Best approximation of functions: given a function \(f \) on \([a, b]\), find the “closest” polynomial/piecewise polynomial (see later sections)/ trigonometric polynomial (truncated Fourier series).

Norms: are used to measure the size of/distance between elements of a vector space. Given a vector space \(V \) over the field \(\mathbb{R} \) of real numbers, the mapping \(\| \cdot \| : V \to \mathbb{R} \) is a **norm** on \(V \) if it satisfies the following axioms:

(i) \(\| f \| \geq 0 \) for all \(f \in V \), with \(\| f \| = 0 \) if, and only if, \(f = 0 \in V \);
(ii) \(\| \lambda f \| = |\lambda|\| f \| \) for all \(\lambda \in \mathbb{R} \) and all \(f \in V \); and
(iii) \(\| f + g \| \leq \| f \| + \| g \| \) for all \(f, g \in V \) (the **triangle inequality**).

Examples:

1. For vectors \(x \in \mathbb{R}^n \), with \(x = (x_1, x_2, \ldots, x_n)^T \),
 \[\| x \| \equiv \| x \|_2 = (x_1^2 + x_2^2 + \cdots + x_n^2)^{\frac{1}{2}} = \sqrt{x^T x} \]
 is the \(\ell^2 \)- or vector two-norm.

2. For continuous functions on \([a, b]\),
 \[\| f \| \equiv \| f \|_{\infty} = \max_{x \in [a,b]} |f(x)| \]
 is the \(L^\infty \)- or \(\infty \)-norm.

3. For integrable functions on \((a, b)\),
 \[\| f \| \equiv \| f \|_1 = \int_a^b |f(x)| \, dx \]
 is the \(L^1 \)- or one-norm.

4. For functions in
 \[V = L^2_w(a,b) \equiv \{ f : [a, b] \to \mathbb{R} \mid \int_a^b w(x)|f(x)|^2 \, dx < \infty \} \]
 for some given **weight** function \(w(x) > 0 \) (this certainly includes continuous functions on \([a, b]\), and piecewise continuous functions on \([a, b]\) with a finite number of jump-discontinuities),
 \[\| f \| \equiv \| f \|_2 = \left(\int_a^b w(x)|f(x)|^2 \, dx \right)^{\frac{1}{2}} \]
 is the \(L^2 \)- or two-norm—the space \(L^2_w(a,b) \) is a common abbreviation for \(L^2_w(a,b) \) for the case \(w(x) \equiv 1 \).

Note: \(\| f \|_2 = 0 \iff f = 0 \) almost everywhere on \([a, b]\). We say that a certain property \(P \) holds **almost everywhere** (a.e.) on \([a, b]\) if property \(P \) holds at each point of \([a, b]\) except perhaps on a subset \(S \subset [a, b] \) of zero measure. We say that a set \(S \subset \mathbb{R} \) has **zero measure** (or that it is of **measure zero** if for any \(\varepsilon > 0 \) there exists a sequence \(\{(\alpha_i, \beta_i)\}_{i=1}^{\infty} \) of subintervals of \(\mathbb{R} \) such that...
$S \subset \bigcup_{i=1}^{\infty} (\alpha_i, \beta_i)$ and $\sum_{i=1}^{\infty} (\beta_i - \alpha_i) < \varepsilon$. Trivially, the empty set $\emptyset (\subset \mathbb{R})$ has zero measure. Any finite subset of \mathbb{R} has zero measure. Any countable subset of \mathbb{R}, such as the set of all natural numbers \mathbb{N}, the set of all integers \mathbb{Z}, or the set of all rational numbers \mathbb{Q}, is of measure zero.

Least-squares polynomial approximation: aim to find the best polynomial approximation to $f \in L^2_w(a,b)$, i.e., find $p_n \in \Pi_n$ for which

$$\|f - p_n\|_2 \leq \|f - q\|_2 \quad \forall q \in \Pi_n.$$

Seeking p_n in the form $p_n(x) = \sum_{k=0}^{n} \alpha_k x^k$ then results in the minimization problem

$$\min_{(\alpha_0, \ldots, \alpha_n)} \int_a^b w(x) \left(f(x) - \sum_{k=0}^{n} \alpha_k x^k \right)^2 \, dx.$$

The unique minimizer can be found from the (linear) system

$$\frac{\partial}{\partial \alpha_j} \int_a^b w(x) \left(f(x) - \sum_{k=0}^{n} \alpha_k x^k \right)^2 \, dx = 0 \quad \text{for each} \quad j = 0, 1, \ldots, n,$$

but there is important additional structure here.

Inner-product spaces: a real inner-product space is a vector space V over \mathbb{R} with a mapping $\langle \cdot, \cdot \rangle : V \times V \rightarrow \mathbb{R}$ (the inner product) for which

(i) $\langle v, v \rangle \geq 0$ for all $v \in V$ and $\langle v, v \rangle = 0$ if, and only if $v = 0$;

(ii) $\langle u, v \rangle = \langle v, u \rangle$ for all $u, v \in V$; and

(iii) $\langle \alpha u + \beta v, z \rangle = \alpha \langle u, z \rangle + \beta \langle v, z \rangle$ for all $u, v, z \in V$ and all $\alpha, \beta \in \mathbb{R}$.

Examples:

1. $V = \mathbb{R}^n$,

$$\langle x, y \rangle = x^T y = \sum_{i=1}^{n} x_i y_i,$$

where $x = (x_1, \ldots, x_n)^T$ and $y = (y_1, \ldots, y_n)^T$.

2. $V = L^2_w(a,b) = \{ f : (a, b) \rightarrow \mathbb{R} \mid \int_a^b w(x) |f(x)|^2 \, dx < \infty \}$,

$$\langle f, g \rangle = \int_a^b w(x) f(x) g(x) \, dx,$$

where $f, g \in L^2_w(a,b)$ and w is a weight-function, defined, positive and integrable on (a,b).

Notes:

1. Suppose that V is an inner product space, with inner product $\langle \cdot, \cdot \rangle$. Then $\langle v, v \rangle^{\frac{1}{2}}$ defines a norm on V (see the final paragraph on the last page for a proof). In Example 2 above, the norm defined by the inner product is the (weighted) L^2-norm.

2. Suppose that V is an inner product space, with inner product $\langle \cdot, \cdot \rangle$, and let $\| \cdot \|$ denote the norm defined by the inner product via $\| v \| = \langle v, v \rangle^{\frac{1}{2}}$, for $v \in V$. The angle θ between $u, v \in V$ is

$$\theta = \cos^{-1} \left(\frac{\langle u, v \rangle}{\| u \| \| v \|} \right).$$
Thus \(u \) and \(v \) are orthogonal in \(V \) \(\iff \langle u, v \rangle = 0 \).

E.g., \(x^2 \) and \(\frac{3}{4} - x \) are orthogonal in \(L^2(0,1) \) with inner product \(\langle f, g \rangle = \int_0^1 f(x)g(x) \, dx \) as
\[
\int_0^1 x^2 \left(\frac{3}{4} - x \right) \, dx = \frac{1}{4} - \frac{1}{4} = 0.
\]

3. **Pythagoras Theorem:** Suppose that \(V \) is an inner-product space with inner product \(\langle \cdot, \cdot \rangle \) and norm \(\| \cdot \| \) defined by this inner product. For any \(u, v \in V \) such that \(\langle u, v \rangle = 0 \) we have
\[
\| u \pm v \|^2 = \| u \|^2 + \| v \|^2.
\]

Proof.
\[
\begin{align*}
\| u \pm v \|^2 &= \langle u \pm v, u \pm v \rangle = \langle u, u \pm v \rangle \pm \langle u, v \rangle \pm \langle v, u \rangle \pm \langle v, v \rangle \\
&= \langle u, u \rangle + \| u \|^2 + \langle v, v \rangle + \| v \|^2 \\
&= \| u \|^2 + \| v \|^2.
\end{align*}
\]

4. **The Cauchy–Schwarz inequality:** Suppose that \(V \) is an inner-product space with inner product \(\langle \cdot, \cdot \rangle \) and norm \(\| \cdot \| \) defined by this inner product. For any \(u, v \in V \),
\[
|\langle u, v \rangle| \leq \| u \| \| v \|.
\]

Proof. For every \(\lambda \in \mathbb{R} \),
\[
0 \leq \langle u - \lambda v, u - \lambda v \rangle = \| u \|^2 - 2\lambda \langle u, v \rangle + \lambda^2 \| v \|^2 = \phi(\lambda),
\]
which is a quadratic in \(\lambda \). The minimizer of \(\phi \) is at \(\lambda_* = \langle u, v \rangle / \| v \|^2 \), and thus since \(\phi(\lambda_*) \geq 0, \| u \|^2 - \langle u, v \rangle^2 / \| v \|^2 \geq 0 \), which gives the required inequality.

5. **The triangle inequality:** Suppose that \(V \) is an inner-product space with inner product \(\langle \cdot, \cdot \rangle \) and norm \(\| \cdot \| \) defined by this inner product. For any \(u, v \in V \),
\[
\| u + v \| \leq \| u \| + \| v \|.
\]

Proof. Note that
\[
\| u + v \|^2 = \langle u + v, u + v \rangle = \| u \|^2 + 2\langle u, v \rangle + \| v \|^2.
\]

Hence, by the Cauchy–Schwarz inequality,
\[
\| u + v \|^2 \leq \| u \|^2 + 2\| u \| \| v \| + \| v \|^2 = (\| u \| + \| v \|)^2.
\]

Taking square-roots yields
\[
\| u + v \| \leq \| u \| + \| v \|.
\]

Note: The function \(\| \cdot \| : V \to \mathbb{R} \) defined by \(\| v \| := \langle v, v \rangle^{\frac{1}{2}} \) on the inner-product space \(V \), with inner product \(\langle \cdot, \cdot \rangle \), trivially satisfies the first two axioms of norm on \(V \); this is a
consequence of \langle \cdot, \cdot \rangle being an inner product on V. Result 5 above implies that \| \cdot \| also satisfies the third axiom of norm, the triangle inequality.

Least-Squares Approximation

For the problem of least-squares approximation, \langle f, g \rangle = \int_a^b w(x)f(x)g(x) \, dx and \| f \|_2^2 = \langle f, f \rangle where w(x) > 0 on (a, b).

Theorem. If \(f \in L_w^2(a, b) \) and \(p_n \in \Pi_n \) is such that
\[
\langle f - p_n, r \rangle = 0 \quad \forall r \in \Pi_n,
\]
then
\[
\| f - p_n \|_2 \leq \| f - r \|_2 \quad \forall r \in \Pi_n,
\]
i.e., \(p_n \) is a best (weighted) least-squares approximation to \(f \) on \([a, b]\).

Proof.
\[
\| f - p_n \|_2^2 = \langle f - p_n, f - p_n \rangle = \langle f - p_n, f - r \rangle + \langle f - p_n, r - p_n \rangle \quad \forall r \in \Pi_n
\]
Since \(r - p_n \in \Pi_n \) the assumption (1) implies that
\[
= \langle f - p_n, f - r \rangle \leq \| f - p_n \|_2 \| f - r \|_2 \quad \text{by the Cauchy–Schwarz inequality.}
\]
Dividing both sides by \(\| f - p_n \|_2 \) gives the required result. \(\square \)

Remark: the converse is true too (see problem sheet 3).

This gives a direct way to calculate a best approximation: we want to find \(p_n(x) = \sum_{k=0}^{n} \alpha_k x^k \) such that
\[
\int_a^b w(x) \left(f - \sum_{k=0}^{n} \alpha_k x^k \right) x^i \, dx = 0 \quad \text{for } i = 0, 1, \ldots, n.
\]
[Note that (2) holds if, and only if,
\[
\int_a^b w(x) \left(f - \sum_{k=0}^{n} \alpha_k x^k \right) \left(\sum_{i=0}^{n} \beta_i x^i \right) \, dx = 0 \quad \forall q = \sum_{i=0}^{n} \beta_i x^i \in \Pi_n.]

However, (2) implies that
\[
\sum_{k=0}^{n} \left(\int_a^b w(x)x^{k+i} \, dx \right) \alpha_k = \int_a^b w(x)f(x)x^i \, dx \quad \text{for } i = 0, 1, \ldots, n
\]
which is the component-wise statement of a matrix equation
\[
A\alpha = \varphi,
\]
(3)
to determine the coefficients \(\alpha = (\alpha_0, \alpha_1, \ldots, \alpha_n)^T \), where \(A = \{a_{i,k}, i, k = 0, 1, \ldots, n\} \), \(\varphi = (f_0, f_1, \ldots, f_n)^T \),
\[
a_{i,k} = \int_a^b w(x)x^{k+i} \, dx \quad \text{and} \quad f_i = \int_a^b w(x)f(x)x^i \, dx.
\]
The system (3) are called the **normal equations**.

Example: the best least-squares approximation to e^x on $[0,1]$ from Π_1 in $\langle f, g \rangle = \int_a^b f(x)g(x) \, dx$. We want

$$
\int_0^1 [e^x - (\alpha_0 1 + \alpha_1 x)]1 \, dx = 0 \text{ and } \int_0^1 [e^x - (\alpha_0 1 + \alpha_1 x)]x \, dx = 0.
$$

\iff

$$
\alpha_0 \int_0^1 \, dx + \alpha_1 \int_0^1 x \, dx = \int_0^1 e^x \, dx
$$

$$
\alpha_0 \int_0^1 x \, dx + \alpha_1 \int_0^1 x^2 \, dx = \int_0^1 e^x x \, dx
$$

i.e.,

$$
\begin{bmatrix}
1 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{3}
\end{bmatrix}
\begin{bmatrix}
\alpha_0 \\
\alpha_1
\end{bmatrix} =
\begin{bmatrix}
e - 1 \\
1
\end{bmatrix}
$$

$\implies \alpha_0 = 4e - 10$ and $\alpha_1 = 18 - 6e$, so $p_1(x) : = (18 - 6e)x + (4e - 10)$ is the best approximation.

Proof that the coefficient matrix A is nonsingular will now establish existence and uniqueness of (weighted) $\| \cdot \|_2$ best-approximation.

Theorem. The coefficient matrix A is nonsingular.

Proof. Suppose not $\implies \exists \alpha \neq 0$ with $A\alpha = 0 \implies \alpha^T A \alpha = 0$

$$
\iff \sum_{i=0}^n \alpha_i (A \alpha)_i = 0 \iff \sum_{i=0}^n \alpha_i \sum_{k=0}^n a_{ik} \alpha_k = 0,
$$

and using the definition $a_{ik} = \int_a^b w(x)x^k x^i \, dx$,

$$
\iff \sum_{i=0}^n \alpha_i \sum_{k=0}^n \left(\int_a^b w(x)x^k x^i \, dx \right) \alpha_k = 0.
$$

Rearranging gives

$$
\int_a^b w(x) \left(\sum_{i=0}^n \alpha_i x^i \right) \left(\sum_{k=0}^n \alpha_k x^k \right) \, dx = 0 \text{ or } \int_a^b w(x) \left(\sum_{i=0}^n \alpha_i x^i \right)^2 \, dx = 0
$$

which implies that $\sum_{i=0}^n \alpha_i x^i = 0$ and thus $\alpha_i = 0$ for $i = 0, 1, \ldots, n$. This contradicts the initial supposition, and thus A is nonsingular.

Remark:
• Note in the simplest least-squares approximation problem \(\min_x \|Ax - b\|_2 \) that we dealt with in lecture 4, the theorem gives the solution \(A^T(Ax - b) = 0 \), that is, \(x = (A^T A)^{-1} A^T b \). This coincides with the QR-based solution derived in lecture 4.

• The above theorem does not imply that the normal equations are usable in practice: the method would need to be stable with respect to small perturbations. In fact, difficulties arise from the “ill-conditioning” of the matrix \(A \) as \(n \) increases. The next lecture looks at a fix.