Numerical Solution of Differential Equations II. QS 4

Question 1.

Consider the linear advection problem

$$
\begin{equation*}
u_{t}+a u_{x}=0 . \tag{1}
\end{equation*}
$$

- Recall the concepts of consistency, stability, and convergence. Comment on their importance, and how they relate to each other.
- The forward Euler in time, centred space finite difference approximation to (1) gives an unstable method. One could also approximate the time derivative by a centred scheme (so-called Leapfrog method)

$$
\begin{equation*}
u_{i}^{n+1}=u_{i}^{n-1}-\frac{a}{2} \lambda\left(u_{i+1}^{n}-u_{i-1}^{n}\right), \tag{2}
\end{equation*}
$$

with $\lambda=k / h$.

- Draw the stencil of (2).
- Knowing that (2) is second order accurate in space and time (you can also prove it, if feeling motivated), comment the drawbacks of the Leapfrog scheme with respect to Lax-Friedrichs or Lax-Wendroff methods.
- Show that the Lax-Friedrichs method applied to (1) is stable provided that $|a| \Delta t / h \leq 1$. Notice that there was a typo in the lecture notes, on the definition of LaxFriedrichs. It should read

$$
u_{j}^{n+1}=\frac{1}{2}\left(u_{j+1}^{n}+u_{j-1}^{n}\right)-\frac{a k}{2 h}\left(u_{j+1}^{n}-u_{j-1}^{n}\right) .
$$

Question 2.

Take $a=1$ and let u be the solution to (1) in $(-1,1)$ with the initial condition

$$
u(x, 0)=u_{0}(x)= \begin{cases}1 & x<0 \tag{3}\\ 0 & x>0\end{cases}
$$

and the boundary conditions

$$
\begin{equation*}
u(-1, t)=1, \quad u(1, t)=0 \tag{4}
\end{equation*}
$$

The exact solution is $u_{0}(x-a t)$. Consider also the "Beam-Warming" scheme

$$
u_{i}^{n+1}=u_{i}^{n}-\frac{a}{2} \lambda\left(3 u_{i}^{n}-4 u_{i-1}^{n}+u_{i-2}^{n}\right)+\frac{a^{2}}{2} \lambda^{2}\left(u_{i}^{n}-2 u_{i-1}^{n}+u_{i-2}^{n}\right) .
$$

For each of the following schemes: Lax-Friedrichs, Lax-Wendroff, Beam-Warming

- Implement the scheme (in e.g. Matlab) to solve (1)-(3)-(4) in the space domain $(-1,1)$ over the time interval $[0,1 / 2]$, using $h=0.0025$ and $\lambda=1 / 2$.
- Visualize both numerical and exact solutions obtained with each scheme and comment on the resulting plots.
- Generate the error history of the numerical approximation: plot in log-log the error (choose some adequate norm) as function of the resolution h, while keeping the ratio $\lambda=1 / 2$.
- What is the "experimental" convergence rate (the one suggested by these plots)?
- What is the "expected" accuracy (which would hold for smooth solutions)?

