B5.3 Viscous Flow: Sheet 3

Q1 Thermal boundary layer on a semi-infinite flat plate. Consider the two-dimensional steady heat convectionconduction problem in which inviscid fluid with constant velocity $U \mathbf{i}$ and temperature T_{∞} flows past a 'hot' semiinfinite plate at $y=0, x>0$, which is held at constant temperature T_{p}. Assume that the density ρ, specific heat c_{v} and thermal conductivity k are constant.
(a) Starting from the conservation of energy equation in sheet 1, Q6(b) show that the temperature $T(x, y)$ satisfies

$$
U \frac{\partial T}{\partial x}=\kappa\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right)
$$

where $\kappa=k / \rho c_{v}$ is the constant thermal diffusivity. By using the dimensionless variables

$$
x^{*}=\frac{x}{L}, y^{*}=\frac{y}{L}, T^{*}=\frac{T-T_{\infty}}{T_{p}-T_{\infty}},
$$

where L is an arbitrary length scale, rewrite the problem in dimensionless form (dropping the stars * on the dimensionless variables):

$$
\frac{\partial T}{\partial x}=\frac{1}{P e}\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right)
$$

with $T=1$ on $y=0, x>0$ and $T \rightarrow 0$ as $x^{2}+y^{2} \rightarrow \infty$. Explain the physical significance of the Péclet number $P e=L U / \kappa$ in terms of the timescales for conduction and convection of heat.
(b) Given that it is possible to find a similarity solution in the form $T(x, y)=f(\eta)$, where $x+i y=(\xi+i \eta)^{2} / P e$ and $f(\eta)$ satisfies

$$
\text { for } \eta>0, f^{\prime \prime}+2 \eta f^{\prime}=0 ; \quad f(0)=1, \quad f(\infty)=0
$$

show that $T(x, y)=\operatorname{erfc}(\eta)$. Deduce that the isotherms are parabolic and indicate on a diagram the regions of the (x, y)-plane where $T=O(1)$ as $P e \rightarrow \infty$.
(c) Deduce from the governing equations that for $P e \gg 1$ there is a boundary layer on the plate in which $Y=P e^{1 / 2} y=\mathrm{O}(1)$ and $T \sim T_{0}(x, Y)$, where

$$
\begin{equation*}
\frac{\partial T_{0}}{\partial x}=\frac{\partial^{2} T_{0}}{\partial Y^{2}} \tag{1}
\end{equation*}
$$

with $T_{0}(x, 0)=1, T_{0}(x, \infty)=0$ for $x>0$. Hence show that $T_{0}=\operatorname{erfc}\left(Y /(4 x)^{1 / 2}\right)$.
(d) Finally, show that the exact and asymptotic solution are in agreement in the boundary layer, i.e. show that $T\left(x, P e^{-1 / 2} Y\right) \sim T_{0}(x, Y)$ as $P e \rightarrow \infty$, with $Y=\mathrm{O}(1)$.

Q2 High-Reynolds number flow past a semi-infinite flat plate. Consider the two-dimensional steady viscous flow of a uniform stream with velocity $U \mathbf{i}$ past a semi-infinite plate at $y=0, x>0$.
(a) Starting from the vorticity-streamfunction formulation in sheet 1, Q5(c)(ii) show that the dimensionless problem for the streamfunction $\psi(x, y)$ is given by

$$
\begin{equation*}
\frac{\partial\left(\psi, \nabla^{2} \psi\right)}{\partial(y, x)}=\frac{1}{R e} \nabla^{4} \psi \tag{2}
\end{equation*}
$$

with (upon taking ψ to be equal to zero on the plate)

$$
\begin{equation*}
\psi=\frac{\partial \psi}{\partial y}=0 \text { on } y=0, x>0 ; \quad \frac{\partial \psi}{\partial y} \rightarrow 1 \text { as } x^{2}+y^{2} \rightarrow \infty \tag{3}
\end{equation*}
$$

where the dimensionless variables x, y, ψ and the Reynolds number Re should be defined.
(b) When $R e=\infty$, show that $\psi=y$ satisfies (??) and (??) except for the no-slip condition. When Re is large but finite, show that there is a boundary layer on the plate in which $Y=R e^{1 / 2} y=\mathrm{O}(1)$ and $\psi \sim R e^{-1 / 2} \Psi$, where $\Psi(x, Y)$ satisfies the boundary layer equation

$$
\frac{\partial \Psi}{\partial Y} \frac{\partial^{3} \Psi}{\partial x \partial Y^{2}}-\frac{\partial \Psi}{\partial x} \frac{\partial^{3} \Psi}{\partial Y^{3}}=\frac{\partial^{4} \Psi}{\partial Y^{4}}
$$

together with the boundary and matching conditions

$$
\Psi=\frac{\partial \Psi}{\partial Y}=0 \text { on } Y=0, x>0 ; \quad \frac{\partial \Psi}{\partial Y} \rightarrow 1 \text { as } Y \rightarrow \infty
$$

(c) Deduce that

$$
\begin{equation*}
\frac{\partial \Psi}{\partial Y} \frac{\partial^{2} \Psi}{\partial x \partial Y}-\frac{\partial \Psi}{\partial x} \frac{\partial^{2} \Psi}{\partial Y^{2}}=\frac{\partial^{3} \Psi}{\partial Y^{3}} \tag{4}
\end{equation*}
$$

and hence show that there is a similarity solution of the form $\Psi(x, Y)=x^{\alpha} f(\eta), Y=x^{\beta} \eta$ provided $\alpha=\beta=1 / 2$ and $f(\eta)$ satisfies Blasius' equation

$$
f^{\prime \prime \prime}+\frac{1}{2} f f^{\prime \prime}=0
$$

with $f(0)=f^{\prime}(0)=0$ and $f^{\prime}(\infty)=1$.

Q3 Viscous boundary layer with a non-uniform slip velocity. An incompressible Newtonian fluid flows past a solid boundary which lies on the positive x-axis. The flow is two-dimensional and governed by the dimensionless steady incompressible Navier-Stokes equations

$$
\begin{equation*}
(\mathbf{u} \cdot \boldsymbol{\nabla}) \mathbf{u}=-\boldsymbol{\nabla} p+\frac{1}{R e} \boldsymbol{\nabla}^{2} \mathbf{u}, \quad \boldsymbol{\nabla} \cdot \mathbf{u}=0 \tag{5}
\end{equation*}
$$

where $\mathbf{u}=u(x, y) \mathbf{i}+v(x, y) \mathbf{j}$ is the velocity, $p(x, y)$ is the pressure and $R e$ is the Reynolds number. Suppose that when $R e=\infty$, the external inviscid irrotational flow generates a non-uniform slip velocity $U_{s}(x)$ on the plate.
(a) Show that, when $R e$ is large but finite, the flow near the plate only differs appreciably from $U_{s}(x)$ in a boundary layer in which $Y=R e^{1 / 2} y=\mathrm{O}(1), v \sim R e^{-1 / 2} V(x, Y)$ and Prandtl's boundary layer equations

$$
u \frac{\partial u}{\partial x}+V \frac{\partial u}{\partial Y}=-\frac{\partial p}{\partial x}+\frac{\partial^{2} u}{\partial Y^{2}}, 0=-\frac{\partial p}{\partial Y}, \frac{\partial u}{\partial x}+\frac{\partial V}{\partial Y}=0
$$

pertain. Explain briefly why the boundary and far-field matching conditions are given by

$$
u=V=0 \text { on } Y=0, x>0 ; \quad u \rightarrow U_{s}(x) \text { as } Y \rightarrow \infty
$$

and deduce that the pressure gradient $\partial p / \partial x=-U_{s}(x) U_{s}^{\prime}(x)$.
(b) Show that there is a streamfunction $\Psi(x, Y)$ satisfying

$$
\begin{equation*}
\frac{\partial \Psi}{\partial Y} \frac{\partial^{2} \Psi}{\partial x \partial Y}-\frac{\partial \Psi}{\partial x} \frac{\partial^{2} \Psi}{\partial Y^{2}}=\frac{\partial^{3} \Psi}{\partial Y^{3}}+U_{s}(x) U_{s}^{\prime}(x) \tag{6}
\end{equation*}
$$

and write down the boundary conditions for Ψ.
(c) Suppose there is a similarity solution of the form

$$
\Psi(x, Y)=U_{s}(x) g(x) f(\eta), Y=g(x) \eta
$$

(i) Show that the boundary layer equation (??) becomes

$$
f^{\prime \prime \prime}(\eta)+\alpha(x) f(\eta) f^{\prime \prime}(\eta)+\beta(x)\left(1-f^{\prime}(\eta)^{2}\right)=0
$$

where $\alpha(x)=g(x)\left(g(x) U_{s}(x)\right)^{\prime}$ and $\beta(x)=g(x)^{2} U_{s}^{\prime}(x)$. Explain why both α and β must be constant.
(ii) Find α, β and $g(x)$ when $U_{s}(x)=x^{m}$ and $g(1)=1$, and hence write down the Falkner-Skan equation for $f(\eta)$. What are the boundary conditions for $f(\eta)$? How might a slip velocity $U_{s}(x) \propto x^{m}$ arise in practice?

Q4 High-Reynolds number Jeffery-Hamel flow. In the absence of body forces and in plane polar coordinates (r, θ) the steady Navier-Stokes equations for an incompressible Newtonian fluid with uniform density ρ and kinematic viscosity ν are given by

$$
\begin{aligned}
u_{r} \frac{\partial u_{r}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{r}}{\partial \theta}-\frac{u_{\theta}^{2}}{r} & =-\frac{1}{\rho} \frac{\partial p}{\partial r}+\nu\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_{r}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u_{r}}{\partial \theta^{2}}-\frac{u_{r}}{r^{2}}-\frac{2}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta}\right) \\
u_{r} \frac{\partial u_{\theta}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{\theta}}{\partial \theta}+\frac{u_{r} u_{\theta}}{r} & =-\frac{1}{\rho r} \frac{\partial p}{\partial \theta}+\nu\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_{\theta}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u_{\theta}}{\partial \theta^{2}}-\frac{u_{\theta}}{r^{2}}+\frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \theta}\right), \\
\frac{1}{r} \frac{\partial}{\partial r}\left(r u_{r}\right)+\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} & =0
\end{aligned}
$$

where $\mathbf{u}=u_{r}(r, \theta) \mathbf{e}_{r}+u_{\theta}(r, \theta) \mathbf{e}_{\theta}$ is the velocity, p is the pressure and $\mathbf{e}_{r}, \mathbf{e}_{\theta}$ are unit vectors in the r - and θ-directions. Radial flow is generated in a wedge $-\alpha<\theta<\alpha$ by a source $(Q>0)$ or $\operatorname{sink}(Q<0)$ of strength Q at the origin.
(a) Show that $u_{r}=|Q| g(\theta) / r$, where the dimensionless function $g(\theta)$ satisfies

$$
g^{\prime \prime \prime}+4 g^{\prime}+2 R e g g^{\prime}=0,
$$

with $g(-\alpha)=g(\alpha)=0$ and

$$
\int_{-\alpha}^{\alpha} g(\theta) \mathrm{d} \theta=\operatorname{sgn}(Q),
$$

where the Reynolds number $R e=|Q| / \nu$.
(b) Suppose the Reynolds number is large (i.e. Re $\gg 1$) and that the effects of viscosity are confined to boundary layers on the walls.
(i) In the outer region away from the walls, show that $g \sim \operatorname{sgn}(Q) / 2 \alpha$ as $R e \rightarrow \infty$.
(ii) In the boundary layer on the wall at $\theta=-\alpha$ in which $\phi=R e^{1 / 2}(\alpha+\theta)=\mathrm{O}(1)$, show that $g \sim G$, where $G(\phi)$ satisfies

$$
\frac{\mathrm{d}^{2} G}{\mathrm{~d} \phi^{2}}+G^{2}=\frac{1}{4 \alpha^{2}},
$$

with $G(0)=0$ and $G(\infty)=\operatorname{sgn}(Q) / 2 \alpha$.
(iii) Deduce that such a solution is only possible for in-flow (i.e. $Q<0$).

