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� Note: Unlike most courses, you are not required to do any problem (yes, you read this
correctly!). You are now in charge of the way you approach your own learning. It is up to you
to decide the problems you turn in. The following is a list of suggested problems for you
to do to make sure you understand the concepts covered in class. If you think the list is too
long, don’t do them all. If you think it is too short, I am happy to provide more. Problems
or sub-problems marked with a star* are meant to challenge you beyond the regular course.
As with other problems, it is up to you to decide if you want to try them. I suggest that you
give them a try and think about these problems as a way to gain a deeper understanding of
the material.
In addition, you will find a companion file with detailed solutions. You are free to ignore
these solutions, look at them, use them to check your own work, or to use them as hints if
you are stuck on a problem. For your own learning, it may be a good idea to work out all
the details for the solutions and write them as neatly as possible.

� Notations: In all the problems, we will use the following (standard) notation: The dot
over a symbol refers to the time derivative, so

ẋ ≡ dx

dt
. (1)

A vector in the n dimensional Euclidean space is represented in boldface x ≡ (x1, x2, . . . , xn)T.
Similarly, a vector field is f(x) ≡ (f1(x), f2(x), . . . , fn(x))T. By default, a vector is a column
vector, unless otherwise specified.

Matrices are indicated by uppercase. The Jacobian matrix Df associated with a vector
field f is the matrix of first derivatives

[Df ]ij =

[
∂fi
∂xj

]
. (2)

Each component of the Jacobian matrix is a function of x. Therefore, Df can be evaluated
on a solution x̄(t) which will be denoted

Df(x̄(t)) = Df |x=x̄(t) . (3)
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1 Linear Systems

� The goal of this section is to familiarise yourself with the basic notion of phase space, linear
sub-spaces, solution of linear systems, and geometry.

1.1 Linear subspaces: Consider the system ẋ = Ax where x ∈ R3 and

A =

 0 2 0
−2 0 0
2 0 6

 . (4)

Without solving the system, find the stable, unstable and center subspaces and sketch the
phase portrait.

1.2 Linear subspaces: Let A ∈Mn(R) be a semisimple matrix (i.e. a n× n matrix with
real coefficients that can be diagonalised) and let x = x(t) be a solution of

ẋ = Ax (5)

x0 = x(t0) (6)

Show that:

(i) If x0 ∈ Es, then limt→∞ x(t) = 0 and limt→−∞ |x(t)| =∞
(ii) If x0 ∈ Eu, then limt→∞ |x(t)| =∞ and limt→−∞ x(t) = 0

(iii) If x0 ∈ Ec, then ∃ m,M ∈ R such that ∀ t ∈ R:

m ≤ |x(t)| ≤M (7)

(iv) * Which of these properties hold if A is not semisimple? (prove or give a counter-
example)

1.3 *The variational equation and its adjoint: Consider the system ẋ = f(x) where
x ∈ Rn and f(x) is a C1 vector field. Let x̄ = x̄(t) be a particular solution and consider the
linear system obtained by looking at a nearby solution x = x̄(t) + εu:

u̇ = Df(x̄)u (8)

(i) Show that ˙̄x(t) is a solution of the linear system, and that it represents the tangent vector
along the orbit.
(ii) For planar flows (n = 2), use this property to give a complete solution of this system of
linear equations.

2 Nonlinear systems

� Here, we study simple nonlinear features of nonlinear systems, such as invariant sets,
homoclinic and heteroclinic orbits.

2.1 A heteroclinic orbit. A heteroclinic orbit is an orbit that connects two fixed points.
Find the value of α such that the system

ẋ = x− y, (9)

ẏ = −αx+ αxy, (10)

admits the first integral I = (y−2x+x2)e−2t. (A scalar function I = I(x, t) is a first integral
if İ = 0 on all trajectories.) Compute the fixed points and show that a branch of the level set
of this first integral is a heteroclinic orbit. Can you find a closed form solution of this orbit?
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2.2 Invariant set. The system

ẋ = −x (11)

ẏ = −y + x2 (12)

ż = z + x2 (13)

defines a flow ϕt : R3 → R3. Show that the set S =
{

(x, y, z) ∈ R3|z = −x2/3
}

is an
invariant set of this flow. Sketch this set in phase space and identify other interesting orbits
(such as fixed points).

2.3 Attracting set. The system

ẋ = −y + x(1− z2 − x2 − y2) (14)

ẏ = x+ y(1− z2 − x2 − y2) (15)

ż = 0 (16)

defines a flow ϕt : R3 → R3. Show that the union of the unit sphere with the portions of
the z-axis outside the sphere is an attracting set for this flow. Find its domain of attraction.
(Hint: rewrite the system in cylindrical coordinates).

2.4 Attracting set. Consider the system

ṙ = r(1− r) (17)

θ̇ = sin2 θ

2
, (18)

where (r, θ) are the usual polar coordinates of a point in the plane. Show that this system
has two fixed points. Show that the fixed point (x = 1, y = 0) is the ω-limit set of almost
all initial conditions. That is ϕt(x0) → (1, 0)) for all initial conditions x0 6= (0, 0). Despite
that, show that (1, 0) is not stable. Is it an attracting set? Is the unit circle an attracting
set? Find the domain of attraction (if any).

2.5 Simple pendulum. The equation for the simple pendulum is

ẍ+ sinx = 0, x ∈ R

Find the potential for this system and use it to identify important orbits. In particular
identify the fixed points and show that there exist heteroclinic orbits for this system. Sketch
the phase portrait. Show that the orbits contained within a symmetric pair of heteroclinic
orbits (called a heteroclinic cycle) form an invariant set. Is this an attracting set? (This
equation can be solved in terms of Elliptic integrals of the first kind, but in this case you are
asked to answer all these questions without solving the equation explicitly).

3 Linearisation

� One of the main tools of dynamical system is the linearisation of a nonlinear system close
to its fixed points. From Part A, you should be familiar with the basic ideas. These exercises
are meant as a refresher from last year.

3.1 A few warm-up problems. Consider the systems below. Find the fixed points and de-
termine their stability through linearisation whenever possible. For systems with parameters,
discuss stability with respect to the parameters

ẋ = 2x− 2xy (19)

ẏ = 2y − x2 + y2 (20)
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ẋ = −4y + 2xy − 8 (21)

ẏ = −x2 + 4y2 (22)

ẍ+ ε(x2 − 1)ẋ+ x = 0 (23)

3.2 Kolmogorov systems. Consider the two systems

ẋ = f(x, y) (24)

ẏ = g(x, y) (25)

and

ẋ = xf(x, y) (26)

ẏ = yg(x, y), (27)

where f and g are both C1 functions.
(i) Show that for the second system, the first positive quadrant (defined as the set
S = {(x, y) ∈ R2|x > 0, y > 0}) is an invariant set.
(ii) Show that if the first system has an exponentially stable or unstable fixed point in S of
the form (x0, y0) with x0 = y0, then the second one admits the same fixed point with the same
stability properties (a fixed point is exponentially stable (resp. unstable) if the real parts of
all its eigenvalues are strictly negative (resp. positive)). Is this property true for fixed points
in the other quadrants (assuming |x0| = |y0|)? (Prove or give a counter-example)
(iii)* Are these properties true for the similar problem in n dimensions. Formulate the
corresponding results.
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