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What we learned from Section 1&2.

• For a system of linear autonomous equations ẋ = Ax, the solutions

live on invariant space that can be classified according to the

eigenvalues of A.

• The stable (resp. unstable, centre) linear subspace is the span of

eigenvectors whose eigenvalues have a negative (resp. positive, null)

real part.

• For nonlinear systems, we define the notion of asymptotic sets (α

and ω limit set), the notion of attracting set, and basin of attraction.

• We define two important notions of stability for a fixed point:

(Lyapunov) stability (i.e. “solutions remain close”) and exponential

stability i.e. (“fixed point is stable AND all nearby solutions

converge to the fixed point asymptotically for long time”).

• Lyapunov functions can be used to test stability. But, finding a

Lyapunov function can be difficult.
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3.1 The problem



The problem

Consider the nonlinear, autonomous, first-order system of differential

equations with fixed point x0:

ẋ = f(x) and x0 such that f(x0) = 0. (1)

with vector field f : E ⊂ Rn → Rn.

Problem:

What is the stability of this fixed point?

Can it be obtained algorithmically?
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Main idea

The basic idea is to look at nearby solutions by expanding x close to x0

x = x0 + ξ (2)

Inserting this in the equation and using the fact that x0 is a fixed point,

we have

ξ̇ = f(x0 + ξ) (3)

= Df(x0)ξ +O(|ξ|2) (4)

where Df(x0) is the Jacobian matrix associated with a vector field f.

It is the matrix of first derivatives evaluated at x0:

[Df(x0)]ij =

[
∂fi
∂xj

]∣∣∣∣
x=x0

. (5)

NB: Since x0 is constant Df(x0) is a matrix with constant coefficients.
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Main idea

The local equations are

ξ̇ = Df(x0)ξ +O(|ξ|2) (6)

The variational equations or linearised equations are given by the linear

system obtained by dropping the nonlinear terms in the above equations:

ξ̇ = Df(x0)ξ (7)

This equation (7) is a linear equation with a constant matrix.

We know we can solve it and that the stability of ξ = 0 is determined by

Spec(Df(x0)).

The central problem of local analysis is to relate the stability of ξ = 0 for

(7) to the stability of ξ = 0 for (6).
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3. Local analysis

3.2 Stable manifold theorem



Basic idea in the plane

Consider the system {
ẋ = f (x , y)

ẏ = g(x , y)
(8)

and assume without loss of generality that x = y = 0 is a fixed point.

The linearised system is{
ξ̇ = ∂x f (0, 0)ξ + ∂y f (0, 0)η

η̇ = ∂xg(0, 0)ξ + ∂yg(0, 0)η
(9)

We assume that the eigenvalues of the Jacobian matrix

Df(0) =

[
∂x f (0, 0) ∂y f (0, 0)

∂xg(0, 0) ∂yg(0, 0)

]
(10)

are real (but non-vanishing) with opposite sign.
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Stable manifold theorem

Locally, all the trajectories converging to the fixed point for large positive

(resp. negative) time, define curves in the plane.

This curve is called the local stable manifold (resp. local unstable

manifold).

These curves are locally tangent to the stable and unstable linear

subspaces of the linear system. Explicitly, for this system, we define the

stable and unstable manifolds as

W s(0) = {(x , y) ∈ R2|ϕt(x , y) −−−→
t→∞

0} (11)

W u(0) = {(x , y) ∈ R2|ϕt(x , y) −−−−→
t→−∞

0} (12)
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Stable manifold theorem

Theorem 3.1

Let ϕt : E ⊂ Rn → E be the flow of ẋ = f(x) with fixed point x0.

Suppose that the spectrum of Df(x0) is composed of k eigenvalues with

positive real parts and (n − k) eigenvalues with negative real parts.

Then,

• there exists, in a neighbourhood of x0 a (n − k)-dimensional

manifold W s
loc(x0) tangent to E s such that

∀ x ∈W s
loc, t ≥ 0, ϕt(x) −−−→

t→∞
x0. (13)

• there exists, in a neighbourhood of x0 a k-dimensional manifold

W u
loc(x0) tangent to E u such that

∀ x ∈W u
loc, t ≤ 0, ϕt(x) −−−−→

t→−∞
x0, (14)

Moreover, W s
loc and W u

loc are as smooth as f.
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The stable and unstable manifolds

The existence of local stable and and unstable manifolds allows us to

define global stable and unstable manifolds as follows:

W s(x0) =
⋃
t≤0

ϕt (W s
loc(x0)) (15)

W u(x0) =
⋃
t≥0

ϕt (W u
loc(x0)) (16)
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The stable and unstable manifolds

Example: {
ẋ = −x − y2

ẏ = y + x2
(17)
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A few important observations

NB1: W s and W u are not solution curves (they are unions of curves).

NB2: If f is analytic, it follows that W s and W u are also analytic.

NB3: However, if f is analytic, it does NOT follow that all solution

curves are analytic.

NB4: If W s ∩W u 6= ∅, then W s ∩W u is a homoclinic manifold.

The property of the homoclinic manifold is that any initial condition on

the manifold ends up asymptotically for negative and positive time on the

same fixed point.
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Hyperbolicity and stability

Definition 3.2

If Re(λ) 6= 0 for all λ ∈ Spec(Df(x0)), then x0 is an hyperbolic fixed

point.

The stability of hyperbolic fixed points is fully determined by the

linearisation of the vector field around the fixed point:

Theorem 3.3

If Re(λ) < 0 for all λ ∈ Spec(Df(x0)), then x0 is asymptotically stable.

If there exists λ ∈ Spec(Df(x0)) s.t. Re(λ) > 0, then x0 is unstable.
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Necessity of hyperbolicity

Example: The nonlinearly damped harmonic oscillator

ẍ + εx2ẋ + x = 0 (18)
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3.3 The centre manifold



Tangency to the linear subspace

Recall the construction of the stable and unstable manifolds:

They are defined locally as the unique manifolds tangent to the stable

and unstable linear subspaces of the linearised equations.

Then the stable and unstable manifolds are defined as the evolution in

(negative and positive respectively) time of these local manifolds.

What happens if one of the eigenvalues has zero real part?

In this case, the linearised equations have a non-empty centre subspace.

NAIVE IDEA: Define W c
loc as the orbits tangent to E c .

The problem with this idea is that this set is not unique.
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Counter-example

(Counter)-example: {
ẋ = x2

ẏ = −y
(19)
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Centre manifold theorem

The previous example shows that there is a unique curve with the same

smoothness as the vector field. This is extended to the following

Theorem 3.4

Let ϕt : E ⊂ Rn → E be the flow of ẋ = f(x) with fixed point x0 where

f ∈ C r (E ). Suppose that the spectrum of Df(x0) has k eigenvalues with

zero real parts and (n − k) eigenvalues with non-zero real parts.

Then, there exists, in a neighbourhood of x0 a unique k-dimensional

manifold W c
loc(x0) that is

• tangent to E c at x0;

• of class C r ;

• invariant under the flow.
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Stable, unstable, and centre manifolds

We can combine the two manifold theorems.

Given a vector field f ∈ C r (E ), E ⊂ Rn, r ≥ 1.

A fixed point x0, and a set of eigenvalues Λ = Spec (Df(x0)).

We have

• ks eigenvalues λ ∈ Λ with Re(λ) < 0, with linear subspace E s ,

• ku eigenvalues λ ∈ Λ with Re(λ) > 0, with linear subspace E u,

• kc eigenvalues λ ∈ Λ with Re(λ) = 0, with linear subspace E c ,

with ks + ku + kc = n. Then there exist

• a unique ks -dimensional manifold W s
loc tangent to E s at x0,

• a unique ku-dimensional manifold W u
loc tangent to E u at x0,

• a unique kc -dimensional manifold W c
loc of class C r tangent to E c at

x0.
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Reduction to the centre manifold

Consider again a fixed point x0. If the unstable manifold is non-empty,

the fixed point is unstable.

The remaining case to study is when the unstable manifold is empty and

the system has both a non-empty stable and centre manifold.

Question: What is the stability of a fixed point in the presence of a

centre manifold.

Basic idea: The stability is governed by the dynamics on the centre

manifold.

18



Reduction to the centre manifold

Without loss of generality we assume that the original system has been

brought, by a linear transformation, to the canonical form:{
ẋ = Ax + f(x, y), x ∈ RdimW c

ẏ = By + g(x, y) y ∈ RdimW s (20)

where (x0, y0) = (0, 0) is a fixed point (i.e. f(0, 0) = 0 and g(0, 0) = 0)

and {
Re(λ) = 0 ∀ λ ∈ Spec(A),

Re(λ) < 0 ∀ λ ∈ Spec(B).
(21)

Note that we also assume that f and g are nonlinear at the origin (the

Jacobian ∂(f, g)/∂(x, y) vanishes identically).
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Reduction to the centre manifold

The main idea is to obtain a description of the centre manifold in terms

of the variables x. We posit:

y = h(x), (22)

and we look for a suitable function h(x).

It implies

ẏ = Dh(x)ẋ. (23)

Hence: {
ẋ = Ax + f(x,h(x)),

ẏ = Dh(x)ẋ = Bh(x) + g(x,h(x)).
(24)

The second equation is an equation for h(x):

Dh(x) (Ax + f(x,h(x))) = Bh(x) + g(x,h(x)). (25)
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Reduction to the centre manifold

Dh(x) (Ax + f(x,h(x))) = Bh(x) + g(x,h(x)). (26)

Close to the origin we can solve it by expanding h in Taylor series:

h =

|m|=d∑
m, |m|=2

hmxm +O(|x|d+1), (27)

and solving for the coefficients hm (using the fact that two polynomials

are equal for all values of x if their coefficients are the same).

Note: Here we use the multinomial formalism for a vector

x = (x1, . . . , xn) and postive integer vector m = (m1, . . . ,mn):

xm =
n∏

i=1

xmi

i (28)
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Reduction to the centre manifold

Once h is known, it can be inserted into the first set of equations and we

have

Theorem 3.5

The dynamics of (20) on its centre manifold W c at the origin is, for

(x, y) close enough to the origin, given by the dynamics of

˙̃x = Ax̃ + f(x̃,h(x̃)). (29)
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Reduction to the centre manifold

Example: {
ẋ = x2y − x5

ẏ = −y + x2
(30)
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Reduction to the centre manifold

Close enough to the origin, the dynamics in the full space is well

approximated by the dynamics on the centre manifold:

Theorem 3.6 (Shadowing)

Let (x0, y0) be close enough to the origin. Then for all (x(t), y(t)) based

on (x0, y0), there exists a solution x̃(t) such that{
x(t) = x̃(t) +O(e−γt),

y(t) = h(x̃(t)) +O(e−γt),
(31)

for some constant γ > 0.
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The method

A step-by-step method: We start with a system

ż = F(z), z ∈ Rp. (32)

Assume that it has a fixed point at z0 (i.e. F(z0) = 0).

Assume also that M = DF(z0) has n > 1 eigenvalues with zero real parts

and m > 1 eigenvalues with negative real parts (n + m = p).

Note: We assume that there is no eigenvalue with positive real part

(otherwise the fixed point is unstable).
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The method

Step 1: Reduction to a canonical form: Introduce the new variables

z = z0 + C z̃, (33)

where C is chosen such that

C−1MC =

[
A 0

0 B

]
. (34)

where the matrices A and B of respective dimension n and m are s.t.:{
Re(λ) = 0 ∀ λ ∈ Spec(A),

Re(λ) < 0 ∀ λ ∈ Spec(B).
(35)

After the change of variable, the new system in the variable z̃ = (x, y) is{
ẋ = Ax + f(x, y), x ∈ Rn

ẏ = By + g(x, y) y ∈ Rm
(36)

and (0, 0) is a fixed point.
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The method

Step 2: Reduction to the centre manifold: We want to solve

Dh(x) (Ax + f(x,h(x))) = Bh(x) + g(x,h(x)). (37)

Close to the origin we expand h in Taylor series:

h =

|m|=d∑
m, |m|=2

hmxm +O(|x|d+1), (38)

We first choose d = 2.

Inserting this expansion into (37) and expanding g in power series, we

obtain a linear set of equations for hm.

If there is a non-trivial solution to this set of linear equations, we have

the first nonlinear approximation of the centre-manifold.

Otherwise, we increase the value of d until we find a non-trivial solution.
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The method

Step 3: Dynamics on the centre manifold: We insert the first

non-zero approximation

h =

|m|=d∑
m, |m|=2

hmxm, (39)

into

ẋ = Ax + f(x,h(x)). (40)

and, to order d , we obtain the polynomial system:

ẋ = Ax +

|m|=d∑
m, |m|=2

fmxm. (41)

This is still a nonlinear system but of reduced dimension n < p.

The hope is that it is sufficiently simple to be analysed by elementary

means (direct integration, Lyapunov functions,...).

28



4. Mappings



Iterative maps

We are interested in iterative maps, characterised by discrete iterations of

the form

xn+1 = G(xn), (42)

where x ∈ E ⊂ Rm.

Equivalently, we write

x 7→ G(x), (43)

We note that

x1 = G(x0), x2 = G(x1) = G(2)(x0), . . . , xn = G(n)(x0). (44)

with G(n)(x0) = G(G(. . .G(x0))).

Two cases: Either G−1 exists and is uniquely defined.

Or, more generally, we can look at system for which only forward

dynamics is defined.
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4. Mappings

4.1 Linear maps



Linear maps

We start with the linear case:

xn+1 = Bxn, B ∈Mm(R), n ∈ Z+, x0 ∈ Rm. (45)

If 0 6∈ Spec(B), then B can be inverted and orbits are unique.

The point x0 is a fixed point for the system is a point that is mapped

onto itself:

x0 = G(x0), (46)

so for the linear case, it is a solution of

x0 = Bx0. (47)

We see that x0 = 0 is always a fixed point and we are interested in its

stability.
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Linear maps

The stability of x0 = 0 is given by the spectral properties of B.

Let {
λj = aj + ibj , λj ∈ Spec(B)

wj = uj + ivj , uj , vj ∈ Rm
(48)

where wj is a generalised eigenvector.

Then, we define, the stable, unstable, centre linear subspaces as

• E s = Span(uj , vj | j s.t. |λj | < 1) (stable linear subspace)

• E c = Span(uj , vj | j s.t. |λj | = 1) (centre linear subspace)

• E u = Span(uj , vj | j s.t. |λj | > 1) (unstable linear subspace)
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Linear maps

The stable linear subspace defines contraction mappings:

Let x0 ∈ E s then ∃α < 1, c > 0 such that

|xn| ≤ cαn|x0| (49)

NB: There is a natural correspondence between flows and maps.

Every linear flow defines a linear map.

Consider a linear flow with matrix A. Fix t and define B = etA, then

ϕt(xn) : xn → Bxn. (50)

However, the converse is not true (can you give a counter-example?).
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4. Mappings
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Stability

A fixed point for a mapping is a point x0 ∈ Rm, such that G(x0) = x0.

Definition 4.1

A fixed point x0 ∈ Rn is stable if ∀ε > 0, ∃δ > 0 such that ∀x ∈ Bδ(x0),

G(n)(x) ∈ Bε(x0) for all n ∈ Z+.

Definition 4.2

A fixed point x0 ∈ Rm is asymptotically stable if it is stable and ∃δ > 0

such that ∀x ∈ Bδ(x0)

G(n)(x) −−−→
n→∞

x0. (51)
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4. Mappings

4.3 Stable and unstable manifolds



Stable and unstable manifolds

Consider an iterative map xn+1 = G(xn), where G : E ⊂ Rm → E and

such that G−1 exists on the same domain.

We define, in a neighbourhood U of a fixed point x0, the local stable and

unstable manifolds.

If the linear stable manifold of the linearised system has dimension ns .

Then, there exists a ns -dimensional local stable manifold W s
loc, tangent to

stable linear subspace E s such that

W s
loc =

{
x ∈ U|G(n)(x)→ x0, n→∞; G(n)(x) ∈ U ∀n > 0

}
(52)
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Stable and unstable manifolds

Similarly If the linear unstable manifold of the linearised system has

dimension nu. Then there exists a nu-dimensional local unstable

manifold, tangent to unstable linear subspace such that

W u
loc =

{
x ∈ U|G(n)(x)→ x0, n→ −∞; G(n)(x) ∈ U ∀n > 0

}
(53)
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Stable and unstable manifolds

By extension, we define the stable and unstable manifold :

W s(x0) =
⋃
n≤0

Gn (W s
loc(x0)) (54)

W u(x0) =
⋃
n≥0

Gn (W u
loc(x0)) (55)

Note: Stable and unstable manifolds are not trajectories but union of

trajectories.
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Stable and unstable manifolds

Example: [
x

y

]
7−→

[
1 1

1 2

][
x

y

]
, (56)

where (x , y) ∈ T2 = R2/Z2.
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Periodic orbits

For a continuous dynamical system x = f(x), a periodic orbit Γ is a

closed curve in phase space E ⊂ Rm.

Let d(x, Γ) be the distance between a point x and Γ. Given a closed

curve we can define a neighbourhood of size δ as the set of points

Uδ(Γ) = {x ∈ E |d(x, Γ) < δ} (57)

Definition 5.1

A periodic orbit Γ is stable if ∀ε > 0, ∃δ > 0 and a neighbourhood Uδ(Γ)

such that ∀x ∈ Uδ, d(ϕt(x), Γ) < ε.
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From periodic orbits to maps

In a neighbourhood of a periodic orbit we can define the Poincaré map:

x 7→ P(x). (58)
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Stable and unstable manifolds

Example: {
ṙ = r(1− r2)

θ̇ = 0
(59)
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Extra reading material

Extra material from the following books

[S ] Strogatz, Nonlinear Dynamics and Chaos with Applications to

Physics, Biology, Chemistry and Engineering (Westview Press,

2000).

[D ] Drazin, Nonlinear Systems (Cambridge University Press,

Cambridge, 1992).

[P ] Perko, Differential Equations and Dynamical Systems (Second

edition, Springer, 1996).

3 Local Analysis

3.1 Stable manifold theorem. [P105]

3.2 Centre manifold. [P153]

3.3 Reduction to centre manifold [P153]

3.4 Mappings [S348]
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