
B5.3 Viscous Flow: Sheet 3

Q1 Thermal boundary layer on a semi-infinite flat plate. Consider the two-dimensional steady heat convection-
conduction problem in which inviscid fluid with constant velocity U i and temperature T∞ flows past a ‘hot’ semi-
infinite plate at y = 0, x > 0, which is held at constant temperature Tp. Assume that the density ρ, specific heat cv
and thermal conductivity k are constant.

(a) Starting from the conservation of energy equation in sheet 1, Q6(b) show that the temperature T (x, y) satisfies

U
∂T

∂x
= κ

(
∂2T

∂x2
+
∂2T

∂y2

)
,

where κ = k/ρcv is the constant thermal diffusivity. By using the dimensionless variables

x∗ =
x

L
, y∗ =

y

L
, T ∗ =

T − T∞
Tp − T∞

,

where L is an arbitrary length scale, rewrite the problem in dimensionless form (dropping the stars ∗ on the
dimensionless variables):

∂T

∂x
=

1

Pe

(
∂2T

∂x2
+
∂2T

∂y2

)
,

with T = 1 on y = 0, x > 0 and T → 0 as x2 + y2 →∞. Explain the physical significance of the Péclet number
Pe = LU/κ in terms of the timescales for conduction and convection of heat.

(b) Given that it is possible to find a similarity solution in the form T (x, y) = f(η), where x + iy = (ξ + iη)2/Pe
and f(η) satisfies

for η > 0, f ′′ + 2ηf ′ = 0; f(0) = 1, f(∞) = 0,

show that T (x, y) = erfc(η). Deduce that the isotherms are parabolic and indicate on a diagram the regions of
the (x, y)-plane where T = O(1) as Pe→∞.

(c) Deduce from the governing equations that for Pe � 1 there is a boundary layer on the plate in which
Y = Pe1/2y = O(1) and T ∼ T0(x, Y ), where

∂T0
∂x

=
∂2T0
∂Y 2

, (1)

with T0(x, 0) = 1, T0(x,∞) = 0 for x > 0. Hence show that T0 = erfc
(
Y/(4x)1/2

)
.

(d) Finally, show that the exact and asymptotic solution are in agreement in the boundary layer, i.e. show that
T (x, Pe−1/2Y ) ∼ T0(x, Y ) as Pe→∞, with Y = O(1).

Q2 High-Reynolds number flow past a semi-infinite flat plate. Consider the two-dimensional steady viscous flow
of a uniform stream with velocity U i past a semi-infinite plate at y = 0, x > 0.

(a) Starting from the vorticity-streamfunction formulation in sheet 1, Q5(c)(ii) show that the dimensionless problem
for the streamfunction ψ(x, y) is given by

∂(ψ,∇2ψ)

∂(y, x)
=

1

Re
∇4ψ, (2)

with (upon taking ψ to be equal to zero on the plate)

ψ =
∂ψ

∂y
= 0 on y = 0, x > 0;

∂ψ

∂y
→ 1 as x2 + y2 →∞, (3)

where the dimensionless variables x, y, ψ and the Reynolds number Re should be defined.

(b) When Re = ∞, show that ψ = y satisfies (??) and (??) except for the no-slip condition. When Re is large but
finite, show that there is a boundary layer on the plate in which Y = Re1/2y = O(1) and ψ ∼ Re−1/2Ψ, where
Ψ(x, Y ) satisfies the boundary layer equation

∂Ψ

∂Y

∂3Ψ

∂x∂Y 2
− ∂Ψ

∂x

∂3Ψ

∂Y 3
=
∂4Ψ

∂Y 4
,

together with the boundary and matching conditions

Ψ =
∂Ψ

∂Y
= 0 on Y = 0, x > 0;

∂Ψ

∂Y
→ 1 as Y →∞.
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(c) Deduce that
∂Ψ

∂Y

∂2Ψ

∂x∂Y
− ∂Ψ

∂x

∂2Ψ

∂Y 2
=
∂3Ψ

∂Y 3
, (4)

and hence show that there is a similarity solution of the form Ψ(x, Y ) = xαf(η), Y = xβη provided α = β = 1/2
and f(η) satisfies Blasius’ equation

f ′′′ +
1

2
ff ′′ = 0,

with f(0) = f ′(0) = 0 and f ′(∞) = 1.

Q3 Viscous boundary layer with a non-uniform slip velocity. An incompressible Newtonian fluid flows past a
solid boundary which lies on the positive x-axis. The flow is two-dimensional and governed by the dimensionless
steady incompressible Navier-Stokes equations

(u ·∇)u = −∇p+
1

Re
∇2u, ∇ · u = 0, (5)

where u = u(x, y)i + v(x, y)j is the velocity, p(x, y) is the pressure and Re is the Reynolds number. Suppose that
when Re =∞, the external inviscid irrotational flow generates a non-uniform slip velocity Us(x) on the plate.

(a) Show that, when Re is large but finite, the flow near the plate only differs appreciably from Us(x) in a boundary
layer in which Y = Re1/2y = O(1), v ∼ Re−1/2V (x, Y ) and Prandtl’s boundary layer equations

u
∂u

∂x
+ V

∂u

∂Y
= −∂p

∂x
+
∂2u

∂Y 2
, 0 = − ∂p

∂Y
,
∂u

∂x
+
∂V

∂Y
= 0

pertain. Explain briefly why the boundary and far-field matching conditions are given by

u = V = 0 on Y = 0, x > 0; u→ Us(x) as Y →∞,

and deduce that the pressure gradient ∂p/∂x = −Us(x)U ′s(x).

(b) Show that there is a streamfunction Ψ(x, Y ) satisfying

∂Ψ

∂Y

∂2Ψ

∂x∂Y
− ∂Ψ

∂x

∂2Ψ

∂Y 2
=
∂3Ψ

∂Y 3
+ Us(x)U ′s(x), (6)

and write down the boundary conditions for Ψ.

(c) Suppose there is a similarity solution of the form

Ψ(x, Y ) = Us(x)g(x)f(η), Y = g(x)η.

(i) Show that the boundary layer equation (??) becomes

f ′′′(η) + α(x)f(η)f ′′(η) + β(x)(1− f ′(η)2) = 0,

where α(x) = g(x)
(
g(x)Us(x)

)′
and β(x) = g(x)2U ′s(x). Explain why both α and β must be constant.

(ii) Find α, β and g(x) when Us(x) = xm and g(1) = 1, and hence write down the Falkner-Skan equation for
f(η). What are the boundary conditions for f(η)? How might a slip velocity Us(x) ∝ xm arise in practice?

Q4 High-Reynolds number Jeffery-Hamel flow. In the absence of body forces and in plane polar coordinates (r, θ)
the steady Navier-Stokes equations for an incompressible Newtonian fluid with uniform density ρ and kinematic
viscosity ν are given by

ur
∂ur
∂r

+
uθ
r

∂ur
∂θ
− u2θ

r
= −1

ρ

∂p

∂r
+ ν

(
1

r

∂

∂r

(
r
∂ur
∂r

)
+

1

r2
∂2ur
∂θ2

− ur
r2
− 2

r2
∂uθ
∂θ

)
,

ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+
uruθ
r

= − 1

ρr

∂p

∂θ
+ ν

(
1

r

∂

∂r

(
r
∂uθ
∂r

)
+

1

r2
∂2uθ
∂θ2

− uθ
r2

+
2

r2
∂ur
∂θ

)
,

1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

= 0,

where u = ur(r, θ)er+uθ(r, θ)eθ is the velocity, p is the pressure and er, eθ are unit vectors in the r- and θ-directions.
Radial flow is generated in a wedge −α < θ < α by a source (Q > 0) or sink (Q < 0) of strength Q at the origin.
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(a) Show that ur = |Q|g(θ)/r, where the dimensionless function g(θ) satisfies

g′′′ + 4g′ + 2Re gg′ = 0,

with g(−α) = g(α) = 0 and ∫ α

−α
g(θ) dθ = sgn(Q),

where the Reynolds number Re = |Q|/ν.

(b) Suppose the Reynolds number is large (i.e. Re � 1) and that the effects of viscosity are confined to boundary
layers on the walls.

(i) In the outer region away from the walls, show that g ∼ sgn(Q)/2α as Re→∞.

(ii) In the boundary layer on the wall at θ = −α in which φ = Re1/2(α + θ) = O(1), show that g ∼ G, where
G(φ) satisfies

d2G

dφ2
+G2 =

1

4α2
,

with G(0) = 0 and G(∞) = sgn(Q)/2α.

(iii) Deduce that such a solution is only possible for in-flow (i.e. Q < 0).
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