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1 Introduction

This section outlines the basic problems that communication theory has been developed
to solve, introduces the main ideas that are used to deal with those problems, and sketches
their solutions. In other words, it amounts to a preview and synopsis of the rest of the
course.

1.1 Basics

The principal problem of communication is to accept a message at some point, and then
reproduce it as efficiently, reliably, and securely as possible at some other point. The first
step in this is taken by the engineers who make a suitable mechanism M for transferring
the message, in the form of a signal of some kind; this mechanism will be called the
channel whatever its actual physical form, which may be a wire, fibre, disc, aerial and
receiver, tape, book and so on. The two ends of the channel are called the source and
the receiver (which may be the same if a message is stored for retrieval) and may be
separated in time or space, or both.
Communication theory begins at this stage, by supposing that there exists such a channel
that is imperfect in the senses of being finite, and noisy or insecure, or all three of these.
If the channel were capable of transmitting an unbounded number of symbols, arbitrarily
quickly, with any desired degree of accuracy, and in total privacy, then no further work
would be needed; but no such channels exist. So, as mentioned above, the theorist has
three tasks:

1. We seek to transmit the message efficiently, by which we mean that the signal should
make the minimum use of the channel required to convey the message to the receiver.
Typically, channels cost money to use, or have competing demands for their time,
or both.

2. We want the message to be sent reliably, by which we mean that ideally the receiver
gets exactly the original message, with no errors. More realistically, we may ask only
that the message arrives with an arbitrarily small chance of an error.

3. We may often wish our message to be private, that is to say secret, from others. By
this we mean that a spy who records the signals passing through the channel will
be no nearer to knowing what the original message is. Sometimes it is sufficient to
require only that working out what the original message was (though possible for
the enemy) would need an impractical amount of effort. Other aspects of privacy
that might be desired include the receiver being confident that the enemy cannot
alter the message, (or substitute an entirely fresh one), and being able to prove the
authenticity and integrity of the received signal to somebody else.

These are strong requirements, but a remarkable sequence of ideas initiated by Claude
Shannon, and much developed since, has shown that they are achievable; at least up to a
certain well-defined level in each case. The key idea and technique which makes all this
possible is that of coding, which we now consider.
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1.2 Coding

Broadly, to encode something (such as a message) is to replace it by something else; this
will usually be a sequence of symbols, in the context of communication theory. More
formally, we can define a code (or code system) as a mapping (or function) from the set of
all possible messages to a suitable set of strings of symbols. Together with another map
from strings of symbols to possible messages, which we call decoding. The message and
the encoding need not ( and usually are not) drawn from the same collection of symbols or
objects (which we generally call an alphabet). We are all familiar with specific examples
of coding.

[a ] In coding for secrecy, called cryptography, the intention is to replace the message
by a different signal, or encryption, in such a way that the recipient can decrypt it to
recover the original message; but, at the same time, an enemy reading the signal will
find it unintelligible and not decodable. Classic elementary methods include simple
substitution codes (replace A by B, B by C, etc), more complex substitutions such
as the Playfair code, and extremely complicated systems such as the Enigma code.
Encrypting the enormous amount of confidential messages that computers send to
each other requires much cleverer cryptosystems, with a mathematical theory to
develop them. [Which is not on our syllabus.]

[b ] In coding for efficiency, one seeks to minimize the cost of using the channel. Usu-
ally, for obvious reasons, this is done by encoding the message to make the signal
transmitted as short as possible. Here the classic example is that of Morse code
which uses three symbols dot, dash and space, which may be represented as ·,− and
s. Then in encoding the roman alphabet the code assigns: E → ·s, T → −s, Q →
− − · − s, Z → − − · · s, and so on. The point here is that in many languages
using the roman alphabet, E and T are common letters, whereas Q and Z are not
so common. The overall length of the transmission should therefore be shorter than
if equal-length codewords had been used. Likewise naval signal flags have a flag for
each letter and digit, but also single flags to represent frequently occurring messages.
Road signs use the same principle, with simple ideograms for common instructions,
while spelling out unusual orders. Coding for efficiency is often called source coding,
or data compression.

[c ] In coding for reliability, (often called channel coding) we seek to ensure that the
receiver can still reconstruct the original message even when the channel corrupts
the signal by making random errors of transmission. This is called noise, and results
in symbols being wrongly sent as a different symbol, or simply not sent at all. A very
simple method of coding to mitigate the problem is the repetition code, in which
each symbol is repeated a given number (such as 3, say) of times, and the most
frequent symbol in this block is assumed by the receiver to have been the one sent.
(This is clearly not very efficient.) A more subtle form of coding to counteract errors
is the familiar checksum. It is characteristic of all such error-correcting codes that
they introduce extra symbols (redundancy) to counteract the noise.

With these examples in mind, these formal definitions are natural. It is assumed that a
source S is supplying a sequence of symbols (which we may call the message) from an
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alphabet A. A message of length n is denoted by x ∈ An, where An is the set of all strings
of length n of symbols from A. The set of all finite strings of symbols from A is denoted
by A∗·.
Definition: a code c(·), (or encoding, or code function), for the source S is a mapping
from A∗ to the set B∗ of finite-length strings from an alphabet B, which may be called
codewords. [If the mapping is to Bm, for some m, then the code is said to be a block
code.] Formally

c(·) : x ∈ A∗ → c(x) ∈ B∗.

In addition, there is a decoder d(·) which maps B∗ to the set of possible messages.
The length of the codeword c(x) is denoted by |c(x)|. For efficiency we would like |c(x)|
to be small in the long run; for reliability we would like d(c(x)) = x as often as possible;
for secrecy we wish any enemy who knows c(x) not to be able to identify x in general.
Briefly, the core of communication theory is devising good codes.
Among the various properties that good codes might have, this one is clearly almost es-
sential.
Definition: a code c(·) is uniquely decipherable if the concatenation c(x1)c(x2) . . . c(xn)
of codewords of symbols (or messages) from S is the image of (corresponds to) at most
one sequence x1 . . . xn.
An important class of uniquely decipherable codes is this:
Definition: a code is a prefix (or instantaneous) code if no codeword is the prefix of
another. (Which is to say that we cannot add letters after some c(x) to get another code-
word c(y) = c(x)b1 . . . bm.]
Example. Telephone numbers are a prefix code.
The mathematical codes defined above are crucial in communication theory, but the
broader concept of coding is of much wider application. For example, the sequence of
amino acids in DNA encodes a number of physical attributes of the individual in question.
For more wide-ranging applications we note that musical notation encodes the music it-
self. Maps encode various features of the surface of the earth. Plans and elevations encode
buildings. After some thought, you will realise that speech encodes your thoughts, and
writing encodes your speech. This in turn can be given in Morse code. The ultimate
conclusion of this process is a binary encoding, which is a string of symbols using an al-
phabet of just two symbols [0, 1]. After a little more thought you may agree that anything
of practical interest in communication must be capable of encoding as a string of symbols.
[You may care to recall Wittgenstein’s remark: “whereof we cannot speak, thereof one
must be silent”.]

1.3 Source and channel

The message to be communicated is supplied by the source, about whose nature we need
not be specific, but it has three key properties. First, by what we have said above, we
can assume that the message comprises a finite string of symbols. [For if it were not, we
would simply encode it as such.] Secondly, the message is to be selected from a set of
possible messages; (which we shall assume to be finite, for simplicity). And thirdly we are
uncertain about what the message is to be, because if it were known in advance, it would
be unnecessary to send it. It is therefore natural to regard the output of a source as a

4



random sequence of symbols, which we refer to as random variables and vectors (with a
slight abuse of the convention that these shall be real-valued).
Definition: a discrete source comprises a sequence of random variables X1, X2, . . .
taking values in a finite alphabet A. Any finite string is a message. If the Xr are
independent and identically distributed, then the source is said to be memoryless, and
we can write P (Xr = x) = p(x) for all r.
At this stage, we shall assume that sources are discrete and memoryless. [Of course, many
real sources do not have these properties, but the ideas and methods that we shall develop
in this simple case can be generally extended to deal with more complicated sources.] Thus
the probability that the source emits a message x = (x1, . . . , xn) ∈ An is

P (X = x) = P (X1 = x1, . . . , Xn = xn) = P (X1 = x1) . . . P (Xn = xn) =
n∏
r=1

p(xr)

by the independence.
This is encoded as a signal to enter a channel:
Definition: given an alphabet B of possible input symbols, and an output D of possible
output symbols, a discrete channel is a family of conditional distributions p(y|x), x ∈
B, y ∈ D. This array is called the channel matrix and denoted by M , so that for input
X and output Y

M = P (Y = y|X = x) = p(y|x)

Since
∑
y

p(y|x) = 1, M is a stochastic matrix.

It may be square, and it may be doubly stochastic, (i.e.,
∑
x

p(y|x) = 1), but not usu-

ally. More generally the rth extension of the channel is the family of conditional joint
distributions of r uses of M , given the input (x1, . . . , xr) = x

p(y1, . . . , yr|x1, . . . , xr) = P (Y = y|X = x)

The channel is said to be memoryless, and denoted by DMC, if

p(y1, . . . , yr|x1, . . . , xr) =
r∏
i=1

p(yi|xi)

Thus uses of the channel are conditionally independent, given the input. We shall always
assume this.
We note two extreme cases:

(a) If Y = X, so that p(y|x) = 1, whenever x = y ∈ B, (and p(y|x) is 0 otherwise) then
the channel is perfect, or noiseless.

(b) If p(y|x) does not depend on x, (i.e. p(y|x) = p(y) for all x), then the output is pure
noise, independent of the input, and the channel is useless.
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1.4 Entropy

Given a source, we do not know in advance what the message is to be, but we can ask
how likely it is that we will see any given sequence x = (x1, . . . , xn). The likelihood of x
is simply the probability that S emits x, namely (by the independence)

p(x) =
n∏
r=1

p(xr)

Before the source produces it, x may take any of its possible values, so the likelihood of
the actual message that we are to see is a random variable called the empirical likelihood

p(X) =
n∏
r=1

p(Xr)

It often turns out that for various purposes sums are more tractable than products, so the
following is natural.
Definition: the empirical log-likelihood (function) of the source is

L(X) = −
n∑
r=1

log p(Xr)

where by convention logarithms in communication theory are to base 2, unless otherwise
stated. [We shall see why this is later.] The application of the negative sign is also just a
convenient convention, to make L(X) non-negative. Since X is a simple random variable,
L(X) = − log p(X) has an expectation.
Definition: the expected value of L(X) is denoted by

H(X) = −E log p(X) = −
∑
x∈A

P (X = x) logP (X = x),

and called the entropy of X; (and also the information in X, or the uncertainty in X, for
reasons that we discuss later). Perhaps surprisingly, this function is of great importance
in communication theory, as we shall see.
Notes:

(1) By convention, we take 0 log 0 = 0, when p(x) = 0.

(2) H(X) does not depend on the values of X, only on its distribution (p1, . . . , pn). We
sometimes use the notation H(p1, . . . , pn) = H(p) = H(X).

(3) The entropy of any random vector (X,Y ), or X, is defined in exactly the same way
by the joint distribution.

Example. Let X be Bernoulli(p). Then

H(X) = H(p, 1− p) = H(p) = −p log p− (1− p) log(1− p)

Sketch this curve as a function of p, and note that it is maximal for p = 1
2 , when

H(1
2 ,

1
2) = 1. This corresponds to the flip of a fair coin, and this determines the units of
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entropy called bits. Thus the flip of a fair coin has unit entropy, because we chose to take
logarithms to base 2.

Lemma.

H(X) =
n∑
r=1

H(Xr) = nH(X)

for the discrete memoryless source.

Proof.

H(X) = −E log p(X) = E log
n∏
r=1

P (Xr) = −E
n∑
r=1

log p(Xr) =
n∑
r=1

H(Xr)

Likewise it is shown that if X and Y are independent then

H(X,Y ) = H(X) +H(Y )

Lemma: H(X) = 0 if and only if X is a constant with probability 1.

Proof. Each term in the sum is zero iff either pX(x) = 0 or pX(x) = 1. There must thus
be just one x with the second property.

Lemma. Let c(·) be an invertible (uniquely decipherable) encoding of X. Then the en-
tropy of c(X) is the same as that of X. We interpret this as the important result: an
invertible code neither increases uncertainty nor loses information.

Proof. Let Y = c(X). Then (in an obvious notation)

H(Y) = −
∑

pY (y) log pY (y) = −
∑

P (c(X) = y) logP (c(X) = y)

= −
∑

P (X = c−1(y)) logP (X = c−1(y))

= H(X)

, using the unique decipherability.

We turn from these useful lemmas to an important result, which we shall use often;

Theorem. Gibbs inequality. Let X have distribution p(x), and let q(x), x ∈ A, be
any other probability distribution on the same alphabet as p(x). Then H(X) uniquely
minimizes the value of the function G(q) = −E log q(X) over all choices of q. That is to
say, for any distributions p and q on A

H(X) = −
∑

p(x) log p(x) ≤ −
∑

p(x) log q(x)

with equality if and only if p(x) = q(x), x ∈ A.
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Proof of Gibbs’ inequality.
We give two proofs.
For the first, recall Jensen’s inequality for a strictly convex function, u(X) of a random
variable X; that is: Eu(X) ≥ u(EX) with equality iff X is constant, so that X = EX.
Now u(x) = − log x is strictly convex for x > 0. Therefore, letting X have distribution
p(x),∑

p(x) log
p(x)
q(x)

= E

{
− log

q(X)
p(X)

}
≥ − log

(
E
q(X)
p(X)

)
= − log

[∑
x

q(x)
p(x)

p(x)

]
= 0,

with equality iff
q(x)
p(x)

= constant = E
q(X)
p(X)

= 1

, so that p(x) = q(x) for all x.

For the second proof, recall that logb x ≤
x− 1
loge b

, for b > 1 and x > 0, with equality iff

x = 1. Hence
− loge 2

∑
x

p(x) log
p(x)
q(x)

=
∑
p>0

p(x) loge
q(x)
p(x)

≤
∑
p>0

p(x)
{
q(x)
p(x)

− 1
}

with equality iff p(x) = q(x) for all p(x) > 0

=
∑
p>0

q(x)− 1

≤ 0, with equality iff
∑
p>0

q(x) = 1,

which entails q(x) = p(x) when p(x) = 0. Hence equality holds throughout iff p(x) = q(x)
for all x.
Here are some useful consequences.
Corollary. H(X) ≤ log |A| = log a, with equality if and only if X is uniformly distributed
on A.
Proof. Let q(x) = |A|−1 = a−1, x ∈ A. Then

H(X) ≤ −
∑
x∈A

p(x) log
1
a

= log a,

with equality if and only if p(x) = a−1.

We interpret this by regarding H(X) as a measure of how “spread out” the distribution
of X is over its possible letters.
Now, rearranging Gibbs inequality, we find that if we regard it as a function of the two
distributions we have this ∑

x

p(x) log
p(x)
q(x)

: = d(p, q) ≥ 0,
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with equality iff p ≡ q. The function d(p, q) defined by the above sum can thus be seen as
a measure of how far the two distributions differ from each other. [We cannot see it as a
strict distance, because d(p, q) 6= d(q, p).]
Note that in the defining sum we adopt the conventions that for p 6= 0, p log p

0 = ∞,
whereas 0 log 0

q = 0 for any value of q. Thus we have :
Definition. The function d(p, q) is the relative entropy between the distributions p(x)
and q(x), x ∈ A; it is also called the Kullback-Leibler divergence. [It may be referred
to either as a similarity measure, or a dissimilarity measure, depending on your point of
view.]
And some writers call it the information-theoretic divergence.
Example. Let X with distribution p(x) = 1

2 be Bernoulli(1
2); and Y be Bernoulli(r), with

distribution q(1) = P (Y = 1) = r, and q(0) = P (Y = 0) = s = 1− r.

Then an easy calculation gives

d(p, q) = −1− 1
2

log r − 1
2

log(1− r)

= 0 iff r =
1
2

, and likewise
d(q, p) = 1 + r log r + (1− r) log(1− r)

= 0 iff r =
1
2

.

These are the relative entropies between a fair coin and a biased coin, depending on which
is taken first.
Finally, we note the most important property of all: as n increases the average empirical
log-likelihood of X = (x1, . . . , xn) per source symbol converges (in probability) to the
entropy H(X).
Theorem. For δ > 0, as n→∞,

(∗) P (| 1
n

log p(X) +H(X)| > δ)→ 0

Proof. First we recall Chebyshov’s inequality:

P (|X| > δ) ≤ E|X|2/δ2 for δ > 0

. [To see this note that δI(|X| > δ) ≤ |X|, where I(A) is the indicator of the event A, so
if we square this and take the expected value

δ2EI2 = δ2P (|X| > δ) ≤ E|X|2].
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Hence the probability in (*) is less than or equal to

1
δ2n2

E[log p(X) + nH(X)]2 =
1
δ2

1
n2

var Ln =
1
nδ2

var L1 → 0

as n→∞ since L1 has finite variance. [Note that this is essentially a simple weak law of
large numbers.]

We use this key theorem in the next section to show that although the total number of
possible messages of length n is |A|n, in fact, with probability arbitrarily close to 1, X is
a message lying in a set Tn of messages that is much smaller than An, except when X is
uniform on A.

1.5 Typicality

We have shown above that the entropy of a message X of length n from the source is
nH(X), where H(X) is the entropy of any letter. Before the message appears, not much
can be said about any particular symbol, except its distribution p(x). But suppose we
consider arbitrarily long messages from the source. Claude Shannon’s remarkable insight
was that such messages have this property.
Theorem. Typicality.
Consider a discrete memoryless source. Then for ε > 0 and δ > 0 there exists n0 < ∞
such that for all n > n0 the set An of all possible sequences of length n can be divided
into disjoint sets Tn and Un such that Tn ∪ Un = An and

(1) 2−n(H+δ) ≤ p(x) ≤ 2−n(H−δ), for x ∈ Tn,

(2) P (X ∈ Tn) ≥ 1− ε

(3) (1− ε)2n(H−δ) ≤ |Tn| ≤ 2n(H+δ)

That is to say, more informally, as n increases An can be split into a set Un of arbitrarily
small probability (called the untypical sequences) and a set Tn of probability arbitrarily
near 1, by (2), called the typical set. Thus for many practical purposes we can treat the
messages of length n > n0 as though there were only 2nH of them, by (2) and (3), and
with each such typical message having roughly the same probability 2−nH of occurring,
by (1).
The point of this is that from above, for some γ > 0, H(X) ≤ log |A| − γ, provided that
X is not uniform on A. Hence, choosing δ < γ, |Tn | ≤ 2n(H+δ) ≤ 2n(δ−γ)|A|n and we see
that the set of typical messages is much smaller than the set of possible messages in the
long run. This idea makes possible both Shannon’s source and channel coding theorems,
as we see in the following sections. [Note the slightly counter-intuitive fact that the most
probable messages are not typical.]
Proof of the theorem.
Define the typical set Tn to be those messages x whose log-likelihood is within a distance
δ from H. That is to say

Tn = {x :
∣∣∣∣ 1n log p(x) +H(X)

∣∣∣∣ < δ}
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Rearranging the inequality gives (1). Now using the empirical log-likelihood convergence
theorem of the previous section gives (2). It follows that

1− ε ≤ P (X ∈ Tn) =
∑
x∈Tn

p(x) ≤ 1,

and now applying the two bounds in (1) to each p(x) in the sum gives (3). For example,

1 ≥
∑
x∈Tn

p(x) ≥
∑
x∈Tn

2−n(H+δ)

= |Tn|2−n(H+δ)

, so that |Tn| ≤ 2n(H+δ).
This theorem is sometimes called the Asymptotic Equipartition Property, or AEP.
Finally, we note that the idea of typicality can be formulated more strongly. The results
above address only the probability of a sequence x, so that a sequence x is typical if
| 1n log p(x) + H| < δ. This tells us little about the actual sequence itself, that is to say
the actual frequency of occurrence of the letters of A in the message x. Strong typicality
addresses exactly that; so we define N(α,x) to be the number of occurrences of α ∈ A in
x. The collection [N(α,x) : α ∈ A] is called the type of x.
Definition. Let δ > 0. The message x ∈ An is said to be δ-strongly typical for pX(x) if∣∣∣∣ 1nN(α,x)− pX(α)

∣∣∣∣ < δ when pX(α) > 0

, and N(α,x) = 0 whenever pX(α) = 0.
That is to say, the empirical distribution N(α,x) is close to the source distribution pX(α);
(in total variation distance, more formally). The set of such sequences is called the strongly
typical set, and it turns out to have essentially the same properties as the weakly (or
entropy) typical set. That is to say, its probability is arbitrarily close to 1, and its sequences
are asymptotically equiprobable. This may be called the strong AEP.

1.6 Shannon’s first theorem: noiseless (or source) coding

Recall that our task is to use the channel efficiently; an obvious way to do this is to seek
a code that minimizes the expected length of the encoded message, or signal, passing
through the channel. Remarkably, Shannon showed this:
Theorem. If a source having entropy H(X), is encoded using an alphabet B, of size
b = |B|, then given ε > 0, for large enough n there is an encoding function c(·), from An

to Bm ∪Bk, for some k, m ≥ 1, such that

1
n
E|c(X)| ≤ H(X)

log b
+ ε

That is to say, the expected number of signal symbols per symbol of X = (X1, . . . , Xn) is

arbitrarily close to
H(X)
log b

, as n→∞.

Conversely, no such invertible block encoding using B can have shorter expected length
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than this in the long run. Note that the result is particularly neat for binary encodings
when b = 2.
Proof. By the typicality theorem, for large enough n there exists a set Tn such that
P (X ∈ Tn) ≥ 1− ε and |Tn| ≤ 2n(H+δ).

Choose m to be the smallest integer such that |B|m ≥ 2n(H+δ), so that m ≤ n(H + δ)
log b

+1.

Now construct an encoding (codebook) as follows. Because there are more m-strings than
typical messages of length n, each element of Tn can be invertibly encoded by a distinct
m-string prefixed by b0 ∈ B. Then the untypical set can be invertibly encoded using
k-strings from Bk, for any k such that |B|k ≥ |A|n, prefixed by b1 ∈ B; b1 6= b0.
Then

1
n
E|c(X)| = 1

n

{∑
x∈Tn

p(x)(m+ 1) +
∑
x∈Un

p(x)(k + 1)

}

≤ m+ 1
n

+
k + 1
n

ε

≤ H + δ

log b
+

2
n

+
k + 1
n

ε.

Since δ and ε, and then n, are chosen arbitrarily, the first result follows.
Conversely, we can use the AEP (typicality) to show that no binary block code can have
block length less than nH(X). To see this consider the sequence (X1, . . . , Xn), and a
possible invertible binary encoding in blocks of length m, for some m, (Y1, . . . , Ym). By
the lemma in 1.4, because (Y1, . . . , Ym) is an invertible function of (X1, . . . , Xn) it has the
same entropy, namely nH(X). By the AEP, there are asymptotically 2nH(X) messages
from the source as n increases. By the note in 1.4, the maximum entropy of (Y1, . . . , Ym)
is log 2m = m in which case there are 2m typical strings in the encoding. For invertibility,
2m ≥ 2nH(X), as required.
The same result holds for invertible encodings of variable length; we prove this later on.
Thus Shannon’s entropy H(X) provides the explicit universal lower bound for the extent
to which messages may be compressed for efficient transmission.

1.7 Information

As remarked above, channels are not perfect and signals are often corrupted. That is to
say, if the correct signal received should be Y , the actual signal received may be some
function u(Y ) of Y . If this is a non-random function, the effect is called distortion; in
this case the originally intended result Y may be recovered if u(·) is invertible, and its
form discovered by trial messages. More commonly u(·) is random, and the effect is called
noise. Our canonical definition of a noisy channel is this:
Definition. A discrete channel comprises a family of conditional distributions, p(y | x) =
p(Y = y | X = x) where X ∈ A is the input and Y ∈ B is the output. It is said to be
memoryless if outputs depend only on their corresponding input, and are conditionally
independent given the input message X. That is

p(y | x) = p(Y = y | X = x) = p(y1 | x1)p(y2 | x2) . . . p(yn | xn)
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These can be seen as the conditional probabilities defining a channel with input alphabet
Ar, and output alphabet Br, and this may be called the rth extension of the channel
p(y | x). The array p(y | x), x ∈ A, y ∈ B is called the channel matrix. It is stochastic,
and may or may not be a square matrix.
For any given input distribution pX(x), the input and output have joint distribution

p(x, y) = pX(x)p(y | x)

Thus X and Y have respective entropies H(X) and H(Y ), and joint entropy H(X,Y ).
However, in the context of a noisy channel it is natural to consider yet another entropy
function: the entropy of the distribution p(y | x) for any fixed x. This is given by

H(Y | X = x) = −
∑
y

p(y | x) log p(y | x)

and called the conditional entropy of Y given X = x. Note that as x ranges over A, this
defines a random variable, being a function of X. It therefore has an expectation, which
is the expected value of the entropy in Y , conditional on the value of X, before the input
symbol is supplied. It is given by

H(Y | X) =
∑
x

pX(x)H(Y | X = x)

= −
∑
x,y

p(x, y) log p(y | x)

= −E log p(Y | X)

[This is not a random variable of course, despite the similarity of notation with conditional
expectation E(Y | X) which is a random variable.]
Lemma H(X | Y ) ≥ 0, with equality iff X is a non-random function of Y ; ie X = g(Y )
for some g(·).
Proof. The non-negativity is obvious. Now H(X | Y ) = 0 iff H(X | Y = y) = 0 for all y.
But any entropy is 0 iff the distribution is concentrated at a point, so that x = g(y) for
some g and all y.
We return to this entropy later, but note that H(X | Y ) is of particular interest, as it
represents the expected uncertainty of the receiver of the transmitted signal about what
was actually sent. It has been called the equivocation.[And H(Y | X) has been called the
prevarication.]
Now recall that we mentioned two extreme cases, useless channels in which the output is
noise independent of the input, and perfect channels with no noise. Obviously in interme-
diate cases it would be very useful to have some measure of just how good (or bad) the
channel is; that is to say, how close Y is to X, in some suitable sense. We would then (we
hope) be able to choose pX(x) to make Y as close to X as possible, thus optimizing the
channel’s performance. Fortunately, we have already defined such a measure of closeness
above, in the form of the relative entropy (or Kullback-Leibler divergence). We therefore
judge our channel by how far it is from being useless, namely the relative entropy between
p(x, y) and pX(x)pY (y).
Definition. For random variables X and Y , (seen as the input signal and output signal
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respectively), their mutual information I(X;Y ) is the relative entropy between p(x, y) and
pX(x)pY (y)

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)

pX(x)pY (y)
= E log

p(X,Y )
pX(X)pY (Y )

When X and Y are independent I(X;Y ) = 0, and the channel is useless. When X =
Y, I(X;Y ) = H(X), and the input and output have the same entropy, as expected. In
intermediate cases we may choose pX(x) to get the best we can from the channel. This
definition is therefore natural:
Definition. The (Shannon) capacity of a channel with input X and output Y is

C = max pX(x)I(X;Y )

As with H(X), this definition will be further justified by its applications, to follow. For
the moment, we note some properties of I(X;Y ), and its relationship to entropies.
Theorem.

I(X;Y ) = H(X) +H(Y )−H(X,Y )

= H(X)−H(X | Y ) = H(Y )−H(Y | X)

= I(Y ;X) ≥ 0

with equality in the last line if and only if X and Y are independent.
Proof. All follow from the definitions, except the last assertion which is a consequence of
Gibbs inequality, yielding equality when p(x, y) = pX(x)pY (y), as required.
Corollaries

1. H(X) ≥ H(X | Y ) with equality iff X and Y are independent, (informally we recall
this as conditioning reduces entropy)

2. H(X,Y ) ≤ H(X) +H(Y ) with equality iff X and Y are independent

3. H(X,Y ) = H(X) +H(Y | X) = H(Y ) +H(X | Y )
This is called the chain rule.

4. For non-random g(·)

(a) H(g(X)) ≤ H(X), with equality iff g is invertible

(b) H(X, g(X)) = H(X)

Proof. 1-3 are trivial. For 4, recall that H(g(X) | X) = 0, so we obtain

(b) H(X, g(X)) = H(X) +H(g(X) | X) = H(X)

(a) H(X, g(X)) = H(g(X)) +H(X | g(X)) ≥ H(g(X))

with equality iff H(X | g(X)) = 0,
which means X is a function of g(X), as required for the invertibility.

Example. Shannon noiseless coding bound.
Let a source sequence X = (X1, X2, . . . , Xn) be encoded as binary strings by a uniquely
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decipherable function c(·) yielding the binary signal Y = c(X) ∈ {0, 1}∗. Then denoting
the length of c(x) by |c(x)|, E|c(X1)| ≥ H(X1)
Proof. Let M = c(X1) . . . c(Xn) be the concatenation of length L. Since M is uniquely
decodable, (invertible), H(M) = nH(X1), by the memorylessness of the source.
Also, with probability 1, L ≤ n max x∈A|c(x)|, so H(L) ≤ log(n max x|c(x)|)
Finally, since L is a function of X and of M ,

nH(X) = H(M) = H(M,L) = H(L) +H(M | L) , by the chain rule,

= H(L) + ΣH(M | L = k)P (L = k)

≤ log(n max x|c(x)|) +
∑
k

log 2kP (L = k)

= log(n max x|c(x)|) + EL = log(n max x|c(x)|) + nE|c(X)|

Dividing by n, and letting n→∞ yields the result.
Finally in this section, we note that just as the entropy of X may be defined conditional
on some random variable Y , so too may the mutual information of X and Y be defined
conditional on some random variable Z. [Provided, as always, that they are all jointly
distributed.]
Definition. The conditional mutual entropy of X and Y given Z, i.e., the conditional
mutual information is

I(X;Y | Z) = d(p(x, y | z), p(x | z)p(y | z)) ≥ 0

with equality iff X and Y are conditionally independent given Z, which is to say that

p(x, y | z) = p(x | z)p(y | z)

We also have this useful result:
Lemma. Chain rule for information

I(X,Y ;Z) = I(X;Z) + I(Y ;Z | X)

Proof. An easy exercise for you.

1.8 Shannon’s second theorem. Noisy (or channel) coding.

The typicality theorem (or AEP) used to demonstrate the noiseless coding theorem can
also be used to establish a bound on the rate of reliable transmission that can be achieved
using a noisy channel. Formally:
Theorem. Suppose that a source, of entropy H, produces a message of arbitrary length
n, which it is desired to encode for transmission through a channel of capacity C. If
H ≤ C, it is possible to encode a sufficiently long message as a signal in such a way that
the received (output) signal can be decoded with arbitrarily small probability of error. If
H > C, then this is not possible, in the sense that the probability of error can not be
made arbitrarily small.
We give what is essentially Shannon’s argument.
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Sketch proof. Let X and Y be the input and output of the channel with capacity C,
and let X have the distribution pX(x) that actually achieves the capacity C. [In practical
cases, I(X;Y ) is a continuous function on a closed bounded subset of Ra, so the supremum
over pX(x) is indeed attained.] For arbitrarily large n, consider the sequence of inputs
(X1, . . . , Xn), where these are i.i.d. with distribution pX(x).
By typicality, (the AEP), we have that

1. There are about 2nH(X) typical inputs x.

2. There are about 2nH(Y ) typical outputs y.

3. The conditional entropy of the input X given the output Y is H(X | Y ), and
thus, also by typicality, to each typical output there corresponds on average about
2nH(X|Y ) typical inputs.

To see this another way, consider the input and output together as a single random vector
with entropy H(X,Y ). Shannon’s theorem (the AEP) shows that there are about 2nH(X,Y )

input-output pairs, which are often called jointly typical sequences. Thus there are about

2nH(X,Y )

2nH(Y )
= 2nH(X|Y )

typical inputs per typical outputs on average; (as seen above from the other point of view).
Now suppose that there is a source producing messages with entropy rate R0 = H < C;
that is to say as n increases it supplies about 2nR0 typical messages of length n. We wish
to encode these for reliable transmission through the channel of capacity C. Choose R
such that R0 < R < C, and construct a coding scheme as follows:

1. From the 2nH(X) typical input messages defined above (with distribution pX(x)
achieving capacity) select 2nR independently at random, with replacement; these
are the codewords. [Note that since the selection is with replacement, we admit the
possibility of having two codewords the same, somewhat counter-intuitively.] Denote
this codebook by x(1) . . .x(2nR).

2. The decoding scheme is this: for any output Y we will look at the set S(Y) of
corresponding typical inputs (i.e., those that are jointly typical with Y), of which
there are typically about 2nH(X|Y ), as remarked above. If x(r) is sent, then with
probability arbitrarily close to 1, the output Y will be jointly typical with x(r). If
on examining the set S(Y) of inputs that are jointly typical with Y we find no other
codeword than x(r) then decoding Y as x(r) is correct. Otherwise, if S(Y) contains
another codeword, we declare an error in transmission.

With this codebook and decoding scheme, we pick a codeword to send at random from
x(1), . . . ,x(2nR). The average probability of error (averaged over random choice of code-
books and random choice of codeword to send) is therefore
pe = P (at least one codeword not equal to that sent lies in the set S(Y))

≤
2nR∑
k=1

P (x(k) ∈ S(Y)), since P (∪Ai) ≤
∑

P (Ai)
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u
2nR2nH(X|Y )

2nH(X)

, because there are about 2nH(X) possible choices for x(k), of which about 2nH(X|Y ) are
in S(Y). Hence
pe ≤ 2nR2−nC , since pX(x) achieves C → 0 as n→∞, because R < C.
It follows that for any ε > 0, there exists n <∞ such that there is a fixed set of codewords
x(1), . . . ,x(2nR) that has average (over codeword selected) error smaller than ε. Now
order these codewords by their probabilities of error, and discard the worst half (with
greatest probability of error). The remaining codewords have arbitrarily small maximum
probability of error, and there are 2n(R− 1

n
) codewords in the book. This exceeds 2nR0

for large enough n, so the message from the source can thus be invertibly coded, with
maximum probability of error as small as we choose. Note that this is purely a proof of
the existence of such a codebook. There is no clue as to how we might find it, (except the
essentially useless method of searching through all possible codebooks).

We conclude this section with a brief look at other popular decoding rules for noisy chan-
nels. [For noiseless channels decoding is clearly trivial, since the receiver always sees the
codeword that was sent.] Formally, in general, we have this:
Definition. A decoder (or decoding function) g(·) is defined on all possible outputs y of
the channel, and takes values in the set of all codewords, possibly augmented by a symbol
e denoting that the decoder declares an error.
Example. The ideal observer (or minimum error decoder) chooses the most likely code-
word given the output of the channel. Thus (in an obvious notation)

g(y) =
{
c(x) if there is a unique x such that p(c(x) | y) is maximal
e otherwise

This rule has a potential disadvantage, in that it is necessary to know the distribution of
the codewords, p(c), since

p(c | y) = p(y | c) p(c)
p(y)

A decoder without this problem is this:
Example. Maximum likelihood decoder.

g(y) =
{
c(x) if there is a unique x such that p(y | c(x)) is maximal
e otherwise

This chooses the codeword that makes the received message most likely.
Another way of defining decoders is to view the codewords and signal as points in the
same suitable space, with a distance function ‖ · ‖.
Example. Minimum distance (or nearest neighbour) decoder.

g(y) =
{
c(x) if there is a unique x such that ‖c(x)− y‖ is minimal
e otherwise

When alphabets are binary, a very natural distance between binary strings c(x) and y of
length n is the Hamming distance, in which ‖c(x) − y‖ is the number of places at which
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c(x) and y disagree. Then the Hamming decoder chooses the c(x) nearest to y, if it is
unique, in Hamming distance.
A variant of this is the Hamming r-sphere decoder, which chooses the c(x) nearest to y,
provided it is unique and differs from y in at most r places; otherwise it declares an error.

1.9 Differential entropy

In the real world, and also in statistical and engineering models, noise is often seen as
normally distributed. It is thus natural to seek to define entropy for a continuous random
variable X, having a density f(x).
Definition. The entropy, or differential entropy, h(X) of the continuous random variable
X is

h(X) = −
∫
f(x) log f(x)dx = −E log f(X)

where f(x) is the density of X, provided that the integral exists.
Note that there are some marked differences between h(X), and H(X) as defined in the
discrete case. First, it is customary to take logarithms to base e, (natural logarithms),
for differential entropy. Second, h(X) can take any value in R. The resulting unit of
information is called the nat = log2 e bits; and a bit = loge 2 nats; because

loge x = log2 x loge 2 and log2 x = loge x log2 e

Example. Let X be uniformly distributed on (a, a+b), so f(x) = 1
b in this interval. Then

h(X) = −
∫ a+b

a

1
b

log
1
b

dx = log b

which is negative for b < 1.
The joint entropy h(X,Y ) and conditional entropy h(X | Y ) are defined analogously in
the same manner as the discrete entropy. Likewise we have this:
Definition. The relative (differential) entropy between densities f(x) and g(x) is

d(f, g) =
∫
f(x) log

f(x)
g(x)

= E log
(
f(x)
g(x)

)
Furthermore, Gibbs inequality holds:
Theorem Gibbs inequality
d(f, g, ) ≥ 0, with equality iff f(x) = g(x) for all x; (except perhaps on a set of measure
zero).
Proof. This can be proved in the same way as the discrete case (by either method used
there), and is left as an exercise.
Hence, as in the discrete case, we have these:
Corollaries: Let X and Y have joint density f(x, y), (and all the entropies are assumed
to be finite), then

1. h(X,Y ) ≤ h(X) + h(Y ), with equality iff X and Y are independent

2. h(X,Y ) = h(X) + h(Y | X) = h(Y ) + h(X | Y )
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3. h(X | Y ) ≤ h(X), with equality iff X and Y are independent.

Furthermore, the mutual information is defined and behaves likewise.
Definition. I(X;Y ) = H(X) +H(Y )−H(X,Y ) = d(f(x, y), fX(x)fY (y)) ≥ 0
with equality if and only if X and Y are independent.

Example. Q = (X,Y ) is a random point uniformly distributed in the square determined
by the four points having Cartesian coordinates (0,±1), (±1, 0). What is the information
conveyed about X by Y ?
Solution. The joint and marginal densities are f(x, y) = 1

2 ; fX(x) = 1 − |x|; fY (y) =
1− |y|.
Hence,

I(X,Y ) = E log
f(X,Y )

fX(X)fY (Y )

= − log 2− E log{(1− |X|)(1− |Y |)}

= − log 2−
∫ ∫

S
log(1− |x|)(1− |y|)dxdy , by symmetry

= − log 2− 4
∫ 1

0

∫ 1−x

0
log(1− x)dydx , also by symmetry

= − log 2 + 4
[

1
2

(1− x)2 log(1− x)
]1

0

+ 2
∫ 1

0
(1− x)dx

1− loge 2 u 0.31 nats u 0.44 bits

Note that if S had been the square (±1,±1), then I(X;Y ) = 0, as X and Y are then
independent. But the covariance of X and Y is zero in both cases, so I(X;Y ) is a better
measure of association from one point of view.
Finally, we note one important difference between H(X) and h(X). When X is simple
and g(X) is a one-one invertible function of X, we have H(X) = H(g(X)). This is not
necessarily true for differential entropy.
Example. Let a 6= 0 be constant, and let X have differential entropy h(X). Then Y = aX
has density

fY (y) =
1
|a|
fX

(y
a

)
and

h(Y ) = h(aX) = −
∫

1
|a|
fX

(y
a

){
log fX

(y
a

)
− log |a|

}
dy

= h(X) + log |a|

And, more generally, if Xn is a random n-vector, and A an n × n matrix with non-zero
determinant detA, then

h(AXn) = h(Xn) + log |detA|
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1.10 Interpretation of entropy and information

While not essential in mathematics, interpretations of mathematical concepts are usually
welcome, because they lend plausibility to axioms, and suggest which theorems should be
most interesting. So we note that the concepts of entropy and mutual information defined
above can be interpreted as measures of our real-world concepts of uncertainty, surprise,
and information. We argue as follows:

(a) We defined the entropy H(X) of the random variable X having probability dis-
tribution p(x) to be the expected value of the empirical log-likelihood: H(X) =
E{− log p(X)}. Here is an intuitive interpretation of H(X). Suppose that E is
some event that may occur with probability p = P (E). In advance of the relevant
experiment we have some level of uncertainty about whether E will occur or not,
and if later informed that E has occurred we feel some measure of surprise. The key
point is that both our uncertainty and surprise vary according to P (E). To see this
consider E and Ec with probabilities P (E) = 10−6, and P (Ec) = 1− 10−6. We feel
rather more uncertain about the occurrence of E than Ec, and equally we would
be rather more surprised at the occurrence of E than Ec. Since it is the transfer
of information that has resolved the uncertainty and created surprise, all of these
depend on P (E) = p. We claim that the following are intuitively natural properties
of the surprise s(E) that we feel about E’s occurrence.

(i) It depends only on p, and not further on the value of any random variable
defined on E, nor on any meaning conveyed by E, nor any other semantic
aspect of E.
That is to say, s(E) = u(p), for some function u(p), 0 ≤ p ≤ 1, taking numerical
values.
For example, consider the events
E1 = you win £106 with probability 10−6.
E2 = you are struck by lightning with probability 10−6.
Obviously your feelings, (semantic connotations), about these two events, and
the random outcomes defined on them, are very different. But you are equally
surprised in each case.

(ii) The function u(p) is decreasing in p. That is to say, you are more surprised by
more unlikely events when they occur.

(iii) The surprise occasioned by the occurrence of independent events is the sum of
their surprises. That is to say, if A and B are independent with probabilities p
and q, then

s(A ∩B) = u(pq) = u(p) + u(q).

(iv) The surprise u(p) varies continuously with p.

(v) There is no surprise in a certain event, so s(Ω) = u(1) = 0.

From these it follows (by some analysis which we omit) that for some constant c > 0

u(p) = −c log p
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It is customary to take c = 1, and logarithms to base 2. Thus the unit of surprise is
that which we experience on being told that a flipped fair coin showed a head. It is
therefore also the amount of uncertainty about the event that a coin to be flipped
will show a head. It follows that it is also the amount of information that we obtain
with the news that a flipped fair coin showed a head, and this gives the canonical
name for it: one bit of information.
Now for a simple random variable X, the surprise in any outcome {X = x} is

− logP (X = x) = − log p(x)

Thus the expected surprise to be experienced when the actual value of X is revealed
is

H(X) = −
∑
x

p(x) log p(x)

As above, this is also the average uncertainty about X before it is determined, and
the expected amount of information to be obtained by discovering X. Likewise the
pointwise conditional entropy H(X | Y = y) is simply the surprise expected to
be experienced on discovering X, given that we already know Y = y. And thus
H(X | Y ) is the expected surprise on discovering X, after having been told Y , but
before we know what either random variable is.
There are many other ways of justifying H(X) as a measure of uncertainty and
information; for example it is straightforward to write down (as Shannon did) a list
of reasonable properties to be satisfied by H(X) seen as a function of p(x), x ∈ A.
It then transpires that the only function consistent with these constraints is H(X)
as defined above. We omit this.

(b) We defined the mutual information I(X;Y ) as the Kullback-Leibler divergence be-
tween the joint distribution of X and Y , p(x, y); (seen as the input and output of a
channel), and the distribution px(x)pY (y), where pX(x) and pY (y) are the marginal
distributions of p(x, y). We then derived several representations for I(X;Y ) in terms
of various entropy functions. Interestingly, each of these has an interpretation in
terms of our intuitive ideas about the passage of information through a channel.

(i) As remarked above, H(X) is the information that we seek to send, and H(X |
Y ) is the expected remaining uncertainty about X felt by the receiver after the
signal is transmitted. The difference

I(X;Y ) = H(X)−H(X | Y )

is naturally interpreted as the amount of information successfully passed through
the channel.

(ii) Likewise, H(Y ) is the information in the received signal, and H(Y | X) is
the noise that is induced in the original sent signal X. The difference is the
information about X successfully transmitted, so

I(X;Y ) = H(Y )−H(Y | X)
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(iii) Finally, H(X) +H(Y ) is the total uncertainty in the sent and received signals
separately, whereas H(X,Y ) can be seen as the uncertainty that they have in
common. The difference is interpreted as the information passed

I(X;Y ) = H(X) +H(Y )−H(X,Y )

Alternatively, we can interpret I(X;Y ) through our intuitive ideas of surprise,
as we did for the entropy. Let Aj be the event that a symbol of the signal is xj ,
and Bk the event that the corresponding symbol of the received signal is yk.
Before the channel is used, the surprise to be occasioned in the receiver by the
event Aj is

− logP (Aj) = − log p(xj)

But conditional on Bk, that is the reception of the symbol yk, the surprise
occasioned by learning that actually xj was sent will be

− logP (Aj | Bk) = − log p(xj | yk)

The difference in these levels of surprise is seen as the information passed by
the channel in this event, i.e.,

I(xj ; yk) = − log p(xj) + log p(xj | yk) = log
p(xj , yk)

pX(xj)pY (yk)

Before we use the channel, the expected value of this is interpreted as the
information the channel expects to pass, i.e.,∑

p(xj , yk)I(xj ; yk) = I(X;Y )

as defined above.

22



2 Source coding

Shannon’s first (source) coding theorem is an existence proof; that is to say, it tells us that
there are compact codes that can compress messages arbitrarily close to the entropy lower
bound. In this section, we discuss how to find optimal codes, and their implementation.

2.1 Compact symbol codes

Recall that, given a source emitting X ∈ A, a code is a map from the symbols of A to
the set B∗ of finite strings of symbols from B. Very often, but not always, B = {0, 1}.
[For any n, we may encode the nth extension of the source by a map from An to B∗.] For
x ∈ A, the codeword c(x) has length |c(x)|, and the concatenated encoding of a message
x is c(x) = c(x1)c(x2) . . . c(xn). The expected length of such an encoding is

EL = E|c(X)| = n
∑
x∈A

p(x)|c(x)|

Any code minimizing EL over choices of c(·) is said to be optimal or compact. Obviously
desirable properties are these:

(a) A code is unambiguous if no two distinct source symbols are ever given the same
codeword, i.e. x 6= y ⇒ c(x) 6= c(y).

(b) A code is uniquely decipherable (or invertible) if any finite string from B∗ is the
image of at most one message from the source.

(c) A code is prefix (or prefix-free), or instantaneous if no codeword is the prefix of
any other. That is to say for no x, y and string of symbols b∗ from B∗ is it the case
that c(x)b∗ = c(y).

Example. Roll a die and encode {1, 2, 3, 4, 5, 6} by their binary representations
{1, 10, 11, 100, 101, 110}. This is unambiguous, but not uniquely decipherable as it is not
prefix. Just consider how you might decode 110110110.
Example. An unambiguous block code is prefix, and therefore uniquely decipherable.
Example. Let {a, b, c} be encoded by {0, 01, 11}. This is uniquely decipherable, though
not prefix, but if the encoded message begins 0110, you must wait for further symbols to
decipher it uniquely.
Note that although we have defined a code to be a map, we will often think of it equivalently
as the collection of codewords, called the codebook. There is another, equally useful
representation in terms of trees, defined thus:
Definition. A rooted tree is a connected acyclic graph, (that is, a collection of nodes
(or vertices) joined by edges), with one node identified as the root, and all edges directed
away from the root. It is said to be q-ary if at most q edges are directed away from any
internal node; of course, external nodes have just one edge directed to them and none
leaving. These are called leaves.
Then any q-ary prefix code may be identified with a q-ary rooted tree, in which the
leaves of the tree correspond to the codewords. This may be called the codetree; and
the representation is demonstrated by the codetree for the 3-symbol binary prefix code
{0, 10, 11}; which has a root, one other internal node, and three leaves. You should sketch
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this.
Note that in the binary case the number of leaves equals the number of internal nodes
(including the root) plus one. And in a block code, all leaves are at the same distance
from the root. The distance of a leaf from the root may be called its height, (and also,
by some authors, its depth). A block q-ary tree having qn leaves at height n is called the
complete tree of height n. Leaves having the same parent node may be called siblings.
Now observe that the random source symbol X is encoded by the random codeword c(X),
which corresponds to a randomly selected leaf on the tree, which determines a unique
random path π(X) from the root to the leaf. [Because the tree is connected and acyclic.]
This visualization is often useful, as for example in this theorem.
Theorem. For each internal node v in the codetree, let π(v) be the collection of all paths
π(xi), 1 ≤ i ≤ a, that pass through v, and define

σv =
∑
π(v)

p(xi)

the sum of the probabilities of codewords on descendant leaves of the node v. Then

E|c(X)| =
∑

σv

where the sum is over all internal nodes v, including the root.
Proof. Let Iv be the indicator of the event that the path π(X) visits v. Then EIv = σv,
and

E|c(X)| = E
∑

Iv

=
∑

EIv

=
∑

σv

2.2 Prefix codes

The examples above, and the correspondence with trees, make it clear that prefix codes
are very much preferable to the wider class of uniquely decipherable codes. Fortunately,
it turns out that in seeking good compact codes we can confine our search to the class
of prefix codes, as we now show. First, note that leaves on a tree identify a prefix code,
whose word lengths l1, . . . , ln are equal to the height of the corresponding leaves on the
tree. It is natural to ask, conversely, if some given collection of positive integers l1, . . . , ln
can be the word lengths of a prefix code. The answer is given by this:

Theorem. Kraft’s inequality.
If the positive integers l1, . . . , ln satisfy

(∗)
n∑
r=1

2−lr ≤ 1

then there exists a binary prefix code having l1, . . . , ln as its word-lengths.
Proof. Let l1 ≤ l2 ≤ · · · ≤ ln be positive integers satisfying (∗), which we re-write as

(+) 2ln−l1 + 2ln−l2 + · · ·+ 1 ≤ 2ln
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Consider the complete tree of height ln, with 2ln leaves at height ln. Now place a leaf
at any internal node C1 height l1; because we require a prefix code this excludes 2ln−l1
leaves, that are descendants of c1 at height ln, from consideration as part of the code. By
(+), 2ln − 2ln−l1 > 1 leaves remain at height ln.
We can thus place a leaf at an internal node c2 at height l2. Then 2ln − 2ln−l1 − 2ln−l2 > 1
leaves still remain at height ln. Continuing to the end of the sequence, by (+) there will
be a leaf at height ln to yield the codeword of length ln. The fact that we can confine our
attention to codes with this property, justifying our claim above, follows from this next
theorem:
McMillan’s Theorem. Let l1, . . . , ln be the codeword lengths of a uniquely decipherable
binary code. Then

n∑
r=1

2−lr ≤ 1

Proof. Let N be an arbitrary integer, and let Ak be the number of ways in which
N codewords can be concatenated to form a string of length k. Then, writing l =
max{l1, l2, . . . , ln}, it is identically true that

(6=)

(
n∑
r=1

2−lr
)N

=
Nl∑
k=1

Ak2−k

Since the codewords form a uniquely decipherable code, we must have Ak ≤ 2k, because
unique decipherability requires that the number of concatenations of codewords of length
k is no greater than the number of k strings. Hence the right side of ( 6=) is no greater
than Nl, and so

n∑
r=1

2−lr ≤ (Nl)
1
N → 1 as N →∞

Hence, by Kraft’s inequality, there is a prefix code with these word-lengths.
Corollary. A binary code with word lengths l1, . . . , ln that is prefix (i.e. instantaneous)
exists if and only if

n∑
r=1

2−lr ≤ 1

And to any uniquely decipherable code with word lengths l1, . . . , ln, there corresponds a
prefix code having the same word lengths.
Likewise, a q-ary code with word lengths l1, . . . , ln exists, that is prefix, if and only if

n∑
r=1

q−lr ≤ 1

2.3 The entropy bound for noiseless coding

After the preliminaries above, we can now prove another theorem of Shannon’s:
Theorem: Noiseless coding
Let a discrete memoryless source have distribution P (X = xr) = pr, and entropy H.
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(a) Then any uniquely decipherable binary code c(X) for this source must satisfy

EL = E|c(X)| ≥ H

with equality iff lr = |c(xr)| = − log pr.

(b) Furthermore, there is such a code such that

E|c(X)| ≤ H + 1

Proof of (a). Define the probability distribution qr on the alphabet A of X by

qr = 2−lr/{
a∑
r=1

2−lr}

Then
E|c(X)| −H(X) =

∑
prlr +

∑
pr log pr

= −
∑

pr log 2−lr +
∑

pr log pr

=
∑
r

pr log
pr
qr
−
∑
r

pr log

(∑
k

2−lk
)

= d(p, q)− log
(∑

2−lk
)
≥ 0

by Gibbs inequality, and the fact that
∑

2−lk ≤ 1, because the code is uniquely decipher-
able. Equality holds iff we have both

∑
2−lk = 1 and pr = qr = 2−lr for all r.

In this case we must have that − log pr is an integer, and a distribution of this form is said
to be 2-adic, (or, by some authors, dyadic).
Example. The distribution {1

2 ,
1
4 ,

1
8 ,

1
8} is 2-adic, and the optimal encoding {0, 10, 110, 111}

has expected word length 1.75 = H(X).

Proof of (b). Now consider the possibility of a binary code with word lengths

sr = d− log pre, 1 ≤ r ≤ a

where dxe is the smallest integer not less than x; (often called the ceiling). Then∑
2−sr ≤

∑
2−(− log pr) =

∑
pr = 1

Hence, by the Kraft-McMillan theorems, there is a prefix code (called the Shannon code)
with word lengths sr. And by construction

− log pr ≤ sr < − log pr + 1;

so that multiplying by pr and summing over r, gives

H(X) ≤ EL < H(X) + 1
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for EL the expected codeword length, per source symbol, of this code.
Remark. The difference R = EL−H(X) is called the redundancy of ths code.

Corollary 1. The encoding redundancy (per source symbol) of a DMS can be made as
small as we please as the message length increases.

Proof. Concatenate the source letters in blocks of length n, and encode the blocks with
a Shannon prefix code (or anything better). Then by the above, in an obvious notation,

H(X1, . . . , Xn) = nH(X) ≤ ELn < nH(X) + 1
= H(X1, . . . , Xn) + 1

Dividing by n, the redundancy of the code per source symbol, namely 1
nELn −H, is less

than n−1. Hence
1
n
ELn −H → 0, as n→∞

Corollary 2. Let X ∈ A be a simple random variable whose value is known to the oracle.
You know A, and your task is to identify the value of X by asking a sequence of questions,
to which the oracle’s answer can only be either yes or no. Then the minimum expected
number Q of questions required satisfies H(X) ≤ Q < H(X) + 1.
Proof Setting Yes ≡ 1 and No≡ 0, any successful strategy of interrogation corresponds
to a binary prefix code for X; (and thus also to a tree). The result follows from what we
have shown above.
Example. In Cambridge it is known that an outbreak of gastric infection originates in the
kth of the n possible restaurants with probability pk. Samples from each can be pooled
and tested, so that for any pool R it will be known if the source is in R or not. The
minimum expected number I of such tests required to identify the source of the outbreak
obeys

H(P) ≤ τ < H(P) + 1

Example. Of n superficially identical coins, just one (or none) may be a forgery that is
either heavy or light. You have a balance that will accept any two sets of coins, and tell
you whether one set is heavier than, lighter than, or of equal weight to, the other set. The
minimum expected number of weighings is log3(2n+ 1), because there are 2n+ 1 possible
cases, assumed to be equally likely. And, remarkably, for n = 12, three weighings are
sufficient.

The natural question remains, is there an optimal (compact) code? The answer is yes, as
we see next.

2.4 Optimality: Huffman codes

In this section we give Huffman’s procedure for constructing a compact prefix code for a
DMS, and then prove that it is indeed optimal. For simplicity, we confine ourselves to
binary codes. [Note that there may be other codes that perform equally well, that cannot
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be produced by Huffman’s procedure.]

Huffman’s binary code
The essential idea of the procedure is to construct a binary tree that yields a prefix code
with shortest expected codeword length. The clever feature of the procedure is that the
tree is constructed not from the root, but from the topmost pair of leaves. Thus, let
p1 ≥ p2 ≥ · · · ≥ pa, a = |A|.
Combine the two smallest probabilities; this corresponds to forming a node of the tree
at the highest level; with leaves corresponding to the codewords for the symbols with
probabilities pa−1 and pa.
Now reorder the resulting distribution to give

p′1 ≥ p′2 ≥ · · · ≥ p′a−1,

where p′a−1 = pa + pa−1.
Combine the two smallest probabilities, corresponding to the formation of the next highest
node of the tree. Continuing in this way we ultimately arrive at unit probability, which
corresponds to the root of the tree. Then each external vertex of the tree carries a leaf,
which may be labelled with the appropriate binary codeword, traced up from the root.
This procedure is most easily understood through an example and an obvious diagram.
Example. Consider the source distribution

p = (0.5, 0.25, 0.15, 0.05, 0.05)

Combining the two smallest yields

p′ = (0.5, 0.25, 0.15, 0.1)

and then
p′′ = (0.5, 0.25, 0.25)

p′′′ = (0.5, 0.5)

, and finally
p(iv) = 1

, at the root.
Representing this as a diagram yields a tree, with leaves at the vertices where probabilities
are first combined; you should sketch this here.

Labelling the leaves according to the natural correspondence, we obtain the codewords for
the symbols with probabilities pr, 1 ≤ r ≤ a

p1 → 1
p2 → 01
p3 → 001
p4 → 0001
p5 → 0000
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Thus
E|c(X)| = 0.5 + 0.5 + 0.45 + 0.2 + 0.2

= 1.85

codeword symbols per source symbol. A slightly tedious calculation gives H(X) + 1.84,
so the Huffman code is very close to the bound. This labelling (in reverse, from the right)
is the Huffman expansion.
We now prove that this procedure always supplies an optimal code for a source X with
symbol probabilities p1 ≥ p2 ≥ · · · ≥ pa > 0. Before the principal result, we need these
results, in which (as usual) (lr, 1 ≤ r ≤ a are word lengths:)

Lemma.

(a) For such a source, as defined above, there is an optimal code.

(b) For any optimal code

(i) if pj ≥ pk, then |c(j)| = lj ≤ lk = |c(k)|
(ii) The two (or more) longest codewords have the same length

(iii) There is a code with the same value of E|c(X)| such that two of the longest
codewords correspond to the two least likely symbols, and are siblings.

Proof

(a) There is at least one binary prefix code for X, namely a block code having more
leaves than a. And only a finite number of prefix codes for X have expected codeword
length less than this block code, so one of them, or the block code, is optimal. To
see this, enumerate the codes in order of increasing maximum codeword length la.
Eventually pala exceeds the block code length.

(b) (i) For such an optimal code exchange the codewords for the symbols j and k,
having respective probabilities and codeword lengths (pj , lj) and (pk, lk). The
difference in expected codeword lengths for the two codes is

pjlj + pklk − pjlk − pklj = (pj − pk)(lj − lk) ≤ 0

since the original code was assumed optimal. Since pj ≥ pk, it follows that
lj ≤ lk

(ii) If one codeword were longer than the rest, the last (highest) symbol (edge)
could be deleted giving a prefix code with shorter expected word length, which
contradicts the assumption of optimality

(iii) If one of the longest codewords has no sibling, then it can be shortened as in (ii).
Thus all the longest codewords have siblings, and these can be arranged (with-
out altering the expected length) so that the two lowest probability codewords
are siblings.

29



The code with the above properties is called the canonical optimal (or compact) code.
And the point of this construction is that at each stage of the Huffman algorithm it is the
two least likely sibling codeword leaves that are combined to give a code or an alphabet
with one fewer symbols, and conversely.
Theorem. The binary Huffman procedure yields an optimal code.
Proof. Let pm ≤ pm−1 ≤ · · · ≤ p1 and lm ≥ lm−1 ≥ · · · ≥ l1 be the probabiltiies and
codeword lengths at any stage in the Huffman procedure. That is to say, in the reduction
procedure pm + pm−1 is the probability of the new leaf for a code on m− 1 symbols, with
expected codeword length cm−1, and in the expansion procedure the leaf with probability
pm + pm−1 is replaced by a parent node with sibling leaves of probability pm and pm−1,
for a code on m symbols with expected codeword length cm
Assume that the code on m symbols is optimal and canonical, (as we may, by the Lemma
above), with expected length bm. Then by the final Lemma of 2.1, after reduction

bm = cm−1 + pm + pm−1

Now conversely, suppose that the optimal code on m − 1 symbols (with probabilities
pm + pm−1, pm−2, . . . , p1) has expected length bm−1. After expansion (using the Lemma
in 2.1 again) we have

cm = bm−1 + pm + pm−1

Hence, subtracting,
0 ≤ cm − bm = bm−1 − cm−1 ≤ 0

where the inequalities follow from the assumed optimality of bm and bm−1 for each alpha-
bet.
Hence bm = cm, and bm−1 = cm−1; which is to say that at any stage of the Huffman
procedure, optimality of the encoding is preserved when the alphabet is either reduced or
expanded. But the encoding [0, 1] of the alphabet of the two symbols is clearly optimal.
Hence the Huffman encoding of the alphabet of a symbols is also optimal.
A similar procedure is used to produce Huffman codes in a q-ary encoding alphabet, with
the proviso that the alphabet of source symbols may need to be augmented with dummy
symbols of zero probability, in order that the final Huffman reduction is to exactly q letters,
(for the obvious optimal encoding).

2.5 Other prefix codes

The Huffman code is optimal, but it is often useful to consider other prefix codes which,
while not optimal, are more quickly generated, or more tractable to analysis in various
contexts. One of the simplest is this:

Example. Fano code.
A simpler but sub-optimal method of forming a prefix code is this: order the symbols
by their probability. Divide them into two groups with respective probabilities as nearly
equal as possible; i.e., more formally, find r such that∣∣∣∣∣

r∑
i=1

pi −
a∑
r+1

pi

∣∣∣∣∣
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is minimal. For those in the first group the first digit in the codeword is 0; for those
in the second group it is 1. Continuing in this way until each group contains just one
symbol generates a prefix code. It can be shown, (as a corollary of the final theorem in
this section), that E|c(X)| ≤ H(X) + 1; (or, if you do not trouble to order the symbols
by their probability, E|c(X)| ≤ H(X) + 2).

Example. Shannon code.
Again, order the probabilities, and then define

Fr =
r−1∑
i=1

pi, 1 ≤ r ≤ a,

where the empty sum is zero. The binary code for xr is then the binary expansion of Fr,
carried as far as the lrth place, where lr is the smallest integer not less than log p−1

r .To
see that this produces a prefix code, note that for r ≥ k,

Fr − Fk−1 ≥ Fk − Fk−1 = pk−1 ≥ 2−lk−1

[because lr−1 ≥ − log pr−1], and therefore Fr must differ from Fk−1 in at least one of the
first lk−1 binary digits of Fk−1. So no codeword is the prefix of another. Since

− log pr ≤ lr < − log pr + 1

we have
E|c(X)| < H(X) + 1

Example. Elias code. This can be seen as a variant of the Shannon code. Assume that
pr > 0, r ∈ A, and define

Rk =
∑
i<k

pi +
1
2
pk, 1 ≤ k ≤ a

Draw a diagram to see that the points Rk are midway up the jumps of the cumulative
distribution function of {pr, r ∈ A}.
Then the Elias code for xk is the binary expansion of Rk, truncated at the lkth place,
where lk is the ceiling of − log pk plus 1; i.e.,

− log pk + 1 ≤ lk = d− log pke+ 1 < − log pk + 2

Thus 2−lk < 1
2pk, and the codeword c(xk) lies in the same jump as Rk. Furthermore, the

code is prefix free by an argument similar to that of the preceding example.

Example. Fix-free code
A prefix code in which codewords reversed form an instantaneous, or prefix-free, code.

Since any prefix code is equivalent to a suitable tree, with a probability distribution
(p1, . . . , pa) on its leaves, we now develop a form of the entropy bound that exploits this
structure. We consider binary codes and trees, for simplicity.
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First, recall the theorem in §2.1 in which we showed that E|c(X)| =
∑
σv, where σv is the

probability that the path π(X) from the root to the leaf corresponding to the codeword
c(X) passes through the internal node v.
Second, note that we can generate the same distribution of codewords and their probabil-
ities on the leaves of the tree by realizing a random walk from the root that steps either
left or right at any internal node, with the following distribution:
let ρv and λv be the probabilities attached to the two daughter nodes of v, so that

σv = ρv + λv

and in particular for the root σ1 = 1 = ρ1 + λ1.

Then the step from v is conditionally independent of its route from the root (i.e., given that
the path is at v), and steps right with probability ρv/σv or left with probability λv/σv.
Of course, the walk stops on reaching any leaf, and for a given leaf, labelled c(x), the
probability that the walk arrives there via the sequence of vertices v(1), v(2), . . . , v((x)−1)
is

σv(1)
σv(2)
σv(1)

σv(3)
σv(2)

. . .
σv(l(x)− 1)
σv(l(x)− 2)

p(x)
σv(l(x)− 1)

= p(x)

as claimed.
Naturally, for any vertex v that π(x) does not visit, no action is required. Thus, if we
number the internal nodes sequentially from the root, by height (and indifferently between
those at the same height), then we can attach an auxiliary random variable Av to each
node, with the following properties:

Av ∈ {left,right,null}

where P (Av = null) = 1 − σv, and P (Av ∈ left ∪ right ) = σv. More importantly,
we may consider the distribution of Av conditional on {A1, . . . , Av−1}. If these entail
that v is visited, then the conditional distribution of Av is {λv/σv, ρv/σv, 0} with entropy
H(λv/σv, ρv/σv). Otherwise, the conditional distribution of Av is [0, 0, 1], with entropy 0.
Hence the conditional entropy is

(∗) H(Av | A1, . . . , Av−1) = σvH(λv/σv, ρv/σv) = σvHv

Finally, we note that

(+) H(X) = H(c(X)) , by invertibility

= H(A1, . . . , Aa−1)

because, by construction, the value of c(X) determines π(X), and hence all the Avs, and
conversely.
With these facts, we can prove this
Theorem. Entropy bound for prefix codes
The redundancy of a prefix code is

0 ≤ R = E|c(X)| −H(X) =
∑
v

σv(1−Hv)
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≤
∑
v

|λv − ρv|

with equality throughout if (p1, p2, . . . , pa) is 2-adic, and where the sum is over the internal
nodes of the tree.
Proof By the chain rule, and (∗) and (+) above,

H(X) = H(A1) +H(A2 | A1) + · · ·+H(Aa−1 | A1, . . . , Aa−2)

= σ1H1 + σ2H2 + · · ·+ σa−1Ha−1

so that
R =

∑
v

σv −H(X) =
∑
v

(σv − σvHv)

For the final inequality, observe (by drawing a picture) that

1−H(ρ, 1− ρ) ≤ |1− 2ρ|, 0 ≤ ρ ≤ 1

so
R ≤

∑
v

σv|1− 2ρv/σv| =
∑
v

σv|λv/σv − ρv/σv|

=
∑
v

|λv − ρv|

with equality if λv = ρv at every internal node.
The term σv(1−Hv) may be called the local redundancy.
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3 Channel capacity and noisy coding

In our sketch of the direct part of Shannon’s noisy coding theorem, in §1.8, we showed
that arbitrarily reliable transmission of messages was possible up to the rate C, where C
is the capacity of the channel. In this chapter we find the capacity of several important
channels, and establish some properties of the capacity. Finally, we give an alternative
proof of the noisy coding theorem, together with the converse.

3.1 Introduction: basic channels

Recall that a discrete memoryless channel is characterized by its channel matrix M =
p(y | x), where X ∈ A and Y ∈ B denote the input and output respectively. We introduce
some vocabulary:
Lossless. A channel is a lossless if H(X | Y ) = 0 always. That is to say the alphabet of
Y can be divided into disjoint sets Ui such that

P (Y ∈ Ui | X = xi) = 1, 1 ≤ i ≤ a = |A|

Deterministic A channel is deterministic if H(Y | X) = 0, always. That is to say p(y | x)
is either 0 or 1, for all x and y.
Perfect A channel is perfect (or noiseless) if it is lossless and deterministic. Its channel
matrix is then the identity matrix; or, equivalently, a permutation of the identity matrix.
Useless A channel is useless if Y is independent of X.

Recall also that the capacity is C = max
pX(x)

I(X;Y ).

Hence we have this
Lemma

C ≤ log(min{|A|, |B|})
Proof Follows immediately from the identities

I(X;Y ) = H(X)−H(X | Y ) = H(Y )−H(Y | X)

and the fact that H(X) ≤ log a for any entropy H(X) with alphabet size a.

Erasure Channel. One in which |B| = |A|+ 1 = a+ 1, and one column of the channel
matrix is constant; that is P (ya+1 | X) = ε > 0 for all x, may be called an a-ary erasure
channel, because of the natural way in which the matrix arises from the possible erasure
of input symbols by the channel.
Example. Binary channels
In general this has channel matrix of the form

M =
(
p 1− p
q 1− q

)
, 0 ≤ p, q ≤ 1

If p + q = 1, this is called the binary symmetric channel or BSC; and if p = 1, and
0 < q < 1, it may be called the Z-channel.
If there is an extra constant column, so that

M =
(

p 1− p− r r
1− q − r q r

)
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then this is the binary erasure channel, (BEC). Almost always, it is assumed that
p = q, giving the binary symmetric erasure channel, (BSEC).
The capacity of such binary channels is fairly easily found by elementary methods of
calculus.
Example. BSC
Here

C = 1−H(p, 1− p) = 1 + p log p+ (1− p) log(1− p)

which we can demonstrate as follows. Let the distribution of X be (x, 1− x). Then

I(X;Y ) = H(Y )−H(Y | X)

= H(x+ p− 2xp, 1− x− p+ 2xp)−H(p, 1− p)

Differentiating for x yields a stationary value, which is a maximum, when

log(x+ p− 2xp) = log(1− x− p+ 2xp)

so that x = 1
2 . Hence

C = 1−H(p, 1− p)

Alternatively, if the distribution of X is written as (x, y), where x+y−1 = 0, the method
of Lagrange multipliers yields a maximum when

H(xp+ y(1− p), yp+ x(1− p)) + λ(x+ y − 1)−H(p, 1− p)

has a stationary value, so that x = y = 1
2 , as above.

However, in cases such as these, where the channels have an appropriate symmetry, we
can exploit that fact to yield the capacity of M by more elegant arguments.
We look at symmetric channels in the next section, in more detail.
We conclude this section with a useful result about the capacity of the nth extension of a
channel.
Lemma. The capacity of the nth extension of a channel M with capacity C does not
exceed nC.
Proof

I(X; Y) = H(Y)−H(Y | X)

= H(Y) + E
n∑
r=1

log p(Yr | Xr)

by memorylessness

≤
n∑
r=1

H(Yr)−
n∑
r=1

H(Yr | Xr) with equality iff Yr are independent

=
n∑
r=1

I(Xr;Yr)

and the result follows.
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3.2 Symmetric channels

Certain symmetries in the channel matrix M enable us to find the channel capacity rather
easily.
Definition M is said to be strongly symmetric if its rows are permutations of each other,
and its columns are permutations of each other.
E.g., 1

3
1
3

1
6

1
6

1
6

1
6

1
3

1
3


More generally M is said simply to be symmetric if its rows are permutations of each
other, and the column sums of M are the same. E.g.,1

6
1
2

1
3

1
2

1
6

1
3


For both these types we have this
Theorem. If ρ is any row of a symmetric channel matrix M , then its capacity is

C = log b−H(ρ)

where b = |B|, the size of Y ’s alphabet; and this is achieved with a uniform distribution
on X.

Proof
I(X;Y ) = H(Y )−H(Y | X)

= H(Y )−H(ρ) by the symmetry

≤ log b−H(ρ)

since H(Y ) ≤ log |B|, with equality if and only if Y is uniformly distributed. But if X is
uniform on its alphabet, so P (X = x) = a−1, then

p(y) =
1
a

a∑
x=1

p(y | x) =
c

a
=

1
b

where c is the column sum of M . Therefore Y is uniform on its alphabet also. Hence the
upper bound log b−H(ρ) is attained for uniform X, and this is the capacity.
More generally, we may consider this
Definition A channel M is weakly (or generally) symmetric if the output (that is to say,
the columns of M) can be grouped into subsets, yielding submatrices Mi of M , such that
for each i the matrix Mi is symmetric in the sense of the previous definition. That is:-

(a) The rows of Mi are permutations; (and hence so also are the rows of M)

(b) Each row of Mi has κi entries with sum ρi
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(c) Each Mi has column sum that is constant ci

Then we have the following result for such a channel:-
Theorem For a weakly symmetric channel with row entropy H(p) = −

∑
pi log pi; the

capacity is
C =

∑
ρi log κi −

∑
ρi log ρi −H(p)

which is achieved by a uniform distribution on the input X.
Proof. Denoting the output by Y , define the random variable J = J(Y ), which takes
the value i if Y corresponds to a column of Mi. Note that H(J) = H(J | X), because
the rows of each Mi have the same sum ρi, so J and X are independent. Also, as J is a
function of Y

H(Y ) = H(J, Y ) = H(J) +H(Y | J),

and
H(Y | X) = H(J, Y | X) = H(J | X)−H(Y | J,X),

and
C = sup

pX(x)
(H(Y )−H(Y | X))

= sup
pX(x)

[H(Y | J)−H(Y | J,X)]

But for each i, on the event J = i, the term H(Y | J = i)−H(Y | J = i,X) achieves its
maximum (by the argument above) when X is uniform. Therefore, since P (J = i) = ρi,
and denoting the entries of a row of Mi by pr(i), 1 ≤ r ≤ κi, we have

C =
∑
i

ρi(log κi +
κi∑
r=1

(pr(i)/ρi) log(pr(i)/ρi))

=
∑
i

ρi log κi −H(p)−
∑
i

κi∑
r=1

pr(i) log ρi

as asserted, because
κi∑
r=1

pr(i) = ρi

Example. Consider the binary erasure channel1− a 0 a

0 1− a a


where κ1 = 2, κ2 = 1, ρ1 = 1− a, ρ2 = a. Then the above theorem supplies the capacity
C = 1− a, as shown above and below by other methods.
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3.3 Special channels

Here we consider a number of important special channels whose capacity can be found
explicitly.
Erasure channel. Arises when any symbol of B is independently deleted by the channel,
with constant probability β, and this is known to the receiver. It is thus customary to
treat this as a channel with output alphabet B ∪ ∗, where ∗ represents erasure. Any such
channel can be seen as equivalent to this formulation:-
A channel M has capacity C, input X ∈ A and output Y ∈ B. The output symbols are
each independently erased with probability β, or passed with probability 1 − β, yielding
an output Z ∈ B ∪ ∗. We shall show that the capacity of the composite channel, with
input X and output Z, is (1− β)C, where this is achieved by the input distribution of X
that achieves the capacity C for M .
Proof. Let J be the indicator of the event that a symbol is erased, so that P (J = 1) =
EJ = β. We note that J is independent of X, and also a function of Z. Now by the chain
rule

H(Z) = H(Z, J), because J is a function of Z

= H(J) + (1− β)H(Z | J = 0) + βH(Z | J = 1)

= H(J) + (1− β)H(Y ), since Z = Y on {J = 0}, and H(Z | J = 1) = 0

Likewise
H(Z | X) = H(Z, J | X) since J is independent of X, and a function of Z,

= H(J | X) + (1− β)H(Z | X,J = 0) + βH(Z | X, J = 1)

= H(J) + (1− β)H(Y | X), since Z = Y on {J = 0}, and H(J |X) = H(J)

Hence
I(X;Z) = H(Z)−H(Z | X)

= (1− β)(H(Y )−H(Y | X))

= (1− β)I(X;Y )

and the result follows, on taking the supremum over all input distributions

Channels in series: the data-processing theorem
Let X and Y be the input and output respectively of a channel M with matrix p1(y | x).
Let N be a second channel, independent of M , whose input alphabet is the same as
that of Y . The output Y is now entered as the input of N , with output Z. Show that
I(X;Y ) ≥ I(X;Z) ≤ I(Y ;Z).
Proof. Let N have matrix p2(z | y). Then

p(x, z | y) = p(x, y, z)/p(y) = p(x, y)p(z | x, y)/p(y)

= p(x | y)p2(z | y)

because Z is independent of X given Y , by the independence of the channels. Hence
I(X;Z | Y ) = 0, and we can use the chain rule to write

I(X;Y ) = I(X;Y, Z)− I(X;Z | Y )
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= I(X;Y,Z) = I(X;Z) + I(X;Y | Z)

and the first result follows since I ≥ 0.
The second follows in exactly the same way. This result can be interpreted as showing that
no form of processing or statistical manipulation of the output of a channel can increase
its capacity. These inequalities may equivalently be written as

H(X | Y ) ≤ H(X | Z) ≥ H(Y | Z)

Sum of channels
The sum of two channels has channel matrix

M =

M1 0

0 M2


where M1 and M2 are channel matrices. It may be seen as the compound channel arising
when one may choose to use either one of two independent channels, with disjoint input
alphabets and disjoint output alphabets. The capacity C of such a channel is given by

2C = 2C1 + 2C2

where C1 and C2 are the capacities of M1 and M2 respectively.
Proof Let the distribution of the input X be θp over the alphabet of M1, and (1 − θ)q
over the alphabet of M2, for probability distributions p and q. Let J be the indicator of
the event that M1 is used, so that

P (J = 1) = θ = 1− P (J = 0)

Note that J is a function of X, and also a function of Y . Therefore H(J | X) = 0 and

I(X;Y ) = H(Y )−H(Y | X)

= H(Y, J)−H(Y, J | X)

= H(J)−H(J | X)+θ{H(Y | J = 1)−H(Y | X,J = 1)}+(1−θ){H(Y | J = 0)−H(Y | X,J = 0)}

Choosing p and q to maximise the coefficients of θ and 1− θ respectively, we then have

C = max
θ

[H(J) + θC1 + (1− θ)C2]

Since
H(J) = −θ log θ − (1− θ) log(1− θ), so that

∂I

∂θ
= log

(
1− θ
θ

)
+ C1 − C2,

and
∂2I

∂θ2
=

−1
θ(1− θ)

< 0,

yielding a maximum. Hence we find that the required value of θ is

θ =
2C1

2C1 + 2C2
, and 1− θ =

2C2

2C1 + 2C2
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and substitution yields C = log(2C1 + 2C2) as asserted.
Product of channels. Let X = (X1, X2) and Y = (Y1, Y2) be the input and output
of two channels M1 and M2 with respective capacities C1 and C2, that are conditionally
independent given their joint input X = (X1, X2). (Which is to say that p(Y|X) =
p1(y1|x1)p2(y2|x2).)Thus their joint distribution takes the form

P (X = x,Y = y) = P (X = x)p1(y1 | x1)p2(y2 | x2)

Since Y1 and Y2 are conditionally independent given X,

H(Y | X) = H(Y1 | X) +H(Y2 | X)

Furthermore, Y1 is conditionally independent of X2 given X1; and Y2 is conditionally
independent of X1 given X2. Hence H(Y1 | X) = H(Y1 | X1) and H(Y2 | X) = H(Y2 | X2).
Thus

I(X; Y) = H(Y)−H(Y | X)

= H(Y1, Y2)−H(Y1 | X1)−H(Y2 | X2)

≤ H(Y1) +H(Y2)−H(Y1 | X1)−H(Y2 | X2) = I(X1;Y1) + I(X2;Y2),

with equality if and only if Y1 and Y2 are independent. This occurs if X1 and X2 are
independent. Hence

C ≤ C1 + C2

where equality holds if X1 and X2 are independent, having the distributions that achieve
capacity in M1 and M2 respectively. The composite channel is said to be the product of
M1 and M2.

3.4 Concavity of H and I

A number of functions arising in information theory have properties of concavity or con-
vexity that are often useful. We mention some important examples.

Theorem The entropyH(p) is a strictly concave function of p; that is to say, for 0 < t < 1,
and p 6= q, where p and q are distributions on the same alphabet, we have

H(tp + (1− t)q) > tH(p) + (1− t)H(q)

Proof Applying Gibbs’s inequality to p and tp + (1− t)q, yields

H(p) ≤ −
∑
r

pr log(tpr + (1− t)qr)

Likewise
H(q) ≤ −

∑
r

qr log(tpr + (1− t)qr)

with equality in both cases if and only if

pr = tpr + (1− t)qr = qr.
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Forming
tH(p) + (1− t)H(q) ≤ H(tp + (1− t)q),

by the above, yields the result; with strict inequality if p 6= q.
An amusing alternative proof is this:
Let X have distribution p, and Y have distribution q, and define the random variable M
to be X with probability t or Y with probability 1− t. Let Z be the indicator of the event
that M = X. Then, in an obvious notation,

H(tp + (1− t)q) = H(ZX + (1− Z)Y )

= H(M) ≥ H(M | Z)

= tH(M | Z = 1) + (1− t)H(M | Z = 0)

= tH(p) + (1− t)H(q)

Finally, we note that the result follows directly from the fact that −x log x is concave. So

−(tpr + (1− t)qr) log(tpr + (1− t)pr) ≥ −tpr log pr − (1− t)qr log qr

in the above notation. Summing over r yields the result.
Equally importantly, we have this
Theorem. Let X and Y be the input and output of a channel

(a) Fixing the channel matrix p(y | x), for all possible input distributions p of X, denote
I(X;Y ) by I(p). Then I(p) is concave in p.

(b) Fixing the distribution of X, for all possible channel matrices p(y | x) denote I(X;Y )
by I(p(y | x)). Then I(p(y | x)) is convex in p(y | x).

Proof (a). Let p and q be input distributions with corresponding output distributions r
and s. Then for 0 ≤ t ≤ 1, using I = H(Y )−H(Y | X),

I(tp + (1− t)q)− tI(p)− (1− t)I(q)

= H(tr + (1− t)s)−
∑
k

(tpk + (1− t)qk)H(p(y | xk))

−tH(r) + t
∑
k

pkH(p(y | xk))− (1− t)H(s) + (1− t)
∑
k

qkH(p(y | xk))

= H(tr + (1− t)s)− tH(r)− (1− t)H(s) ≥ 0

by the preceding theorem, as required. Alternatively we can prove this by showing that

I(tp + (1− t)q)− tI(p)− (1− t)I(q)

= t
∑
k

rk log
rk
p(y)

+ (1− t)
∑
k

sk log
sk
p(y)

where p(y) is the output distribution corresponding to the input distribution tp+(1− t)q.
The result then follows by Gibbs’s inequality.
And this result may also be proved by introducing an auxiliary indicator random variable,
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Z, as we did above; this is left as an exercise.
More informally, write

I(X;Y ) = H(Y )−
∑

pX(x)H(Y | X = x)

Here H(Y ) is concave in p, by the preceding theorem, (because pY (y) is linear in p), and
the second term is a linear function of p. Hence I is concave in p.
Proof (b). This is by similar methods, and is also left as an exercise for you.
We illustrate the use of this result by an example.
Example. Consider the channel with matrix

M =


a b c

b a c

d d f


For the input distribution (x, y, z), denote I by I(x, y, z). Then by the apparent symmetry
in M

I(x, y, z) = I(y, x, z)

But I is concave in the input distribution, so

I

(
x+ y

2
,
x+ y

2
, z

)
≥ 1

2
(I(x, y, z) + I(y, x, z)) = I(x, y, z)

In seeking the capacity, we can therefore confine our search to input distributions of
the form (x, x, 1 − 2x). Writing H1 = H(a, b, c), and H2 = H(d, d, f), we have, (using
I = H(Y )−H(Y |X)),

I = −2[(a+ b)x+ (1− 2x)d] log[(a+ b)x+ (1− 2x)d]

−[2cx+ (1− 2x)f ] log[2cx+ (1− 2x)f ]− 2xH1 − (1− 2x)H2

The capacity is the maximum of this as x varies over [0, 1
2 ].

Note that if f = c and H2 = H1, then the channel is useless. If f = c and H2 > H1, then

I = H(d, d, f)− 2xH1 − (1− 2x)H2

and C = H2 −H1, achieved when x = 1
2 .

More generally for f 6= c, differentiating to find a stationary value of I, we find that if

min[c, f ] ≤ g =
[
1 + 2

d

f
2D/(f−c)

]−1

≤ max[c, f ]

where D is the Kullback-Leibler divergence between (a, b, c) and (d, d, f), then there is
a unique value of x ∈ [0, 1

2 ] that achieves the capacity. The remaining case arises when
either g < c < f , or g > c > f , and then capacity is achieved by x = 1

2 .
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Finally, note that while H(p) is strictly concave in p, I(p) is not necessarily stricly concave
in p. To see this, consider the input and output, X and Y , of the channel with matrix

1 0

0 1

0 1

 ,

where capacity is achieved for any distribution (1− a− b, a, b, ) of X such that a+ b = 1
2 .

3.5 Fano’s inequality and the NCT converse

In §(1.8) we gave Shannon’s sketch proof of the direct part of the noisy coding theorem,
viz:-reliable transmission is precise at any rate up to the capacity C. In this section we
prove a form of the converse, viz:-reliable transmission is not possible at any rate greater
than C. To do this, we need the following result, which supplies a lower bound for the
probability of error in using a channel, in terms of the equivocation H(X | Y ). As usual,
the input to the channel is denoted by X.

Theorem. Fano’s inequality
Let X and Y take values in the same alphabet A where |A| = a, and let E be the event
that X 6= Y . Since Y is interpreted as our guess at the true value of X, on the basis
of the output from the channel, P (E) is called the probability of error. Then the Fano
inequality is this:-

H(X | Y ) ≤ H(P (E), 1− P (E)) + P (E) log(a− 1)

≤ H(P (E), 1− P (E)) + P (E) log a

≤ 1 + P (E) log a

Proof
Define the indicator random variable J , which is 1 on E, or 0 on Ec. Then for each y ∈ A,
J is a function of X and y. Hence

H(X | Y = y) = H(X,J | Y = y)

= H(J | Y = y) +H(X | J, Y = y)

= H(J | Y = y)+P (E | Y = y)H(X | J = 1, Y = y)+[1−P (E | Y = y)]H(X | J = 0, Y = y)

≤ H(J | Y = y) + P (E | Y = y) log(a− 1),

since the entropy of X on the event X = y is zero, and the entropy of X on the event
X 6= y is not greater than log(a− 1). Multiplying by P (Y = y), and summing over y, we
have

H(X | Y ) ≤ H(J | Y ) + P (E) log(a− 1)

≤ H(J) + P (E) log(a− 1)
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as required.
Corollary
If we seek to guess X without knowing Y , then the best guess is any value x such that
P (X = x) = pmax is maximal. Then P (E) = 1 − pmax and Fano’s inequality takes the
form

H(X) ≤ H(P (E), 1− P (E)) + P (E) log(a− 1),

a bound simply on the entropy H(X) of X.
Alternatively, to show that H(J | Y ) ≤ H(J), we may write that

H(J | Y = y) = H(P (E | Y = y), 1− P (E | Y = y))

and then because entropy is concave in p,∑
y

P (Y = y)H(J | Y = y) ≤ H(
∑
y

P (Y = y) P (E | Y = y), 1−
∑
y

P (Y = y)P (E | Y = y))

= H(P (E), 1− P (E))

An important application of Fano’s inequality lies in the proof of a converse to the noisy
coding theorem, thus:-
Theorem. For a channel having capacity C, no rate of transmission R is reliably achiev-
able for R > C. More formally, there cannot exist a sequence of codebooks Cn, where Cn
contains 2nR codewords, such that the maximum probability of error for codewords in Cn
converges to zero as n→∞.
Note: This is sometimes called the weak converse, because Wolfowitz’s theorem asserts
(much more strongly) that for rates R > C the maximum probability of error converges
geometrically fast to 1.
Proof. Suppose we have a sequence of codebooks Cn, where each Cn contains 2nR code-
words of length n, and R > C. If the maximum error goes to zero as n→∞, then so too
must the average error. Therefore, we pick a codeword uniformly at random from the 2nR

available, and bound the average probability ē of error using it. Denote the codeword by
X, the output by Y, and the decoding by X̄ = g(Y). Then

log 2nR = nR = H(X)

, since X was selected uniformly

= H(X | X̄) + I(X; X̄),

by definition of I
≤ H(X | X̂) + I(X; Y),

by the data-processing theorem, as X̄ = g(Ȳ )

≤ 1 + P (X 6= X̄)nR+ I(X; Y),

by Fano’s inequality
≤ 1 + P (X 6= X̄)nR+ nC
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by the bound established for the capacity of the nth extension of a channel.
Hence,

ē = P (X̂ 6= X) ≥ nR− nC − 1
nR

→ 1− C

R
as n→∞

> 0, since R > C.

Hence the maximum error cannot go to zero, and such rates are not achievable with any
sequence of codes.

3.6 The noisy coding theorem for the BSC

We now give a rigorous proof of the noisy coding theorem for binary sources.[Which will do
for any source, because it can be coded in binary with arbitrarily small loss of information,
by Shannon’s first (source) coding theorem.]
That is to say we prove this
Theorem. For any rate R, where 0 < R < C, and C is the capacity of a binary symmetric
channel, there exists a sequence of binary codes, with codebook sizes 2nR, such that em,
the maximum probability of error, goes to zero as n→∞. More strongly, in fact,

em < b2−an, for some a > 0, b > 0

Preparatory to the proof, we note these facts:
Codebook: The codebook comprises 2M binary strings of length n, which we denote
by c1, . . . , c2M . These codewords are obtained by making 2M independent selections
uniformly at random from Bn = {0, 1}n. [The reason for having a 2M codebook becomes
apparent later on.]
Channel: The channel is binary symmetric, with error probability p < 1

2 , and capacity
C, where

0 < C = 1−H(p, 1− p) = 1−H ≤ 1

For any 0 < R < C, we can find ε arbitrarily small such that p+ ε < 1
2 and

R < 1−H(p+ ε, 1− p− ε) < C ≤ 1, as H(p, 1− p) decreases on
[
0,

1
2

)
.

Rate:The rate R of a codebook of size M , comprising strings of length n, is
R = 1

n logM . We consider n so large that 2M ≤ 2n whenever M = d2nRe.
Decoder: The decoding function g(·) is the Hamming r-sphere decoder; that is, for any
received n-string y, (denoting the Hamming distance by d(c,y)), we set

g(y) = ck if d(ck,y) ≤ r, and ck is unique with this property;

otherwise we declare an error, (which may be denoted by c0, say.) In what follows, we set

r = [n(p+ ε)] = xn(p+ ε)y, ε > 0

We shall need this
Lemma. Let the codeword ck be sent and received as y. Then

P (d(y, ck) > r) ≤ exp[−1
4
nε2]
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That is to say, the probability that at least r + 1 errors are made by the channel among
the n symbols of ck is bounded by the RHS.
Proof Since the channel is discrete, and memoryless, and independent of our choice of
codebook and codeword ck to send, the number of errors is a binomial random variable
V with parameters n and p. Hence, for any t > 0, setting q = 1− p,

P (d(y, ck) > r) = P (V > r)

≤
n∑

k=r+1

(
n

k

)
pkqn−k exp[t(k − n(p+ ε))], as n(p+ ε) ≤ r < k,

≤
n∑
k=0

e−tnε
(
n

k

)
[pet(1−p)]k[(1− p)e−tp]n−k

= e−tnε(petq + qe−tp)n

≤ e−tnε(pet
2q2 + qet

2p2)n, because ex ≤ x+ ex
2
, for all x ∈ R

≤ e−tnεet
2n

≤ e−
1
4
nε2 on identifying the minimum at t =

1
2
ε

Errors: The pointwise error of the code is

ek = P (g(y) 6= ck | ck was sent), 1 ≤ k ≤ 2M

For this to occur, either d(y, ck) > r, or d(cj ,y) ≤ r for some j 6= k. Since codewords were
selected uniformly at random from {0, 1}n, the probability that cj lies in the Hamming
r-sphere centre y is the volume of the r-sphere divided by 2n, thus:

2−n
r∑

k=0

(
n

k

)
≤ 2nH(p+ε,1−p−ε)−n

Proof For any 0 < x < 1
2 , note that x/(1− x) < 1 and 0 ≤ [nx] ≤ nx. Hence

1 = (x+ 1− x)n =
n∑
k=0

(
n

k

)
xk(1− x)n−k

≥
[nx]∑

0

(
n

k

)
xk(1− x)n−k = (1− x)n

[nx]∑
0

(
n

k

)(
x

1− x

)k

≥ (1− x)n
[nx]∑

0

(
n

k

)(
x

1− x

)nx
, as

x

(1− x)
< 1

=
[nx]∑

0

(
n

k

)
[xx(1− x)1−x]n
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=
[nx]∑

0

(
n

k

)
2−nH(x,1−x)

Setting x = p+ ε, and recalling that r = [n(p+ ε)] gives the required result.
Now suppose that U is uniformly distributed over [1, . . . , 2M ], independently of the ran-
dom choice of the codebook, and we send cU . Then the probability of error is the average

ē =
1

2M

2M∑
k=1

p(g(y) 6= ck | ck is sent)

Naturally, it is required that ē shall be small. More stringently, it will be required that
the maximum pointwise error

em = max
k

P (g(y) 6= ck | ckis sent)

is also arbitrarily small. Remarkably, this can be readily shown if we first show that ē is
small, which we now do.
Note finally that this bound on the maximum probability of error gives the required bound
on the probability of error for any distribution on the codewords that may be induced by
the actual source.
Proof of the theorem
As described above, a codeword is selected at random to send, and denoted by X, and
by construction the other codewords in the codebook are independent of this, and the
resulting output Y . Hence

ē ≤ P (d(X,Y ) > r) + P (d(ck, Y ) ≤ r for some ck 6= X)

≤ e−
1
4
nε2 + (2M − 1)P (d(ck, Y ) ≤ r)

≤ e−
1
4
nε2 + 2d2nRe2−n2nH(p+ε,1−p−ε), as shown above

≤ e−
1
4
nε2 + 2n(R−1+H(p+ε,1−p−ε)+2/n)

But R < 1−H(p+ ε, 1− p− ε), so for some a > 0 and large enough n, ē < 2−an.
Now we observe that there must be at least one (n, 2M) codebook whose average error
ē0 ≤ ē. But at least half the codewords in this codebook must have pointwise error
ek ≤ 2ē, (for otherwise the overall average error of the codebook would exceed ē, which
is a contradiction). So any M such codewords achieve the rate R < C with maximum
probability of error less than 2−an as n→∞.
Corollary. Reliable transmission
A discrete memoryless source emits ω symbols per minute, and its output is encoded by
Huffman’s method for transmission through a binary symmetric channel with capacity C.
Show that the rate T of transmission of the channel must satisfy T > ωH/C, for reliable
transmission, where H is the entropy of the source.
Proof Concatenate the sourcewords into blocks length b, with entropy bH. By Shannon’s
entropy bound this can be encoded into binary codewords of expected length bH + 1. So
the expected rate of binary symbols presented to the channel is A = ω

[
bH+1
b

]
. By the
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noisy coding theorem, emax is arbitrarily small if the rate A does not exceed TC symbols
per minute. Hence

ω

[
bH + 1

b

]
< TC,

and letting b→∞ supplies the constraint T > ωH/C.
Example: Feedback channel
Suppose that the usual channel of capacity C is augmented by noiseless feedback; that is
to say the output Y is returned noiselessly (and instantly) to the sender which can either
correct errors (or send more symbols). Show that the capacity of the augmented channel
is still just C.
Solution Let the the capacity of the feedback channel be K, where K ≥ C trivially.
As before, for R > C there is an (n, 2nR) codebook, and we obtain the average error
probability by choosing a codeword to send uniformly at random. Call this n-string W.
The rth actual input to the channel, Xr is a function both of W and the transmitted
signals Y1, . . . , Yr−1 fed back.Then

I(W; Y) = H(Y)−H(Y |W)

H(Y)−
n∑
1

H(Yr | Y1, . . . , Yr−1,W) by the chain rule

= H(Y)−
n∑
1

H(Yr | Y1, . . . , Yr−1, Xr,W)

because Xr is a function of W and the prior feedback. Hence

I(W; Y) = H(Y)−
n∑
1

H(Yr | Xr)

because conditional on Xr, Yr is independent of W and the past feedback. Thus

I(W; Y) ≤
n∑
1

H(Yr)−
n∑
1

H(Yr | Xr)

=
n∑
1

I(Xr;Yr) ≤ nC

Now consider the probability of error, ē = P (g(W) 6= W), using Fano’s inequality. Since
W is uniform on 2nR strings

nR = log |W| = H(W) = H(W | g(Y)) + I(W; g(Y))

≤ 1 + P (g(W) 6= W)nR+ I(W; Y), by Fano’s inequality

where g(Y) is the decoding, and the final term arises by use of the data-processing in-
equality. Hence

nR ≤ 1 + ēnR+ nC

by the above, so that

ē ≥ n(R− C)− 1
nR

→ 1− C

R
> 0

as n→∞, since R > C.
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3.7 Another interpretation of entropy and information

Shannon’s information I(X;Y ) is interpreted in the context of noisy channels as the rate
of transmission, and this interpretation is made significant by the noisy coding theorem
in which the maximum of I, (under a suitable encoding), is the capacity C of the channel.
It is of interest that the entropy H and I(X;Y ) are still significant in other contexts, in
the absence of coding.
Here we consider elementary problems of long-term investment, or (what is theoretically
and mathematically the same), compulsive gambling.

Example. Kelly betting.
Either because you are an investment manager, or because you are a pathological bettor,
(or both), you must make the following bet independently each day:-
You stake some fraction φX, (0 ≤ φ ≤ 1), of your current fortune X on the flip of a coin.
Thus, with probability q = 1 − p you lose your stake, or, with probability p, your return
is aφX. What should be your choice of φ?
First, note that if you were restricted to one bet, you maximize your expected gain by
betting nothing if ap < 1, or betting your entire fortune X if ap > 1. But if you could
play forever, and you choose φ = 1, and you are bankrupted on the first play, then you
have forfeited the chance of gains on further play. Second, note that if there is an optimal
value of φ ∈ (0, 1), then it is the same at each stage.
Now, let your fortune on day n be Xn, n ≥ 0.
Then

Xn+1 = XnMn+1

where M1,M2, . . . are i.i.d.rvs, called the multipliers with distribution

P (Mn = 1− φ) = q = 1− p

P (Mn = 1− φ+ aφ) = p

Then your fortune at the nth stage is

Xn = X0M1M2 . . .Mn

and

log
(
Xn

X0

)
=

n∑
r=1

logMr

where the random variables logMr are i.i.d. with finite moments of all orders. Hence, by
the law of large numbers (as used in the proof of the aymptotic equipartition property),
we have

1
n

log
(
Xn

X0

)
→ E logM , as n→∞

where the convergence proved is in probability. [But it also holds in any mean, and with
probability 1.] More informally, we write this as

Xn ∼ X02nE logM
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and note that your fortune grows exponentially, in the long run. It is natural to seek the
maximum rate of long term growth, which is achieved by maximizing r(φ) = E logM ,
over choices of φ, where

r(φ) = p log(1− φ+ aφ) + (1− p) log(1− φ)

This policy is called the Kelly criterion (or strategy) and yields Kelly betting.
Note that r(0) = 0 and r(1) = −∞. Furthermore, differentiating twice yields

r′′(φ) =
−(a− 1)2p

(1− (a− 1)φ)2
− (1− p)

(1− φ)2
< 0 for all φ

so r(φ) is concave. Setting r′(φ) = 0 yields a maximum, when ap > 1, at

φ =
ap− 1
a− 1

∈ (0, 1)

Otherwise, for ap ≤ 1, the maximum of r(φ) is at φ = 0. In the former case

r

(
ap− 1
a− 1

)
= log a− (1− p) log(a− 1)−H(p, 1− p)

and the so-called log-optimal return on Kelly betting is given by

Xn ∼ X0

{
a

(a− 1)q

}n
2−nH ,

where H(p, 1− p) is the familiar entropy function.
Now, since r(0) = 0, r(1) = −∞, and r(φ) is concave in (0, 1), the function r(φ) has a
unique zero in [0, 1). That is to say, if you bet less than the Kelly fraction φ, your gain is
still positive, but if you bet too far above the Kelly fraction your longterm rate of growth
may be negative, even though ap > 1. The point at which r(φ) = 0, where the switch
occurs, is the root x of

(1− x)q(1 + (a− 1)x)p = 1

If, for example, you are betting on a fair coin so that p = q = 1
2 , then a > 2 and

φ = (
1
2
a− 1)/(a− 1)

and
x = (a− 2)/(a− 1)

So the interval (φ, x) from optimality to loss is of length

x− φ =
1
2

(a− 2)/(a− 1)

This can be small even for advantageous (ap > 1) betting. For this reason, (among oth-
ers), Kelly betting has been described as on the borderline between rational and insane
investment policies. When seeking to use it, one should err on the side of caution, and
bet low.
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This example is somewhat artificial, as we were only allowed to bet on heads. In the real
world we could also bet on tails. That is to say, one can bet on stocks rising or bet on
them falling. We consider this more realistic problem, but, to avoid market technicalities,
we consider a series of simple horse races.

Example. All-or-nothing market; alias bet-to-win
You may bet on an infinite sequence of i.i.d. horse races X1, X2, . . . as follows. There are
m runners in each race, and the rth runner wins with probability pr = P (Xi = r). You
may bet any fraction br > 0 of your fortune on the rth horse, 1 ≤ r ≤ m, and

∑
r br = 1,

If the rth runner wins then an amount equal to ωr per unit stake on that horse is returned
to you, and all your other stakes are lost. The vector b is thus your betting strategy for
all races, and we have this:-
Theorem The rate of growth of the fortune Yn, n ≥ 0, of a gambler with strategy b is
given by

Yn ∼ Y02n∆(b,p)

where ∆(b,p) = E log bXωX is called the doubling rate. Furthermore

∆(b,p) ≤
∑
r

pr logωr −H(p)

with equality if and only if br = pr for all 1 ≤ r ≤ m, and H(p) is the entropy of any race.
This optimal strategy is called the Kelly proportional betting system.
Note that if the race has fair uniform odds, so that for 1 ≤ r ≤ m we have ωr = m, then
the optimal doubling rate is

∆uf = logm−H(p)

which we recognize as the capacity of a symmetric channel with row vector p. The fact
that in this case

∆uf +H(p) = logm

has been called the conservation theorem.
Proof. As for the coin, above, at each race

Yn+1 = YnbXn+1ωXn+1 , so that log
Yn
Y0

=
n∑
1

log(bXiωXi).

Thus by the weak law of large numbers, as n→∞

1
n

log
(
Yn
Y0

)
→ E log bXωX = ∆(b,p)

=
∑
r

pr log
br
pr
prωr

=
∑

pr logwr +
∑

pr log pr −
∑

pr log
pr
br

=
∑

pr logωr −H(p)− d(p,b)

≤
∑

pr logωr −H(p)
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because the relative entropy d(p,b) ≥ 0, with equality if and only if pr = br for all r.
Note that for given pay-offs your doubling rate is smaller in a high-entropy race, as you
might expect, as there is more uncertainty about the result.
Note also that if

∑
r

1
ωr

= 1, then the pay-offs are said to be fair. [This nomenclature
arises because you have the available betting strategy

br =
1
ωr

, so that the expected return on a unit stake is exactly∑
brωrpr =

∑ 1
ωr
ωrpr = 1

which is fair. But this is not necessarily the log-optimal long term growth strategy.]
In the fair case, setting ω−1

r = sr

∆(b,p) =
∑

pr log
(
br
pr

pr

ω−1
r

)
= d(p, s)− d(p,b)

where d(·, ·) is the relative entropy function, as usual.
The distribution sr = ω−1

r can be seen as the bookies estimate of the true odds pr, while
br can be seen as yours. You win, i.e. ∆ > 0, if your betting strategy b is closer to p than
the bookies fair odds distribution s.
Almost always, in real races,

∑
r

1
ωr
> 1, which is called subfair. The optimal strategy is

not to bet your entire fortune, but (as in the case of the coin) to retain part at each stage.
Very rarely, it may happen that

∑
r

1
ωr

< 1. This is called superfair, and by a famous
theorem there then exists a betting strategy b that guarantees a risk-free profit (called an
arbitrage). Once found, your entire fortune can be staked for a sure win. Note that this
is nevertheless not (necessarily) the log-optimal Kelly strategy.
In this particular superfair case, you may set

br =
1
ωr

(
∑

ω−1
r )−1

as your betting strategy; then, whichever horse wins, your return is

X(
∑

ω−1
r )−1 > X

Both in real life and in horse races, your strategy is influenced by side-information, e.g.
the horse’s mouth. [This may, in other contexts, be described as insider trading.] Denote
this by the r.v. Y , so that X and Y are jointly distributed as p(r, y), and your betting
strategy, given Y = y now b(r | y). Then the doubling rate is, (in a slightly different
notation),

∆Y = ∆(b(r | y), p(r, y))

=
∑
r

p(r, y) log(b(r | y)ωr)
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=
∑
r

p(r, y) log
(
b(r | y)
p(r | y)

p(r | y)ωr

)
=
∑
r

p(r, y) logωr − d(p(r | y), b(r | y))−H(X | Y )

≤
∑
r

pr logωr −H(X | Y ), with equality iff b(r | y) = p(r | y)

Hence the difference in the doubling rate, (between knowing Y or not knowing it) is

∆Y −∆ = H(X)−H(X | Y ) = I(X;Y )

the mutual information between the race and your side knowledge of the race. If I = 0,
the side information was irrelevant.
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