Modular Forms

Problem Sheet 2

HT 2018

1. For any $\Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$ of finite index show that the modular curve X_{Γ} has only finitely many cusps. Show that the width of each cusp is finite.
2. Compute the indices $\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma_{1}(N)\right]$ and $\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma_{0}(N)\right]$, and thus also $\left[\mathrm{PSL}_{2}(\mathbb{Z}): \overline{\Gamma_{1}(N)}\right]$ and $\left.\left[\mathrm{PSL}_{2}(\mathbb{Z}): \overline{\Gamma_{0}(N)}\right]\right]$.
[Hint: Note $\Gamma(N) \unlhd \Gamma_{1}(N) \unlhd \Gamma_{0}(N) \leq \mathrm{SL}_{2}(\mathbb{Z})$ and compute $\left[\Gamma_{1}(N): \Gamma(N)\right.$] by constructing a suitable homomorphism $\Gamma_{1}(N) \rightarrow \mathbb{Z} /(N)$ etc.]
3. Let p be prime.
(a) Show that the cusps for the congruence subgroup $\Gamma_{0}(p)$ are the classes of 0 and ∞. Find the width of each cusp and a generator for its stabiliser.
(b) Prove that (the linear fractional transformations attached to the matrices)

$$
\left\{\left(\begin{array}{ll}
1 & 0 \\
k p & 1
\end{array}\right): 0 \leq k \leq p-1\right\}
$$

is a complete set of coset representatives for $\overline{\Gamma_{0}\left(p^{2}\right)}$ in $\overline{\Gamma_{0}(p)}$. Show that $\Gamma_{0}\left(p^{2}\right)$ has $p+1$ cusps: the classes of $0, \infty$ and $1 / k p$ for $k=1, \cdots, p-1$.
4. Let $X_{0}(3):=\mathfrak{H}^{\star} / \Gamma_{0}(3)$ be the compact Riemann surface associated to the congruence subgroup Γ_{0} (3). Draw a fundamental domain $D_{\Gamma_{0}(3)}$ for $\Gamma_{0}(3)$, and define explicit maps giving the local coordinate around each cusp and elliptic point. Draw a triangulation of $D_{\Gamma_{0}(3)}$, and hence by identifying appropriate edges one for $X_{0}(3)$. From your triangulation of $X_{0}(3)$ compute its genus.
5. Write $X_{0}(N)$ and $X_{1}(N)$ for the compact Riemann surfaces associated to the groups $\Gamma_{0}(N)$ and $\Gamma_{1}(N)$, respectively.
(a) Prove that (the linear fractional transformations attached to the matrices)

$$
\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
-2 & 1 \\
-5 & 2
\end{array}\right)\right\}
$$

is a complete set of coset representatives for $\overline{\Gamma_{1}(5)}$ in $\overline{\Gamma_{0}(5)}$. Show that $X_{1}(5)$ has 4 cusps: the orbits of $0, \frac{2}{5}, \frac{1}{2}, \infty$. For each cusp find the width of the cusp and a generator for its stabiliser.
(b) Show that X_{1} (5) has genus zero.
[Recall in Sheet 1 we already showed that $X_{1}(5)$ has no elliptic points.]
(c) Show that $\Gamma_{0}(5)$ has no elliptic points of order 3, and 2 elliptic points of order 2. [Hint: Consider coset representatives for $\Gamma_{0}(5)$ in $\mathrm{PSL}_{2}(\mathbb{Z})$.]
(d) Prove that $X_{0}(5)$ has genus zero.
[More generally $X_{0}(p)$ has genus $(p-5) / 12$ when $p \equiv 5 \bmod 12$. Can you see why?]

