Communication Theory MT17

Sheet 2

- 1. Fix p > 0. We are given a fair coin and want to generate independent samples from a Bernoulli random variable $\mathbb{P}(X = 1) = p$, $\mathbb{P}(X = 0) = 1 p$. Find an algorithm that does this, such that the expected number of needed coin flips to generate one sample of X is less or equal than 2.
- 2. Let $q \in [0, 1], n \in \mathbb{N}$ such that nq is an integer in the range [0, n]. Show that

$$\frac{2^{nH(q)}}{n+1} \leq \binom{n}{nq} \leq 2^{nH(q)}$$

where $H(q) := -q \log q - (1-q) \log (1-q)$ is the entropy of a Bernoulli distributed random variable.

3. Let X_1 be a $X_1 = \{1, ..., m\}$ valued random variable and X_2 be a $X_2 = \{m+1, ..., n\}$ -valued random variable. Further assume X_1 and X_2 to be independent. Define a random variable X as

$$X = X_{\alpha}$$

where θ is random variable such that $\mathbb{P}(\theta = 1) = \alpha$, $\mathbb{P}(\theta = 2) = 1 - \alpha$ for some $\alpha \in [0, 1]$ and θ is independent of X_1 and independent of X_2 .

- (a) Express H(X) as a function of $H(X_1), H(X_2), H(\theta)$ and α .
- (b) Show that $2^{H(X)} \le 2^{H(X_1)} + 2^{H(X_2)}$. For which α does this become an equality?
- 4. The differential entropy of a \mathbb{R}^n -valued random variable X with density f is defined as

$$h(X) := -\int f(x) \log f(x) dx$$

(with the integration over the support of f). Calculate h(X) when

- (a) X is uniformly distributed on [0, 1],
- (b) X is standard normal distributed,
- (c) X is exponential distributed with parameter λ .
- 5. Let X be a \mathbb{R}^n -valued random variable with zero mean and covariance matrix Σ . Show that

$$h(X) \le \frac{1}{2} \log (2\pi e)^n |\Sigma|$$

with equality iff X is multivariate normal.

6. A Markov chain is a sequence of discrete random variables $(X_n)_{n\geq 1}$ such that for all $x_1,\ldots,x_{n+1}\in X$

$$\mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n, \dots, X_1 = x) = \mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n).$$

The chain is called homogenous if $p_n(x, y) := \mathbb{P}(X_{n+1} = y | X_n = x)$ does not dependend on n (for every $x, y \in X$). In this case we call $(p(x, y))_{x,y \in X}$ the transition matrix of (X_n) . A fair die is rolled repeatedly. Which of the following are Markov chains? For those that are, give the transition matrix.

- (a) X_n is the largest roll up to the *n*th roll,
- (b) X_n is the number of sixes in n rolls,
- (c) X_n is the number of rolls since the most recent six,

- (d) X_n is the time until the next six.
- 7. Let (X_n) be a Markov chain. Which of the following are Markov chains?
 - (a) $(X_{m+n})_{n\geq 1}$ for a fixed $m\geq 0$,
 - (b) $(X_{2n})_{n\geq 1}$,
 - (c) $(Y_n)_{n\geq 1}$ with $Y_n := (X_n, X_{n+1})$.
- 8. Prove the strong AEP: denote with S_{ϵ}^n the smallest subset of X^n such that $\mathbb{P}(X \in S_n^{\epsilon}) \ge 1 \epsilon$ where $X = (X_1, \dots, X_n)$ are iid copies of a X-valued rv X. Then for any sequence (ϵ_n) with $\lim_{n \to \infty} \epsilon_n = 0$ we have

$$\lim_{n\to\infty}\frac{1}{n}\log\frac{|\mathcal{S}_n^{\epsilon_n}|}{|\mathcal{T}_n^{\epsilon_n}|}=0.$$

[Hint: show that $\mathbb{P}(A \cap B) > 1 - \epsilon_1 - \epsilon_2$ for any sets with $\mathbb{P}(X \in A) > 1 - \epsilon_1$, $\mathbb{P}(X \in B) > 1 - \epsilon_2$ and use this to estimate $\mathbb{P}(S_n^{\epsilon} \cap \mathcal{T}_n^{\epsilon})$]