
C6.2/B2. Continuous Optimization

Problem Sheet 6

Please attempt Problems 1 and 3; time permitting, please also attempt Problem 6 (it will
be marked if you attempt it, but it will not count towards your Sheet 6 mark). The other
problems are optional.

1. Consider the problem
min
x∈R2

−x1 − x2 subject to 1− x2
1 − x2

2 = 0. (1)

(a) Use the first-order necessary optimality (KKT) conditions to solve this problem.

(b) Let x(µ) = (x1(µ), x2(µ)) be a local minimizer of the quadratic penalty function for (1). Show
that x1(µ) = x2(µ) and 2x1(µ)

3 − x1(µ)− µ/2 = 0.

(c) Among the two solutions for x(µ), pick the one for which x1(µ) > 0. Show that as µ → 0,

x1(µ) =
1√
2
+ aµ+O(µ2).

Find the constant a.

(d) Now consider the problem

min− x1 − x2

s.t. 1− x2
1 − x2

2 = 0,

x2 − x2
1 ≥ 0.

Show how the penalty function may be modified to solve this problem. Show that there is a
range of values of µ for which the minimisers of the two penalty functions agree.

2. Let ‖ · ‖ be the Euclidean norm. Consider the quartic penalty function

Φ(x, µ) = f(x) +
1

4µ
‖c(x)‖4

for the equality-constrained minimization problem

min
x∈Rn

f(x) subject to c(x) = 0, (2)

where f , c ∈ C2. Suppose that

yki = −‖c(xk)‖2ci(xk)

µk

,

that
‖∇xΦ(x

k, µk)‖ ≤ ǫk,

where ǫk converges to zero as k → ∞, and that xk converges to x∗ for which the Jacobian J(x∗) of
the constraints c is full rank. Show that x∗ satisfies the first-order necessary optimality conditions
for the problem (2) and {yk} converges to the associated Lagrange multipliers y∗. (hint: use the
proof of global convergence of the quadratic penalty method.)
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3. Consider the problem

min− x1x2x3 (3)

s.t. 72− x1 − 2x2 − 2x3 = 0.

(i) For x∗ = (24 12 12)T verify that there exists a Lagrange multiplier λ∗ such that (x∗, λ∗) is a
KKT point.

(ii) Now let
x(µ) := arg min

x∈R2

Q(x, µ),

where Q(x, µ) is the quadratic penalty function for (3). Verify that the explicit expression for
x(µ) given by

x1(µ) = 2x2(µ), x2(µ) = x3(µ) =
24

1 +
√
1− 8µ

satisfies ∇xQ(x(µ), µ) = 0, and verify that x(µ) → x∗ as µ → 0.

(iii) Let µ = 1/9. Find x(µ) and verify that ∇2
xxQ(x(µ), µ) is positive definite, so that x(µ) is a

local minimizer of Q(x, µ).

(iv) Show that −c(x(µ))/µ → λ∗, where c is the equality constraint function in (3).

4. (a) Show that the logarithmic barrier function for the problem of minimizing 1/(1 + x2) subject
to x ≥ 1 is unbounded from below for all µ.

Comment: Thus the barrier function approach will not always work.

(b) Find the minimizer x(µ), and its related Lagrange multiplier estimate λ(µ), of the logarithmic
barrier function for the problem of minimizing 1

2x
2 subject to x ≥ 2a where a > 0. What is

the rate of convergence of x(µ) to x∗ as a function of µ? And the rate of convergence of λ(µ)
to λ∗ as a function of µ?

Comment: Problems with strictly complementary solutions (for which λ∗

i > 0 whenever ci(x
∗) =

0) generally have x(µ)− x∗ = O(µ) and λ(µ)− λ∗ = O(µ) as µ → 0.

(c) Find the minimizer x(µ), and its related Lagrange multiplier estimate λ(µ), of the logarith-
mic barrier function for the problem of minimizing 1

2x
2 subject to x ≥ 0. How do the errors

x(µ)− x∗ and λ(µ)− λ∗ behave as a function of µ?

Comment: Without strict complementarity, the errors x(µ)−x∗ and λ(x(µ))−λ∗ are generally
larger than in the strictly complementary case.

5. Consider the linear programming problem

max
(y1,y2)∈R2

y1 + αy2 subject to

{

y1 + y2 ≤ 1, 2y1 − y2 ≤ 2,
y1 ≥ −1, y2 ≥ −1,

(4)

where α ∈ [0, 1]. Graphically or otherwise, find the solution set of problem (4) as a function of
α ∈ [0, 1].

• Possibly by re-writing (4) or directly, write down the KKT conditions for (4) and its dual.
Then write down the perturbed (primal-dual) system of optimality conditions of (4) (which
are also the equations of the primal-dual central path).

• Now let α := 1 in (4). Show that as µ → 0, the points (y1(µ), y2(µ)) of the central path
converge to the solution of the following optimization problem

min
(y1,y2)∈R2

− log (2− 2y1 + y2)− log (1 + y1)− log (1 + y2) subject to y1 + y2 = 1. (5)

(hint: you would have to solve (5) and justify it has a unique solution; then use the central
path equations to show the limit).
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6. Apply the augmented Lagrangian function to minimize

f(x) = 2x2
1 − x2

2 subject to c(x) = x1 + x2 − 1 = 0.

The estimate of the Lagrange multiplier of the constraint is revised by the formula

λk+1 = λk − c(x(λk))

σ

where x(λk) is a minimizer of the augmented Lagrangian function. Show that the sequence of values
of λk converges if σ > 0 is sufficiently small. Find the value of σ such that each iteration reduces
the difference between λk and the optimal multiplier λ∗ by a factor of 10.

7. Suppose that an algorithm for unconstrained minimization fails if the ratio of the largest to the
smallest eigenvalue of the Hessian matrix exceeds 1010 at the required solution. It is used to find
an approximate solution of the problem

f(x) = x2
1 + 2x2

2 subject to x1 + x2 − 1 ≥ 0

in two ways. Specifically, the functions

x2
1 + 2x2

2 + r(x1 + x2 − 1)2 and x2
1 + 2x2

2 − r log(x1 + x2 − 1)

are minimized over R2 using a large and a small value of r, respectively. Estimate the accuracy of
the approximate solution in each case when r is close to a value that causes failure.
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