
1. Lecture 1

We consider second order ordinary differential equations (ODEs) involving boundary conditions,
given by

(1)
d2y

dx2
= y′′ = f(x, y, y′) with boundary conditions y(a) = α, y(b) = β

and seek a solution y(x) for x ∈ [a, b]. Boundary value ODEs have a more sophisticated existence
and uniqueness theory as compared to initial value problem. We omit this literature and instead
focus on methods for the approximate solution to boundary value ODEs when the cases where
solutions exist and are unique.

In this course we consider two conceptually different approaches to construct approximate solu-
tions within any prescribed accuracy. The first approach transforms the boundary value problem
into initial value problem(s), allowing approximate solutions to be computed using methods such
as from the class of Runge Kutta and linear-multistep methods; this approach is broadly termed
“shooting methods” and will be the focus of this lecture. The second approach involves explicit
discretization of the x variable, approximating the difference operators by matrices, and solving the
resulting system of equations. This second approach is more typical of methods used throughout
this course for boundary value partial differential equations (PDEs).

1.1. Shooting method for linear ODEs. Before considering a numerical method for computing
approximate solutions to ODEs we illustrate the principal of the shooting method for linear second
order ODE boundary value problems (BVPs) of the form

(2) y′′ = p(x)y′ + q(x)y + r(x) with boundary conditions y(a) = α, y(b) = β

for x ∈ [a, b]. From this boundary value problem we construct two initial value problems using the
same coefficient functions p(x), q(x), and r(x):

(3) y′′ = p(x)y′ + q(x)y + r(x) with b. c. y(a) = α, y′(a) = 0

and

(4) y′′ = p(x)y′ + q(x)y with b. c. y(a) = 0, y′(a) = 1.

These two IVPs can be solved within arbitrary precision using any of the standard numerical tech-
niques, such as Runge Kutta methods. From these two IVP solutions it is possible to construct an
approximate solution of the BVP (2) by taking a linear combination. Let y1(x) be an approximate
solution to (3), let y2(x) be an approximate solution to (4), and set y(x) = y1(x) + γy2(x). By
construction y(a) = α as required. To satisfy the second boundary value one needs y(b) = β =
y1(b) + γy2(b), which can be satisfied by selecting γ = (β − y1(b))/y2(b). This approach is effective
provided y2(b) is well separated from zero, allowing the BVP to be solved approximately by instead
solving two related IVPs.

1.2. Shooting method for nonlinear ODEs. Nonlinear BVPs cannot typically be transformed
into a pair of linear IVPs. However, a similar approach can exists. Rather than solving (1), one
can replace the right boundary condition with a user specified slope at the left boundary

(5)
d2y

dx2
= y′′ = f(x, y, y′) with b. c. y(a) = α, y′(a) = s,

giving a parametrized solution, y(x; s), for each s. It then remains to find a value of s, say s∗, such
that its parametrization matches the right boundary condition y(b; s∗) = β within the specified
accuracy. For BVPs with unique solutions, the IVP satisfying y(b; s∗) = β necessarily has the same
solution as the BVP we seek to approximately solve.
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Solving (1) has been reduced to solving for the s which solves φ(s) := y(b; s)−β = 0, a standard
root finding problem. This root finding problem is particularly tractable for IVPs that can be well
approximated numerically; specifically, φ(s) must be a continuous function. Methods well suited
for computing the root of φ(s) may include: the bisection method (provided φ(s) changes sign) and
the Secant method. These root finding methods simply require function evaluation of φ(s), which
can be well approximated using standard numerical methods for IVPs; however, it is worth noting
that though evaluating φ(s) is straightforward, it may be computationally intensive. For an overall
computationally efficient solution to (1) we need a root finding method that requires few iterates.
Newton’s method is particularly efficient, quadratically convergent, when an initial estimate to the
root is available.

Newton’s method for φ(s) := y(b; s)− β = 0 is given by

(6) sn+1 = sn − y(b; sn)− β
ys(b; sn)

where ys(b; s
n) is the derivative of y(b; s) with respect to s, evaluated at sn. The function ys(b; s)

is not readily available, but can be approximated as follows. Applying ∂
∂s to the ODE in (5) gives

y′′s = fxxs + fyys + fy′y
′
s.

Noting that xs = 0 due to x being independent of s, applying ∂
∂s to the initial conditions in (5),

and setting z(x; s) = ys(x, s) for ease of notation gives an additional second order IVP

d2z

dx2
= z′′ = fy(x, y(x; s), y(x; s)′)z + fy′(x, y(x; s), y′(x; s))z′

with boundary conditions z(a) = 0, z′(a) = 1.(7)

It is important to note that the coefficients fy(x, y, y
′) and fy′(x, y, y

′) require both the user to be
able to compute these derivatives of f(x, y, y′), and require an approximate solution of y(x; s) and
y′(x; s) for each value of x used in computing the approximate solution to (7).
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2. Lecture 2

2.1. Finite difference method for second order linear ODEs. We express the (2) linear
differential equation by

(8) L(y) = −y′′ + p(x)y′ + q(x)y = −r(x) with b. c. y(a) = α, y(b) = β

for x ∈ [a, b]. The finite difference method begins by discretizing x using an equally spaced grid

xj = a+ jh with h =
b− a
n+ 1

, for j = 0, 1, . . . , n+ 1.

Let yj be our approximation to y(xj), we can approximate the differential operator L(y) with
suitable finite difference approximations to the derivatives. For a three point stencil (using just
three points per equation) we approximate

y′′(xj) =
yj+1 − 2yj + yj−1

h2
− 1

12
h2y(4)(ξj)

and

y′(xj) =
yj+1 − yj−1

2h
− 1

6
h2y(3)(ηj).

The resulting approximation to (8) at xj is (after multiplication by 1
2h

2)

(9) Lh(yj) = ajyj−1 + bjyj + cjyj−1 = −r(xj) for j=1,2,. . . n

where

aj := −1

2

[
1 +

1

2
hp(xj)

]
(10)

bj :=

[
1 +

1

2
h2q(xj)

]
cj := −1

2

[
1− 1

2
hp(xj)

]
and boundary conditions y0 = α and yn+1 = β. The n unknowns, yj for j = 1, 2, . . . , n, can then
be cast as a linear system of equation

(11) Ay = −r − a1αe1 − cnβen
where: e` is the unit n vector with value e`(k) = 1 if ` = k and zero otherwise, r is the vector with
entries 1

2h
2r(xj), A is the n×n tridiagonal matrix with values bj on the diagonal for j = 1, 2, . . . , n,

aj on the sub-diagonal for j = 2, 3, . . . , n, and cj on the super-diagonal for j = 1, 2, . . . , n− 1, and
y the vector with entries yj .

Our numerical method for solving for an approximate solution to (8) (on the grid xj) is now
cast as the solution of a linear system. The central questions to resolve for this method are:

• Does the linear system (11) have a unique solution?
• What is the computational cost of solving the system (11)?
• At what rate does the error maxj |y(xj)−yj | converge to zero as h decreases to zero? (This

is referred to as the order of accuracy.)

To address invertibility we impose conditions on the ODE variable coefficient function q(x) to
have

(12) min
x∈[a,b]

q(x) = Q∗ > 0

and that the stepsize is sufficiently small compared to the maximum of the coefficient function p(x)

(13) h <
2

P ∗
where P ∗ = max

x∈[a,b]
p(x).
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The first condition ensure that the diagonal values in A are greater than one, bj ≥ 1 + 1
2h

2Q∗.
The second condition ensures that he sum of the off diagonal entries in A have magnitude 1,
|aj | + |cj | = 1. Gershgorin disc theorem using these two facts tell us that the n eigenvalues of A
are contained in discs of radius 1 centred at bj . As bj are greater than one, the discs do not include
the origin, ensuring that zero is not an eigenvalue of A. Moreover, A is diagonally dominant, and
can be easily solved using Gaussian Elimination without need for pivoting. This later fact tells us
that a stable solution can be computed in order n operations. We have now verified that, with
the conditions imposed, the linear system corresponding to our method to solve an approximate
solution to (8) has a unique solution and can be solved efficiently.

It then remains to establish the order of accuracy for our method. We begin by noting the
truncation error for Lh that results from the finite difference approximations to the differential
operator; simple Taylor series expansions show

(14) Lh(y(xj))− L(y(xj)) =
−h2

12

[
y(4)(ξj)− 2p(xj)y

(3)(ηj)
]
.

This shows that on the mesh xj , the solution to the ODE, y(xj) gives the same answer to differential
operator L and the finite difference operator Lh to withing O(h2). In order to establish that yj is
close to y(xj) we also need to ensure that the finite difference operator Lh is “stable.” We refer to
a finite difference operator Lh as stable with factor M if there exists a finite M such that

(15) max
j
|νj | ≤M

{
max (|ν0|, |νn+1|) + max

j
|Lhνj |

}
.

Noting that

Lhyj − Lhy(xj) = −r(xj)− Lhy(xj)

= Ly(xj)− Lhy(xj)(16)

and using the truncation error bound (14) gives the bound

(17) |Lh(yj − y(xj))| = |Ly(xj)− Lhy(xj)| ≤
h2

12

∣∣∣y(4)(ξj)− 2p(xj)y
(3)(ηj)

∣∣∣ .
Consequently, if Lh is M stable then using νj = yj − y(xj) in (15) gives

max
j
|yj − y(xj)| ≤

Mh2

12

[
max
x∈[a,b]

|y(4)(x)|+ 2P ∗ max
x∈[a,b]

|y(3)(x)|
]
,

proving second order approximation rate for the method.

It then remains to show that Lh is a stable operator. To prove this we recall that the operator
satisfies

bjyj = −ajyj−1 − cjyj+1 +
1

2
h2Lhyj

The right hand side can be bounded from above by using the triangle inequality, noting that under
the conditions (12) and (13), that |aj |+ |cj | = 1, so taking the max over j on the right hand side
gives the upper bound

|bjyj | ≤ max
j
|yj |+

1

2
h2 max

j
|Lhyj |.

The left hand side can be bounded below by (1 + 1
2h

2Q∗)||yj | for each j, and consequently is also
true for the j where the max of |yj | is achieved. The resulting bound

(1 +
1

2
h2Q∗) max

j
|yj | ≤ max

j
|yj |+

1

2
h2 max

j
|Lhyj |,

can be rearranged to

max
j
|yj | ≤

1

Q∗
max
j
|Lhyj |,



5

and hence Lh is stable with factor M = Q−1
∗ . Combined with our prior analysis we have proven

that the solution to our finite difference approximation is a second order accurate approximation
to the true solution.
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3. Lecture 3

In this lecture we consider finite difference methods for nonlinear BVPs.

3.1. Finite difference methods for nonlinear BVPs. We return to nonlinear second order
BVPs (5), here written as

(18) L(y) = −y′′ + f(x, y, y′) = 0 with b. c. y(a) = α, y(b) = β.

Nonlinear Truncation Error Let us derive a finite difference method for its approximate
solution. We begin by replacing the differential operators with finite difference approximations,
here keeping to a three point stencil.

(19) Lh(yj) = −yj+1 − 2yj + yj−1

h2
+ f

(
xj , yj ,

yj+1 − yj−1

2h

)
for j = 1, 2, . . . , n

with boundary values y0 = α and yn+1 = β. The finite difference operator acting on the approxi-
mate solution yj is within O(h2) of the finite difference operator acting on the true solution on the
corresponding mesh, y(xj). This truncation error is given by:

Lhy(xj)− Lhyj = Lhy(xj)− Ly(xj)

= −y(xj+1)− 2y(xj) + y(xj−1)

h2
+ y′′(xj)

+ f

(
xj , y(xj),

y(xj+1)− y(xj−1)

2h

)
− f

(
xj , y(xj), y

′(xj)
)

=
−1

12
h2y(4)(ξj) +

1

6
h2fy′(xj , y(xj), y

′(xj))y
(3)(ηj)

=
h2

12

[
−y(4)(ξj) + 2fy′(xj , y(xj), y

′(xj))y
(3)(ηj)

]
(20)

where the fy′ notation indicates partial derivative of f with respect to its third argument, and the
equality is determined by using previous differences of the differential and difference operators. It
now remains to show that a) the operator is stable so that maxj |Lhy(xj)−Lhyj | being proportional
to O(h2) implies that maxj |y(xj) − yj | is similarly second order in h2, and b) to show that the
finite difference system (19) has a solution, which we are able to find using standard root finding
techniques.

Nonlinear Stability We have shown a second order truncation error (20) for the finite difference
scheme (19). In order to show that maxj |yj−y(xj)| is of the same order as the truncation error we
repeat a stability analysis of the finite difference operator Lh(·). When considering linear operators
the notion of stability was given in terms of a single vector (15); here the non-linearity of the
operator requires a slightly more general definition of stability, given in terms of two vectors. We
refer to a finite difference operator Lh as stable with factor M if there exists a finite M such that

(21) max
j
|uj − vj | ≤M

{
max (|u0 − v0|, |un+1 − vn+1|) + max

j
|Lhuj − Lhvj |

}
.

For linear operators Lh, the definition (21) recovers the prior definition (15).

We first establish that if Lh is stable, then the error is bounded by the truncation error. If Lh
is stable with factor M then

max
j
|yj − y(xj)| ≤ M max

j
|Lhyj − Lhy(xj)|

= M max
j
|Ly(xj)− Lhy(xj)|(22)
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where the last equality uses that Lhyj is defined to be equal to Ly(xj). The right hand side of
(22) is simply M times the truncation error for the finite difference operator, which for (19) we
have shown to be second order, O(h2). It then remains to show that Lh is stable, under suitable
conditions on f(·, ·, ·).

In order to show stability of (19) we use vector Taylor series:

Lhuj − Lhvj = −uj+1 − 2uj + uj−1

h2
+
vj+1 − 2vj + vj−1

h2

+f

(
xj , uj ,

uj+1 − uj−1

2h

)
− f

(
xj , vj ,

vj+1 − vj−1

2h

)
= −h−2(uj+1 − vj+1) + 2h−2(uj − vj)− h−2(uj−1 − vj−1)

+∇f
(
xj , uj + θ(vj − uj),

uj+1 − uj−1

2h

+ θ

[
vj+1 − vj−1

2h
− uj+1 − uj−1

2h

])
·
(

0, uj − vj ,
uj+1 − uj−1

2h
− vj+1 − vj−1

2h

)
= −h−2(uj+1 − vj+1) + 2h2(uj − vj)− h−2(uj−1 − vj−1)

fy(xj , ξj , ηj)(uj − vj)
+fz(xj , ξj , ηj)(2h)−1(uj+1 − vj+1 − uj−1 + vj−1)

= aj(uj−1 − vj−1) + bj(uj − vj) + cj(uj+1 − vj+1)(23)

where ξj and ηj are for some θ ∈ (0, 1) and

aj = −h−2 − (2h)−1fz(xj , ξj , ηj)(24)

bj = 2h−2 + fy(xj , ξj , ηj)

cj = −h−2 + (2h)−1fz(xj , ξj , ηj).

To bound |Lhuj − Lhvj | we first rearrange the final equality in (23) to

(25) bj(uj − vj) = −aj(uj−1 − vj−1)− cj(uj+1 − vj+1) + Lhuj − Lhvj .
Before computing the desired bound we impose two conditions on the differential equation, similar
to those used in the stability analysis of (9). Imposing that max |fz| ≤ P ∗ and h ≤ 2

P ∗ gives

|aj |+ |cj | = 2h−2 and imposing that min fy > Q∗ > 0 gives bj > 2h−2 +Q∗. Taking absolute values
of (25), apply the triangle inequality, and maximize over j gives

(26) (2h−2 +Q∗) max
j
|uj − vj | ≤ 2h−2 max

j
|uj − vj |+ max

j
|Lhuj − Lhvj |

which can be simplified to

max
j
|uj − vj | ≤ Q−1

∗ max
j
|Lhuj − Lhvj |

which is our desired stability bound with factor Q−1
∗ . Having established the stability factor and

previously the second order truncation error proves that the error, maxj |yj − y(xj)| for the finite
difference approximation (19) is of order h2.
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4. Lecture 4

In this lecture we continue our analysis of finite difference methods for nonlinear BVPs, showing
that the nonlinear system has a unique solution, and proving a method to solve for the solution
without knowledge of a good initial guess.

4.1. Iterative method for solution of nonlinear systems. At this stage we have a finite
difference method (19) whose solution we have shown is within order h2 of the solution to the
nonlinear differential equation (18). However, we have not shown that a) the nonlinear system
(19) does in fact have a solution, and b) if it does have a solution we have not given a method by
which we can find (approximately) its solution. We address both of these issues simultaneously by
considering the iterative algorithm

(27) ym+1
j = (1 + w)−1

[
1

2
(ymj−1 + ymj+1) + wymj −

h2

2
f

(
xj , yj ,

ymj+1 − ymj−1

2h

)]
where the superscript is an iteration counter, not a power. This iteration is arrived at by solving
(19) for yj from the second order differential operator approximation, then adding wyj (for some
w 6= 1) to both sides of the equation, dividing by (1 + w), and adding iteration counters of one
degree less on the right hand side than on the left hand side. We can further condense this iteration
as

(28) ym+1 = g(ym)

where ym is the vector with entries ymj for j = 0, 1, . . . , n+1. We now wish to show a few properties of
the iterations ym: first that they converge and second that they converge to something that satisfies
y = g(y) which necessarily implies that the limit is a solution to the finite difference method (19).
In order to show these we need to establish that g(·) is a contraction; that is

‖g(u)− g(v)‖∞ ≤ λ‖u− v‖∞
for some 0 ≤ λ < 1. This analysis is similar to the stability analysis for (19). Letting g(u)j denote

the jth entry of g(u), then

g(u)j − g(v)j = (1 + w)−1

[
1

2
((uj−1 − vj−1) + (uj+1 − vj+1)) + w(uj − vj)

− h2

2

(
f

(
xj , uj ,

uj+1 − uj−1

2h

)
+ f

(
xj , vj ,

vj+1 − vj−1

2h

))]
= −(1 + w)−1h

2

2
[aj(uj−1 − vj−1) + cj(uj+1 − vj+1)

+ (bj − 2h−2(1 + w))(uj − vj)
]

(29)

with aj , bj , and cj defined as in (24), though with some other ξj and ηj . As in the stability analysis
we impose that max |fz| ≤ P ∗ and h ≤ 2

P ∗ gives |aj |+ |cj | = 2h−2 and (using a bound from above

instead) impose that Q∗ ≤ min fy ≤ Q∗ gives 2h−2 +Q∗ ≤ bj ≤ 2h−2 +Q∗. Moreover, we impose
that w ≥ 1

2h
2Q∗ so that |bj − 2h−2(1 + w)| = 2h−2(1 + w) − bj ≥ 0. Then, applying the triangle

inequality to the last equality in (29), and taking the max over j we obtain

‖g(u)− g(v)‖∞ ≤

(
1−

1
2h

2Q∗

1 + w

)
‖u− v‖∞

which proves that g(·) is a contraction with factor

λ(w) :=

(
1−

1
2h

2Q∗

1 + w

)
< 1
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for w ≥ 1
2h

2Q∗. Unfortunately λ(w) = 1 − O(h2) causing the contraction to occur impractically
slow for h small. Even so, this is enough to establish the conditions we sought.

Using ym+1 = g(ym) and the contraction principle it is easy to show that ‖yp − yq‖∞ ≤
‖y1−y0‖

1−λ λmin(p,q) and consequently that the sequence is a Cauchy sequence. This implies conver-

gence to a limit point that satisfies y = g(y). Moreover, the limit point must be unique by
the counter examples that if y and ỹ are solutions that |y − ỹ| = |g(y) − g(ỹ)| = λ|y − ỹ| for
λ < 1, which is a contradiction, hence proving that the limit is unique. Lastly, the error satisfy
|ym− y| = |g(ym−1)− g(y)| ≤ λ|ym−1− y|, giving a linear convergence rate, though with the factor
λ which is close to one. Although this iteration is impractically slow, it has the advantage that
convergence is guaranteed to within arbitrary precision for any starting guess.
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5. Lecture 5

In this lecture we consider the Poisson Equation, a linear boundary value PDE. Proof of con-
vergence for our approximation involves a refined version of the previous stability analysis, with
this approach more adaptable to complex domains.

5.1. Poisson Equation. We define the Poisson Equation as

(30) L(u) = uxx + uyy = f(x, y) for (x, y) ∈ Ω

and, for the moment, with Dirichlet boundary conditions u(x, y) given for (x, y) ∈ δΩ where δΩ
denotes the boundary of Ω. We consider a finite difference approximation of L(u) using a three
point centered difference approximation of the second derivative in both x and y, resulting in a five
point stencil,

(31) Lhuj,k =
uj−1,k + uj+1,k − 4uj,k + uj,k−1 + uj,k+1

h2
= f(xj , yk)

for (xj , yk) ∈ Ω/∂Ω where (xj , yk) is a grid with xj+1−xj = yk+1−yk = h for all j, k. (For instance,
if Ω = [a, b]2 we can use xj = a+ jh and yk = a+ kh for h = 1/(n+ 1) and j, k = 0, 1, . . . , n+ 1;
however, we are primarily interested in being able to compute approximate solutions on more
complex domains.)

Taylor series, as before, is sufficient to show that

τj,k = Lhu(xj , yk)− Lhuj,k = (Lh − L)u(xj , yk)

=
1

12
h2 (uxxxx(ξj , yk) + uyyyy(xj , ηk)) .(32)

The equations (31) can be expressed as a linear system Au = f where rows of A have diagonal
entries −4h−2, the super and sub diagonal entries are typically h−2 and depending on interactions
with boundary conditions a row will may have up to two additional nonzero entries with values
h−2. For (j, k) which correspond to a five point stencil that interacts with the boundary, we use the
boundary conditions and adjust the entries in f accordingly; otherwise the entries in f are simply
given by f(xj , yk). Typically the grid (j, k) is ordered using a Lexicographical ordering, ordering
(j, k) > (p, q) if j > p or if j = p and q > k. The resulting matrix A has only a small fraction of its
entries which are not zero, making it computationally efficient to compute matrix vector products
Az for some z. In later lectures we will use this property to design efficient methods for computing
approximate solutions to Au = f . Invertibility of A will be addressed in a later lecture.

We now introduce the maximum principle, a technique to show that maxj,k |u(xj , yk)− uj,k| ≤
Const.τmax where

τmax = max
j,k
|τj,k|

and Const. is independent of h. The maximum principle uses a comparison function Φ(x, y) de-
signed to allow us to analyse the error

ej,k = u(xj , yk)− uj,k.
We will design the comparison function to have the properties that LΦ(x, y) = LhΦ(xj , yj) = C a
constant, and that Φ(x, y) ≥ 0. We then add a multiple of Φ(x, y) to the error

ψj,k = ej,k + αΦ(xj , yk)

for α > 0. Applying the finite difference operator Lh to ψj,k gives

Lhψj,k = Lej,k + αLΦ(xj , yk) = τj,k + αC.

If we select α = C−1τmax we have that Lhψj,k = τj,k + τmax ≥ 0. As Lh is taking the difference
of ψj,k and the average its four neighbours, Lhψj,k ≥ 0 implies that ψj,k cannot exceed the max of
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the four neighbours used in Lhψj,k. This property is true for each j, k in which (xj , yk) ∈ Ω/∂Ω.
Consequently the max of ψj,k must occur at a boundary point

max
j,k

ψj,k ≤ max
(xj ,yk)∈∂Ω

ψj,k.

For Dirichlet boundary conditions ej,k is zero on the boundary, so maxj,k ψj,k ≤ maxj,k Φ(xj , yk) =
Φ∗, where the last equality is our definition of the max of Φ(·, ·). Moreover, as Φ(xj , yk) ≥ 0, we
have that

max
j,k

ej,k ≤ max
j,k

ψj,k = αΦ∗ = C−1Φ∗τmax.

An example comparison function suitable for this example is Φ(x, y) = (x − xc)
2 + (y − yc)

2

where (xc, yc) is a point such that max(x,y)∈Ω Φ(x, y) is minimized; for this comparison function

LΦ(x, y) = 4 and Φ∗ = (a2 +b2)/4 where Ω ⊂ [xc−a/2, xc+a/2]× [yc−b/2, yc+b/2]. Implementing
these bounds gives

max
j,k

ej,k ≤
a2 + b2

16
τmax.

Repeating the above for φj,k = −ej,k + Φ(xj , yk) establishes that

min
j,k

ej,k = max
j,k
−ej,k ≤ max

j,k
ψj,k ≤ C−1Φ∗τmax

which when combined with our prior bound gives the desired bound on the error

max
j,k
|ej,k| ≤

a2 + b2

16
τmax = O(h2).
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6. Lecture 6

In this lecture we return to the question of invertibility of the matrix associated with the system
of equations (31). We will also consider alternative finite difference approximations and the impact
of domains that do not align perfectly with a regular equispaced grid.

6.1. Poisson Equation: invertibility. For rectangular domains Ω is is straightforward to repeat
the eigen-analysis of the matrix associated with the system (31) and to show that the eigenvalues
are bounded away from zero. Unfortunately this approach does not extend well to more general
domains where the eigen-functions of the Laplacian are typically unknown. Here we show that the
resulting matrix is invertible by employing a refined version of Gershgorin’s Disc Theorem.

Definition 6.1. An m×m matrix A is referred to as reducible if there exist sets I and J with the
properties that I

⋃
J = 1, 2, . . . ,m, and I

⋂
J = ∅, with aij = 0 for all i ∈ I and j ∈ J . If A is not

reducible we refer to it as irreducible. Moreover, A is referred to as irreducible diagonally dominant
(IRDD) if it is weakly row diagonally dominant with at least one row being strictly diagonally
dominant.

Lemma 6.1. If A is irreducible then for each p and q there is a path from ap,j1 6= 0, aj1,j2 6= 0,
. . ., ajr,q 6= 0.

Theorem 6.1. Let A be an m × m matrix with associated eigenvalue and eigenvector Ax = λx
with ‖x‖∞ = 1. Define Di := {z : |z − aii| ≤

∑
j 6=i |aij ]} for i = 1, 2, . . . ,m to be the Gershgorin

Discs. Then λ ∈ D :=
⋃m
i=1Di. Moreover, if A is irreducible then if λ is an eigenvalue of A on

the boundary of D, it must be on the boundary of each Di.

The first portion of Theorem 6.1 is proven as follows. As ‖x‖∞ = 1 there exists an i such that
|xi| = 1. Then expanding the ith row of Ax = λx gives (aii − λ)xi =

∑
j 6=i aijxj . Taking absolute

values and bounding the right hand side of the equality using the triangle inequality gives

|aii − λ| ≤
∑
j 6=i
|aij ||xj |/|xi| ≤

∑
j 6=i
|aij |

with the last inequality following from |xj | ≤ |xi| = 1 for all j. Lacking knowledge about which i
we have this inequality for we can only ensure that λ is in the union of all such discs. The second
portion of Theorem 6.1 follows by noting that if λ is on the border of D then it cannot be on the
interior of a disc Di, so if it is contained in a disc it must be on the boundary of that disc. Once
it is known that λ is on the boundary of the ith disc we know that both |aii − λ| ≤

∑
j 6=i |aij | and

|aii − λ| =
∑

j 6=i |aij | which is only possible if |xj | = 1 for j ∈ {` : ai` 6= 0}. Knowing more entries
in x where it achieves its max in magnitude allows for the discs of more rows of A to be considered.
If A is irreducible this process will continue to all all rows, concluding that |xi| = 1 for all i, and
that λ is on the boundary of each disc. This last property is particularly useful for the matrix
associated with (31) for Dirichlet problems, which are necessarily IRDD. Theorem 6.1 implies that
IRDD matrices are invertible as one of the discs will not contain the origin.

6.2. Rotated five point stencil. Poisson’s equation (30) was previously approximated (31) using
standard symmetric approximations to uxx and uyy. In two dimensions there is greater flexibility
in the structure of the stencil, such as by rotating the stencil. For example, note the Taylor series
approximation of uj+1,k+1 about the point (xj , yk)

uj+1,k+1 = u+ h(ux + uy) +
1

2
h2(uxx + 2uxy + uyy)

+
1

6
h3(uxxx + 3uxxy + 3uxyy + uyyy)

+
1

24
h4(uxxxx + 4uxxxy + 6uxxyy + 4uxyyy + uyyyy) +O(h5)
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and

uj+1,k−1 = u+ h(ux − uy) +
1

2
h2(uxx − 2uxy + uyy)

+
1

6
h3(uxxx − 3uxxy + 3uxyy − uyyy)

+
1

24
h4(uxxxx − 4uxxxy + 6uxxyy − 4uxyyy + uyyyy) +O(h5)

where unless otherwise stated u is taken to be at the point (xj , yk). From these approximations it
is easy to see that

1

2h2
(uj+1,k+1 + uj−1,k−1 + uj+1,k−1 + uj−1,k+1 − 4uj,k) = τ̃j,k

where τ̃j,k = h2

12 (uxxxx + 6uxxyy + uyyyy) + O(h4). Though this finite difference approximation
of uxx + uyy differs from that in (31) and they have the same order, it isn’t possible to make a
combination of them which is of a higher order due to the cross term uxxyy in τ̃j,k which isn’t
involved in the truncation error of the non-rotated five point stencil.

6.3. Domain boundaries which do not align with equispaced grids. In this subsection we
return to the stencil used in (31). For points (xj , yk) which are further than h from the boundary
the stencil contains all five points. If the point (xj , yk) is a distance h from the boundary ∂Ω
then one or more of the stencil values will be on the boundary, which for Dirichlet boundary
conditions will be reflected by the row of the associated matrix having one or more of the non-
diagonal entries missing (represented on the right hand side of the linear system); such a row will be
strictly diagonally dominant accounting for the matrix being IRDD and invertible as shown in the
prior lecture. However, if (xj , yk) is closer to a boundary than h in either the x or y direction the
approximation in (31) will need to be modified accordingly. Consider for instance a point (xj , yk)
for which (xj+1, yk) is not in the interior, but the other stencil values are contained in the interior
of Ω. It is then necessary to compute an approximation of uxx from uj−1,k, uj,k, and uj+θ,k for
some θ ∈ (0, 1) corresponding to an approximation at (xj + θh, yk);

αuj−1,k + βuj,k + γuj+θ,k = (α+ β + γ)uj,k

+ (γθ − α)hux + (γθ2 + α)
1

2
h2uxx

+ (γθ3 − α)
1

6
h3uxxx + (O)(h4).

The highest order approximation of uxx is achieved by setting α + β + γ = 0, γθ − α = 0, and
γθ2 − α = 2h−2; giving

uj,k+1 + uj,k−1 − 2(1 + θ−1)uj,k + 2(1 + θ)−1uj−1,k + 2θ−1(1 + θ)−1uj+θ,k
h2

= uxx + uyy +
1

12
h2uyyyy −

1

3
h(1− θ)uxxx +O(h2).

Note that the prior stencil and second order accuracy is recovered if θ is equal to one, but reduces
to first order in h otherwise; with θ 6= 1 for some point required if the boundary ∂Ω does not align
with the equispaced grid.

In the associated linear system the weighted point uj+θ,k would be moved to the right hand
side of the equation as a known value, resulting in a system that is strictly diagonally dominant
with the origin being 2θ−1(1+θ)−1h−2 away from the Gershgorin disc for the associated row of the
matrix. This ensures that the system is strictly diagonally dominant for at least one row, and the
connected stencil ensures the matrix is irreducible, ensuring that the linear system is invertible.
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