Differential Equations 1 and Differential Equations 2 from Part A are prerequisites, and the material in these courses will be assumed to be known. Calculus of Variations and Fluids and Waves from Part A are desirable but not essential. Integral Transforms from Part A is strongly desirable.
This course continues the Part A Differential Equations courses. In particular, first-order conservation laws are solved and the idea of a shock is introduced; general nonlinear and quasi-linear first-order partial differential equations are solved, the classification of second-order partial differential equations is extended to systems, with hyperbolic systems being solved by characteristic variables. Then Riemann's function, Green's function and similarity variable methods are demonstrated.
Prof. Andreas Muench
Students will know a range of techniques to characterise and solve PDEs including non-linear first-order systems, and second-order. They will be able to demonstrate various principles for solving PDEs including the method of characteristics, Green's functions, similarity solutions and Riemann functions.
First-order equations; applications. Characteristics, domain of definition. [2 lectures]
Weak solutions, conservation laws, shocks. [2 lectures]
Non-linear equations; Charpit's equations; eikonal equation. [3 lectures]
Systems of partial differential equations, characteristics. Shocks; weak solutions. [3 lectures]
2nd order semilinear equations. Hyperbolic equations, Riemann functions. [2 lectures]
Elliptic equations, parabolic equations. Well-posed problems, Green's function, similarity solutions. [4 lectures]