Modular Forms

Problem Sheet 2

HT 2018

- 1. For any $\Gamma \leq SL_2(\mathbb{Z})$ of finite index show that the modular curve X_{Γ} has only finitely many cusps. Show that the width of each cusp is finite.
- 2. Compute the indices $[SL_2(\mathbb{Z}):\Gamma_1(N)]$ and $[SL_2(\mathbb{Z}):\Gamma_0(N)]$, and thus also $[PSL_2(\mathbb{Z}):\overline{\Gamma_1(N)}]$ and $[PSL_2(\mathbb{Z}):\overline{\Gamma_0(N)}]]$.

[Hint: Note $\Gamma(N) \leq \Gamma_1(N) \leq \Gamma_0(N) \leq \operatorname{SL}_2(\mathbb{Z})$ and compute $[\Gamma_1(N) : \Gamma(N)]$ by constructing a suitable homomorphism $\Gamma_1(N) \to \mathbb{Z}/(N)$ etc.]

- 3. Let *p* be prime.
 - (a) Show that the cusps for the congruence subgroup $\Gamma_0(p)$ are the classes of 0 and ∞ . Find the width of each cusp and a generator for its stabiliser.
 - (b) Prove that (the linear fractional transformations attached to the matrices)

$$\left\{ \left(\begin{array}{cc} 1 & 0 \\ kp & 1 \end{array} \right) : 0 \le k \le p-1 \right\}$$

is a complete set of coset representatives for $\overline{\Gamma_0(p^2)}$ in $\overline{\Gamma_0(p)}$. Show that $\Gamma_0(p^2)$ has p+1 cusps: the classes of $0, \infty$ and 1/kp for $k=1, \cdots, p-1$.

- 4. Let $X_0(3) := \mathfrak{H}^*/\Gamma_0(3)$ be the compact Riemann surface associated to the congruence subgroup $\Gamma_0(3)$. Draw a fundamental domain $D_{\Gamma_0(3)}$ for $\Gamma_0(3)$, and define explicit maps giving the local coordinate around each cusp and elliptic point. Draw a triangulation of $D_{\Gamma_0(3)}$, and hence by identifying appropriate edges one for $X_0(3)$. From your triangulation of $X_0(3)$ compute its genus.
- 5. Write $X_0(N)$ and $X_1(N)$ for the compact Riemann surfaces associated to the groups $\Gamma_0(N)$ and $\Gamma_1(N)$, respectively.
 - (a) Prove that (the linear fractional transformations attached to the matrices)

$$\left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} -2 & 1 \\ -5 & 2 \end{array}\right) \right\}$$

is a complete set of coset representatives for $\overline{\Gamma_1(5)}$ in $\overline{\Gamma_0(5)}$. Show that $X_1(5)$ has 4 cusps: the orbits of $0, \frac{2}{5}, \frac{1}{2}, \infty$. For each cusp find the width of the cusp and a generator for its stabiliser.

- (b) Show that $X_1(5)$ has genus zero. [Recall in Sheet 1 we already showed that $X_1(5)$ has no elliptic points.]
- (c) Show that $\Gamma_0(5)$ has no elliptic points of order 3, and 2 elliptic points of order 2. [*Hint: Consider coset representatives for* $\Gamma_0(5)$ *in* $PSL_2(\mathbb{Z})$.]
- (d) Prove that $X_0(5)$ has genus zero. [More generally $X_0(p)$ has genus (p-5)/12 when $p \equiv 5 \mod 12$. Can you see why?]