)) and def of \(y^* \) give

\[
\| y^k - y^* \| \leq \| J(x^k)^+ \nabla f(x^k) - J(x^*)^+ \nabla f(x^*) \| + \| J(x^k)^+ \nabla f(x^k) - y^k \|
\]

Thus \(y^k \to y^* \) since \(x^k \to x^* \), \(J^+ \) and \(\nabla f \) cont., (\bullet) and \(\epsilon_k \to 0 \).

Using all these again in (\diamond) as \(k \to \infty \): \(\nabla f(x^*) - J(x^*)^T y^* = 0 \).

As \(c(x^k) = -\sigma^k y^k \), \(\sigma^k \to 0 \), \(y^k \to y^* \Rightarrow c(x^*) = 0 \). Thus \(x^* \) KKT.
Derivatives of the penalty function

- Let \(y(\sigma) := -c(x)/\sigma \): estimates of Lagrange multipliers.
- Let \(L \) be the Lagrangian function of (eCP),
 \[
 L(x, y) := f(x) - y^T c(x).
 \]
- \(\Phi_\sigma(x) = f(x) + \frac{1}{2\sigma} \|c(x)\|^2 \). Then
 \[
 \nabla \Phi_\sigma(x) = \nabla f(x) + \frac{1}{\sigma} J(x)^T c(x) = \nabla_x L(x, y(\sigma)),
 \]
 where \(J(x) \) Jacobian \(m \times n \) matrix of constraints \(c(x) \).

\[
\nabla^2 \Phi_\sigma(x) = \nabla^2 f(x) + \frac{1}{\sigma} \sum_{i=1}^m c_i(x) \nabla^2 c_i(x) + \frac{1}{\sigma} J(x)^T J(x)
\]
\[
= \nabla^2_{xx} L(x, y(\sigma)) + \frac{1}{\sigma} J(x)^T J(x).
\]
- \(\sigma \to 0 \): generally, \(c_i(x) \to 0 \) at the same rate with \(\sigma \) for all \(i \). Thus usually, \(\nabla^2_{xx} L(x, y(\sigma)) \) well-behaved.
- \(\sigma \to 0 \): \(J(x)^T J(x)/\sigma \to J(x^*)^T J(x^*)/0 = \infty \).
Ill-conditioning of the penalty’s Hessian ...

‘Fact’ [cf. Th 5.2, Gould ref.] \(\Rightarrow\) \(m\) eigenvalues of \(\nabla^2 \Phi_{\sigma^k}(x^k)\) are \(\mathcal{O}(1/\sigma^k)\) and hence, tend to infinity as \(k \to \infty\) (ie, \(\sigma^k \to 0\)); remaining \(n-m\) are \(\mathcal{O}(1)\) in the limit.

\(\bullet\) Hence, the condition number of \(\nabla^2 \Phi_{\sigma^k}(x^k)\) is \(\mathcal{O}(1/\sigma^k)\)

\(\Rightarrow\) it blows up as \(k \to \infty\).

\(\Rightarrow\) worried that we may not be able to compute changes to \(x^k\) accurately. Namely, whether using linesearch or trust-region methods, asymptotically, we want to minimize \(\Phi_{\sigma^{k+1}}(x)\) by taking Newton steps, i.e., solve the system

\[
\nabla^2 \Phi_{\sigma}(x) dx = \nabla \Phi_{\sigma}(x), \quad (*)
\]

for \(dx\) from some current \(x = x^{k,i}\) and \(\sigma = \sigma^{k+1}\).

Despite ill-conditioning present, we can still solve for \(dx\) accurately!
Solving accurately for the Newton direction

Due to computed formulas for derivatives, (*) is equivalent to

\[
\left(\nabla^2_{xx} L(x, y(\sigma)) + \frac{1}{\sigma} J(x)^T J(x)\right) \, dx = - \left(\nabla f(x) + \frac{1}{\sigma} J(x)^T c(x) \right),
\]

where \(y(\sigma) = -c(x)/\sigma \). Define auxiliary variable \(w \)

\[
w = \frac{1}{\sigma} (J(x)dx + c(x)).
\]

Then the Newton system (*) can be re-written as

\[
\begin{pmatrix}
\nabla^2 L(x, y(\sigma)) & J(x)^T \\
J(x) & -\sigma I
\end{pmatrix}
\begin{pmatrix}
dx \\
w
\end{pmatrix}
= -\begin{pmatrix}
\nabla f(x) \\
c(x)
\end{pmatrix}
\]

This system is essentially independent of \(\sigma \) for small \(\sigma \rightarrow 0 \).

- Still need to be careful about minimizing \(\Phi_\sigma \) for small \(\sigma \). Eg, when using TR methods, use \(\|dx\|_B \leq \Delta \) for TR constraint.

\(B \) takes into account ill-conditioned terms of Hessian so as to encourage equal model decrease in all directions.
Perturbed optimality conditions

\[
\min_{x \in \mathbb{R}^n} \ f(x) \quad \text{subject to} \quad c(x) = 0. \quad \text{(eCP)}
\]

(eCP) satisfies the KKT conditions

(dual feasibility) \(\nabla f(x) = J(x)^T y \) and (primal feasibility) \(c(x) = 0 \).

Consider the perturbed problem

\[
\begin{align*}
\nabla f(x) - J(x)^T y &= 0 \\
c(x) + \sigma y &= 0
\end{align*}
\quad \text{(eCP}_p\text{)}
\]

Find roots of nonlinear system (eCP\(_p\)) as \(\sigma \to 0 \) (\(\sigma > 0 \)); use Newton’s method for root finding.
Perturbed optimality conditions...

Newton’s method for system \((eCP_p)\) computes change \((dx, dy)\) to \((x, y)\) from

\[
\begin{pmatrix}
\nabla^2 \mathcal{L}(x, y) & -J(x)^\top \\
J(x) & \sigma I
\end{pmatrix}
\begin{pmatrix}
dx \\
dy
\end{pmatrix}
= -
\begin{pmatrix}
\nabla f(x) - J(x)^\top y \\
c(x) + \sigma y
\end{pmatrix}
\]

Eliminating \(dy\), gives

\[
\left(\nabla_{xx}^2 \mathcal{L}(x, y) + \frac{1}{\sigma} J(x)^T J(x)\right) dx = - \left(\nabla f(x) + \frac{1}{\sigma} J(x)^T c(x)\right)
\]

\(\Rightarrow\) ‘same’ as Newton for quadratic penalty! what’s different?
Perturbed optimality conditions...

Primal:

\[
\left(\nabla_{xx}^2 L(x, y(\sigma)) + \frac{1}{\sigma} J(x)^T J(x) \right) dx^p = - \left(\nabla f(x) + \frac{1}{\sigma} J(x)^T c(x) \right)
\]

where \(y(\sigma) = -c(x)/\sigma \).

Primal-dual:

\[
\left(\nabla_{xx}^2 L(x, y) + \frac{1}{\sigma} J(x)^T J(x) \right) dx^{pd} = - \left(\nabla f(x) + \frac{1}{\sigma} J(x)^T c(x) \right)
\]

The difference is in freedom to choose \(y \) in \(\nabla^2 L(x, y) \) in primal-dual methods - it makes a big difference computationally.
Consider the general (CP) problem

\[
\begin{align*}
\text{minimize}_{x \in \mathbb{R}^n} & \quad f(x) \quad \text{subject to} \quad c_E(x) = 0, \quad c_I(x) \geq 0.
\end{align*}
\] (CP)

Exact penalty function: \(\Phi(x, \sigma) \) is exact if there is \(\sigma^* > 0 \) such that if \(\sigma < \sigma^* \), any local solution of (CP) is a local minimizer of \(\Phi(x, \sigma) \). (Quadratic penalty is inexact.)

Examples:

- **\(l_2 \)-penalty function:**
 \[
 \Phi(x, \sigma) = f(x) + \frac{1}{\sigma} \| c_E(x) \|
 \]

- **\(l_1 \)-penalty function:** let \(z^- = \min\{z, 0\} \),
 \[
 \Phi(x, \sigma) = f(x) + \frac{1}{\sigma} \sum_{i \in E} |c_i(x)| + \frac{1}{\sigma} \sum_{i \in I} [c_i(x)]^-
 \]

Extension of quadratic penalty to (CP):

\[
\Phi(x, \sigma) = f(x) + \frac{1}{2\sigma} \| c_E(x) \|^2 + \frac{1}{2\sigma} \sum_{i \in I} ([c_i(x)]^-)^2
\]

(may no longer be suff. smooth; it is inexact)
Augmented Lagrangian methods for nonlinear programming
Nonlinear equality-constrained problems

\[
\min_{x \in \mathbb{R}^n} f(x) \text{ subject to } c(x) = 0, \quad (\text{eCP})
\]

where \(f : \mathbb{R}^n \to \mathbb{R}, \ c = (c_1, \ldots, c_m) : \mathbb{R}^n \to \mathbb{R}^m \) smooth.

Another example of merit function and method for (eCP):

\[
\Phi(x, u, \sigma) = f(x) - u^T c(x) + \frac{1}{2\sigma} \|c(x)\|^2
\]

where \(u \in \mathbb{R}^m \) and \(\sigma > 0 \) are auxiliary parameters.

Two interpretations:

- shifted quadratic penalty function
- convexification of the Lagrangian function

Aim: adjust \(u \) and \(\sigma \) to encourage convergence.
Derivatives of the augmented Lagrangian function

Let $J(x)$ Jacobian of constraints $c(x) = (c_1(x), \ldots, c_m(x))$.

- $\nabla_x \Phi(x, u, \sigma) = \nabla f(x) - J(x)^T u + \frac{1}{\sigma} J(x)^T c(x)$

 \implies

 $\nabla_x \Phi(x, u, \sigma) = \nabla f(x) - J(x)^T y(x) = \nabla_x L(x, y(x))$

 where $y(x) = u - \frac{c(x)}{\sigma}$ Lagrange multiplier estimates

- $\nabla^2 \Phi(x, u, \sigma) = \nabla^2 f(x) - \sum_{i=1}^{m} u_i \nabla^2 c_i(x) + \frac{1}{\sigma} \sum_{i=1}^{m} c_i(x) \nabla^2 c_i(x) + \frac{1}{\sigma} J(x)^T J(x)$

 \implies

 $\nabla^2 \Phi(x, u, \sigma) = \nabla^2 f(x) - \sum_{i=1}^{m} y_i \nabla^2 c_i(x) + \frac{1}{\sigma} J(x)^T J(x)$

 \implies $\nabla^2 \Phi(x, u, \sigma) = \nabla^2 L(x, y(x)) + \frac{1}{\sigma} J(x)^T J(x)$

- Lagrangian: $L(x, y) = f(x) - y^T c(x)$
A convergence result for the augmented Lagrangian

Theorem 26. (Global convergence of augmented Lagrangian)
Assume that $f, c \in C^1$ in (eCP) and let

$$y^k = u^k - \frac{c(x^k)}{\sigma^k},$$

for given $u^k \in \mathbb{R}^m$, and assume that

$$\|\nabla \Phi(x^k, u^k, \sigma^k)\| \leq \epsilon^k,$$

where $\epsilon^k \to 0, k \to \infty$.

Moreover, assume that $x^k \to x^*$, where $\nabla c_i(x^*), i = 1, m$, are linearly independent. Then $y^k \to y^*$ as $k \to \infty$ with y^* satisfying $\nabla f(x^*) - J(x^*)^T y^* = 0$.

If additionally, either $\sigma^k \to 0$ for bounded u^k or $u^k \to y^*$ for bounded σ^k then x^* is a KKT point of (eCP) with associated Lagrange multipliers y^*.

\[\blacksquare\]
A convergence result for the augmented Lagrangian

Proof of Theorem 26. The first part of Th 26, namely, convergence of y^k to $y^* = J(x^*) + \nabla f(x^*)$ follows exactly as in the proof of Theorem 25 (penalty method convergence). (Note that the assumption $\sigma^k \to 0$ is not needed for this part of the proof of Th 25.)

It remains to show that under the additional assumptions on u^k and σ^k, x^* is feasible for the constraints. To see this, use the definition of y^k to deduce $c(x^k) = \sigma^k(u^k - y^k)$ and so

$$\|c(x^k)\| = \sigma^k\|u^k - y^k\| \leq \sigma^k\|y^k - y^*\| + \sigma^k\|u^k - y^*\|$$

Thus $c(x^k) \to 0$ as $k \to \infty$ due to $y^k \to y^*$ (cf. first part of theorem) and the additional assumptions on u^k and σ^k. As $x^k \to x^*$ and c is continuous, we deduce that $c(x^*) = 0$. \(\Box\)

Note that Augmented Lagrangian may converge to KKT points without $\sigma^k \to 0$, which limits the ill-conditioning.
The augmented Lagrangian function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2 = 1$ for fixed $\sigma = 1$
The augmented Lagrangian function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2 = 1$ for fixed $\sigma = 1$
Augmented Lagrangian methods

Th 26 \Rightarrow convergence guaranteed if u^k fixed and $\sigma^k \longrightarrow 0$

[similar to quadratic penalty methods]

$\Rightarrow y^k \longrightarrow y^*$ and $c(x^k) \longrightarrow 0$

- check if $\|c(x^k)\| \leq \eta^k$ where $\eta^k \longrightarrow 0$
 - if so, set $u^{k+1} = y^k$ and $\sigma^{k+1} = \sigma^k$
 [recall expression of y^k in Th 26]
 - if not, set $u^{k+1} = u^k$ and $\sigma^{k+1} \leq \tau \sigma^k$ for some $\tau \in (0, 1)$
 reasonable: $\eta^k = (\sigma^k)^{0.1+0.9j}$ where j iterations since σ^k last changed

Under such rules, can ensure that σ^k is eventually unchanged under modest assumptions, and (fast) linear convergence.

Need also to ensure that σ^k is sufficiently large that the Hessian $\nabla^2 \Phi(x^k, u^k, \sigma^k)$ is positive (semi-)definite.
A basic augmented Lagrangian method

Given $\sigma^0 > 0$ and u^0, let $k = 0$. Until "convergence" do:

- Set η^k and ϵ^{k+1}.
 If $\|c(x^k)\| \leq \eta^k$, set $u^{k+1} = y^k$ and $\sigma^{k+1} = \sigma^k$.
 Otherwise, set $u^{k+1} = u^k$ and $\sigma^{k+1} \leq \tau \sigma^k$.

- Starting from x^k_0 (possibly, $x^k_0 := x^k$), use an unconstrained minimization algorithm to find an "approximate" minimizer x^{k+1} of $\Phi(\cdot, u^{k+1}, \sigma^{k+1})$ for which $\|\nabla_x \Phi(x^{k+1}, u^{k+1}, \sigma^{k+1})\| \leq \epsilon^{k+1}$.
 Let $k := k + 1$.

Often choose $\tau = \min(0.1, \sqrt{\sigma^k})$

Reasonable: $\epsilon^k = (\sigma^k)^{j+1}$, where j iterations since σ^k last changed

Lecture 11 and 12: Penalty methods and augmented Lagrangian methods for nonlinear programming – p. 25/25