Real numbers: arithmetic, ordering, suprema, infima; the real numbers as a complete ordered field. Definition of a countable set. The countability of the rational numbers. The reals are uncountable. The complex number system. The triangle inequality.
Sequences of real or complex numbers. Definition of a limit of a sequence of numbers. Limits and inequalities. The algebra of limits. Order notation:
\(O\),
\(o\).
Subsequences; a proof that every subsequence of a convergent sequence converges to the same limit; bounded monotone sequences converge. Bolzano--Weierstrass Theorem. Cauchy's convergence criterion.
Series of real or complex numbers. Convergence of series. Simple examples to include geometric progressions and some power series. Absolute convergence, Comparison Test, Ratio Test, Integral Test. Alternating Series Test.
Power series, radius of convergence. Examples to include definition of and relationships between exponential, trigonometric functions and hyperbolic functions.
Course Syllabus:
See the examinable syllabus (
https://canvas.ox.ac.uk/courses/64592/pages/synopses-and-syllabus-prelims).