1. For a rv *X* with state space $X = \{x_1, \dots, x_7\}$ and distribution $p_i = \mathbb{P}(X = x_i)$ given by

p_1	p_2	p_3	p_4	p_5	p_6	p_7
0.49	0.26	0.12	0.04	0.04	0.03	0.02

- (a) Find a binary Huffman code for *X* and its expected length.
- (b) Find a ternary Huffman code for *X* and its expected length.
- 2. Let *X* be a Bernoulli rv with $\mathbb{P}(X=0)=0.995$, $\mathbb{P}(X=1)=0.005$ and consider a sequences X_1,\ldots,X_{100} consisting of iid copies of *X*. We study a block code of the form $c:\{0,1\}^{100} \to \{0,1\}^m$ for a fixed $m \in \mathbb{N}$.
 - (a) What is the minimal m if we just require that the restriction of c to sequences $\{0,1\}^{100}$ that contain three or fewer 1's is injective?
 - (b) What is the probability of observing a sequence that contains four or more 1's? Compare the bound given by the Chebyshev inequality with the actual probability of this event.

3. Prove that

- (a) the Shannon code is an instantaneous code and calculate bounds on its expected length. Give an example to demonstrate that it is not an optimal code.
- (b) the Elias code is an instantaneous code and calculate bounds on its expected length. Give an example to demonstrate that it is not an optimal code.
- 4. Prove a weaker version of the Kraft-McMillian theorem (called Kraft's theorem) using rooted trees:
 - (a) Let $c: X \to \mathcal{Y}^*$ be a instantaneous code. Consider its codetree and if ℓ_{\max} denotes the length of the longest codeword, argue that $\sum |\mathcal{Y}|^{\ell_{\max}-|c(x)|} \le |\mathcal{Y}|^{\ell_{\max}}$, hence $\sum |\mathcal{Y}|^{-|c(x)|} \le 1$. follows [Note the assumption of an instantaneous code is crucial here, in the Kraft–McMillan theorem from the lecture we only require c to be uniquely decodebable].
 - (b) Assume $\sum_{x \in \mathcal{X}} |\mathcal{Y}|^{-\ell_x} \le 1$ with $\ell_x \in \mathbb{N}$. Show there exists a instantaneous code with codeword lengths $(\ell_x)_{\in \mathcal{X}}$ by constructing a rooted tree.
- 5. Give yet another proof for $\sum_{x} |\mathcal{Y}|^{-|c(x)|} \le 1$ if c is a instantaneous code by using the "probabilistic method": randomly generate elements of \mathcal{Y}^* by sampling iid from \mathcal{Y} and consider the probability of writing a codeword of c.
- 6. Let X be uniformly distributed over a finite set X, $|X| = 2^n$ for some $n \in \mathbb{N}$. Given a sequence A_1, A_2, \ldots of subsets of X we ask a sequence of questions of the form $X \in A_1, X \in A_2$, etc.
 - (a) We can choose the sequence of subsets. How many such questions do we need to determine the value of *X*? What is the most efficient way to do so?
 - (b) We now randomly (iid and uniform) draw a sequence of sets $A_1, A_2, ...$ from the set of all subset of X. Fix $x, y \in X$. Conditional on $\{X = x\}$:
 - i. What is the probability that x and y are indistinguishable after the first k random questions?
 - ii. What is the expected number of elements in $X \setminus \{x\}$ that are indistinguishable from x after the first k questions?
- 7. Let X be a finite set and X a X-valued random variable with pmf p. Let $r: X \to (0, \infty)$.

- (a) Find non-negative numbers $(\ell_x)_{x \in X}$ that minimize $\sum_x p(x) r(x) \ell_x$ and such that $\sum_{x \in X} 2^{-\ell_x} = 1$. Calculate this minimum and denote it by L^* . [Hint: consider $q_1(x) = \frac{p(x)r(x)}{\sum p(x)r(x)}$ and $q_2(x) = 2^{-\ell_x}$, and the divergence between q_1 and q_2 .]
- (b) Describe how a Huffman code construction be used to find an instantaneous code $c: \mathcal{X} \to \{0, 1\}^*$ such that

$$L^{\star} \leq \mathbb{E}\left[\left|c\left(X\right)\right|r\left(X\right)\right] < L^{\star} + \mathbb{E}\left[\left|r\left(X\right)\right|\right].$$

8. Let X be a $X = \{1, 2, 3, 4\}$ -valued rv with pmf p(1) = 0.5, p(2) = 0.25, p(3) = 0.125, p(4) = 0.125 and a code c(1) = 0, c(2) = 10, c(3) = 110, c(4) = 111. We generate a sequence in X^n by sampling iid from p. We then pick one bit uniformly at random from the binary encoded sequence. What is the probability that this bit equals 1?