C6.2/B2. Continuous Optimization

Problem Sheet 6

Please attempt Problems 1 and 3; time permitting, please also attempt Problem 6 (it will be marked if you attempt it, but it will not count towards your Sheet 6 mark). The other problems are optional.

1. Consider the problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{2}}-x_{1}-x_{2} \quad \text { subject to } \quad 1-x_{1}^{2}-x_{2}^{2}=0 \tag{1}
\end{equation*}
$$

(a) Use the first-order necessary optimality (KKT) conditions to solve this problem.
(b) Let $x(\mu)=\left(x_{1}(\mu), x_{2}(\mu)\right)$ be a local minimizer of the quadratic penalty function for (1). Show that $x_{1}(\mu)=x_{2}(\mu)$ and $2 x_{1}(\mu)^{3}-x_{1}(\mu)-\mu / 2=0$.
(c) Among the two solutions for $x(\mu)$, pick the one for which $x_{1}(\mu)>0$. Show that as $\mu \rightarrow 0$,

$$
x_{1}(\mu)=\frac{1}{\sqrt{2}}+a \mu+O\left(\mu^{2}\right)
$$

Find the constant a.
(d) Now consider the problem

$$
\begin{array}{ll}
& \min -x_{1}-x_{2} \\
\text { s.t. } & 1-x_{1}^{2}-x_{2}^{2}=0 \\
& x_{2}-x_{1}^{2} \geq 0
\end{array}
$$

Show how the penalty function may be modified to solve this problem. Show that there is a range of values of μ for which the minimisers of the two penalty functions agree.
2. Let $\|\cdot\|$ be the Euclidean norm. Consider the quartic penalty function

$$
\Phi(x, \mu)=f(x)+\frac{1}{4 \mu}\|c(x)\|^{4}
$$

for the equality-constrained minimization problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} f(x) \quad \text { subject to } \quad c(x)=0 \tag{2}
\end{equation*}
$$

where $f, c \in \mathcal{C}^{2}$. Suppose that

$$
y_{i}^{k}=-\frac{\left\|c\left(x^{k}\right)\right\|^{2} c_{i}\left(x^{k}\right)}{\mu_{k}}
$$

that

$$
\left\|\nabla_{x} \Phi\left(x^{k}, \mu_{k}\right)\right\| \leq \epsilon_{k}
$$

where ϵ_{k} converges to zero as $k \rightarrow \infty$, and that x^{k} converges to x^{*} for which the Jacobian $J\left(x^{*}\right)$ of the constraints c is full rank. Show that x^{*} satisfies the first-order necessary optimality conditions for the problem (2) and $\left\{y^{k}\right\}$ converges to the associated Lagrange multipliers y^{*}. (hint: use the proof of global convergence of the quadratic penalty method.)
3. Consider the problem

$$
\begin{align*}
& \quad \min -x_{1} x_{2} x_{3} \tag{3}\\
& \text { s.t. } \quad 72-x_{1}-2 x_{2}-2 x_{3}=0 .
\end{align*}
$$

(i) For $x^{*}=(241212)^{T}$ verify that there exists a Lagrange multiplier λ^{*} such that $\left(x^{*}, \lambda^{*}\right)$ is a KKT point.
(ii) Now let

$$
x(\mu):=\arg \min _{x \in \mathbb{R}^{2}} Q(x, \mu),
$$

where $Q(x, \mu)$ is the quadratic penalty function for (3). Verify that the explicit expression for $x(\mu)$ given by

$$
x_{1}(\mu)=2 x_{2}(\mu), \quad x_{2}(\mu)=x_{3}(\mu)=\frac{24}{1+\sqrt{1-8 \mu}}
$$

satisfies $\nabla_{x} Q(x(\mu), \mu)=0$, and verify that $x(\mu) \rightarrow x^{*}$ as $\mu \rightarrow 0$.
(iii) Let $\mu=1 / 9$. Find $x(\mu)$ and verify that $\nabla_{x x}^{2} Q(x(\mu), \mu)$ is positive definite, so that $x(\mu)$ is a local minimizer of $Q(x, \mu)$.
(iv) Show that $-c(x(\mu)) / \mu \rightarrow \lambda^{*}$, where c is the equality constraint function in (3).
4. (a) Show that the logarithmic barrier function for the problem of minimizing $1 /\left(1+x^{2}\right)$ subject to $x \geq 1$ is unbounded from below for all μ.

Comment: Thus the barrier function approach will not always work.
(b) Find the minimizer $x(\mu)$, and its related Lagrange multiplier estimate $\lambda(\mu)$, of the logarithmic barrier function for the problem of minimizing $\frac{1}{2} x^{2}$ subject to $x \geq 2 a$ where $a>0$. What is the rate of convergence of $x(\mu)$ to x_{*} as a function of μ ? And the rate of convergence of $\lambda(\mu)$ to λ_{*} as a function of μ ?

Comment: Problems with strictly complementary solutions (for which $\lambda_{i}^{*}>0$ whenever $c_{i}\left(x^{*}\right)=$ $0)$ generally have $x(\mu)-x_{*}=\mathcal{O}(\mu)$ and $\lambda(\mu)-\lambda_{*}=\mathcal{O}(\mu)$ as $\mu \rightarrow 0$.
(c) Find the minimizer $x(\mu)$, and its related Lagrange multiplier estimate $\lambda(\mu)$, of the logarithmic barrier function for the problem of minimizing $\frac{1}{2} x^{2}$ subject to $x \geq 0$. How do the errors $x(\mu)-x_{*}$ and $\lambda(\mu)-\lambda_{*}$ behave as a function of μ ?

Comment: Without strict complementarity, the errors $x(\mu)-x_{*}$ and $\lambda(x(\mu))-\lambda_{*}$ are generally larger than in the strictly complementary case.
5. Consider the linear programming problem

$$
\max _{\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}} y_{1}+\alpha y_{2} \quad \text { subject to } \quad\left\{\begin{array}{l}
y_{1}+y_{2} \leq 1,2 y_{1}-y_{2} \leq 2 \tag{4}\\
y_{1} \geq-1, y_{2} \geq-1
\end{array}\right.
$$

where $\alpha \in[0,1]$. Graphically or otherwise, find the solution set of problem (4) as a function of $\alpha \in[0,1]$.

- Possibly by re-writing (4) or directly, write down the KKT conditions for (4) and its dual. Then write down the perturbed (primal-dual) system of optimality conditions of (4) (which are also the equations of the primal-dual central path).
- Now let $\alpha:=1$ in (4). Show that as $\mu \rightarrow 0$, the points $\left(y_{1}(\mu), y_{2}(\mu)\right)$ of the central path converge to the solution of the following optimization problem

$$
\begin{equation*}
\min _{\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}}-\log \left(2-2 y_{1}+y_{2}\right)-\log \left(1+y_{1}\right)-\log \left(1+y_{2}\right) \quad \text { subject to } \quad y_{1}+y_{2}=1 \tag{5}
\end{equation*}
$$

(hint: you would have to solve (5) and justify it has a unique solution; then use the central path equations to show the limit).
6. Apply the augmented Lagrangian function to minimize

$$
f(x)=2 x_{1}^{2}-x_{2}^{2} \quad \text { subject to } \quad c(x)=x_{1}+x_{2}-1=0
$$

The estimate of the Lagrange multiplier of the constraint is revised by the formula

$$
\lambda^{k+1}=\lambda^{k}-\frac{c\left(x\left(\lambda^{k}\right)\right)}{\sigma}
$$

where $x\left(\lambda^{k}\right)$ is a minimizer of the augmented Lagrangian function. Show that the sequence of values of λ^{k} converges if $\sigma>0$ is sufficiently small. Find the value of σ such that each iteration reduces the difference between λ^{k} and the optimal multiplier λ^{*} by a factor of 10 .
7. Suppose that an algorithm for unconstrained minimization fails if the ratio of the largest to the smallest eigenvalue of the Hessian matrix exceeds 10^{10} at the required solution. It is used to find an approximate solution of the problem

$$
f(x)=x_{1}^{2}+2 x_{2}^{2} \quad \text { subject to } \quad x_{1}+x_{2}-1 \geq 0
$$

in two ways. Specifically, the functions

$$
x_{1}^{2}+2 x_{2}^{2}+r\left(x_{1}+x_{2}-1\right)^{2} \quad \text { and } \quad x_{1}^{2}+2 x_{2}^{2}-r \log \left(x_{1}+x_{2}-1\right)
$$

are minimized over \mathbb{R}^{2} using a large and a small value of r, respectively. Estimate the accuracy of the approximate solution in each case when r is close to a value that causes failure.

