

Homoclinic Chaos

1. Bernoulli shift

Dynamical systems

- 1. The space on which it is defined
- 2. The dynamics mapping sets to sets

Ex: Bernoulli shift

- 1. The space of bi-infinite sequence: Σ
- 2. a shift mapping sequences to sequences

$$\sigma: \Sigma \to \Sigma$$

Analysis of this system reveals infinitely periodic orbits infinitely quasi-periodic orbits, a dense orbit.

=>Sensitive dependence to i.c. and Chaos

2. SMALE'S HORSESOE

SMALE'S HORSESHOE

First, define two rectangular regions in the unit square

$$H_0 = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, \ 0 \le y \le 1/\mu\}$$

 $H_1 = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, \ 1 - 1/\mu \le y \le 1\}$

SMALE'S HORSESHOE

Second, define a map of these rectangle into themselves

$$H_0: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$H_1: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} -\lambda & 0 \\ 0 & -\mu \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 1 \\ \mu \end{pmatrix}$$

SMALE's HORSESHOE

Third, repeat the operation

SMALE'S HORSESHOE

Fourth, introduce a coding

Coding: 01 means

that it was right at the first iteration left at the second

SMALE's HORSESHOE

Fifth, do the same operation for the inverse map

Sixth, take the intersection between the two sets

SMALE'S HORSESHOE

$$\Lambda = \bigcap_{n \in \mathbb{Z}^+} H^n \cap \bigcap_{n \in \mathbb{Z}^+} V^n = \bigcap_{n \in \mathbb{Z}} f^n (H_0 \cup H_1).$$

This set is a the intersection of a Cantor set of vertical lines and a cantor sets of horizontal lines

$$\Lambda = \bigcap_{n \in \mathbb{Z}^+} H^n \cap \bigcap_{n \in \mathbb{Z}^+} V^n = \bigcap_{n \in \mathbb{Z}} f^n(H_0 \cup H_1).$$

Each point in Λ can be coded by two binary sequences. The first sequence codes its vertical position, the second sequence codes its horizontal position

Therefore to each point p in Λ we can associate a bi-infinite sequence σ in Σ . Let

$$h: \Lambda \rightarrow \Sigma$$

This map *h* is a homeomorphism (1:1, onto, continuous with continuous inverse).

The dynamics on Λ is given by $f: \Lambda \to \Lambda$. It maps points to points. By construction, Λ is an invariant set

Since there exists a homeomorphism h, it implies that the dynamics of f on Λ is topologically conjugate to the dynamics of σ on Σ .

Topological equivalence

To each orbit in Σ there is a corresponding orbit on Λ Therefore, the system has, a countable infinity of periodic orbits, an uncountable infinity of non-periodic orbit, a dense orbit, sensitivity dependence to initial conditions. We conclude that f on Λ is chaotic.

3. TRANSVERSE HOMOCLINIC POINTS

HORSESHOE IN MAPS

Consider a diffeomorphism defining a map *P* Assume it has a fixed point at 0

Build the stable and unstable manifolds to this point

Assume that the stable and unstable manifold intersect transversally at a point x_0

If these manifolds intersect once they MUST intersect infinitely many times

Now consider the evolution of a domain D defined by one of these homoclinic tangles

Intersection of D and P5(D)

4. MELNIKOV's METHOD

$$\ddot{x} = -\operatorname{grad} V$$
,

$$\ddot{x} - x + x^3 = 0.$$

 $\ddot{x} = -\operatorname{grad} V$,

$$\ddot{x} - x + x^3 = 0.$$

$$\ddot{x} = -\operatorname{grad} V$$
,

$$\ddot{x} - x + x^3 = 0.$$

 $\ddot{x} = -\operatorname{grad} V$,

Poincaré map for the unperturbed system

$$\ddot{x} - x + x^3 = 0.$$

With perturbation

Melnikov's method

Measure separation distance between stable and unstable manifold

$$x''(t) + \delta x'(t) + x(t)^3 - x(t) = \gamma \cos(t)$$

Transverse homoclinic in celestial mechanics

Poincaré section

Study guidelines

- Examinable material=synopsis (the one online)
- Methods:
 - Linear stability analysis (study of Jacobian matrix)
 - Centre manifold reduction (computing manifold and dynamics on manifold)
 - Lyapunov and first integrals (stability and level set)
 - One-degree-of-freedom system (drawing phase portrait from V)
 - bifurcation for flows and maps (identifying the bifurcation: saddle node, transcritical, pitchfork, hopf, period doubling)
 - analysis of one-dimensional maps (fixed point, periodic orbits)
 - Melnikov's method (computing transverse intersection)

Study guidelines

 Examinable material=synopsis (the one online) Reproduced below:

Course Synopsis:

- 1. Geometry of linear systems
 - Basic concepts of stability and linear manifold of solutions. Orbits in phase-space, linear flows, eigenvalues of fixed points.
- 2. Geometry on nonlinear systems
 - Notion of flows, invariant sets, asymptotic sets, attractor. Conservative and Non-Conservative systems.
- 3. Local analysis
 - Stable manifold theorem, notion of hyperbolicity, center manifold.
- 4. Bifurcation.
 - Bifurcation theory: codimension one normal forms (saddle-node, pitchfork, trans-critical, Hopf).
- 5. Maps
 - Poincaré sections and first-return maps. Stability and periodic orbits; bifurcations of one-dimensional maps, period-doubling.
- 6. *Chaos
 - Maps: Logistic map, Bernoulli shift map, symbolic dynamics, Smale's Horseshoe Map. Melnikov's method. Differential equations: Lorenz equations, Rossler equations.

We have covered it all (except for the Rossler equations, which are not part or the examinable material)

Study guidelines

- Examinable material=synopsis (the one online)
- Concepts and definition:
 - Linear spaces; stable, unstable, centre manifolds
 - Attractor and attracting sets, notions of stability
 - Linear stability theorem, hyperbolic fixed points
 - Notion of bifurcation
 - Poincaré maps, period doubling
 - Orbits: fixed point, periodic, limit cycle non-periodic, homoclinic
 - Shift map, horseshoe, chaotic system