Quantum Field Theory

Warm-up exercises

1. Consider the classical Lagrangian of a particle of mass m and charge q, moving in an electromagnetic field

$$
\begin{equation*}
\mathcal{L}=\frac{m}{2}\left(\partial_{t} x^{i}\right)^{2}+q A_{i}(x) \partial_{t} x^{i}-q \phi(x) \tag{1}
\end{equation*}
$$

where $\phi(x)$ is the electric potential and $A_{i}(x)$ is the magnetic potential.
(a) Find the canonical momentum conjugate to the coordinate x_{i}.
(b) Derive the equations of motion corresponding to this Lagrangian.
(c) Find the Hamiltonian of the system.

Compare your results to a free particle case.
2. Consider the Hamiltonian of a quantum harmonic oscillator:

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+\frac{m \omega^{2} x^{2}}{2} . \tag{2}
\end{equation*}
$$

(a) Diagonalise the Hamiltonian by introducing ladder operators.
(b) Calculate the expectation values of the number operator $N \sim a^{\dagger} a$. Calculate the expectation values of the x and p operators for a general state $|n\rangle$.
(c) Evaluate the variances $\Delta x, \Delta p$ and ΔN in the state $|n\rangle$ and use them to determine the Heisenberg uncertainty of $|n\rangle$.
(d) Show that the coherent state

$$
\begin{equation*}
|\alpha\rangle=e^{\alpha p}|0\rangle \tag{3}
\end{equation*}
$$

is an eigenstate of the annihilation operator.
(e) Calculate the time-dependent expectation values of x, p and N in the coherent state: $\langle\alpha| x(t)|\alpha\rangle,\langle\alpha| p(t)|\alpha\rangle$ and $\langle\alpha| N(t)|\alpha\rangle$. Find the corresponding variances to determine the uncertainty of the state $|\alpha\rangle$.
3. Consider the following action for a relativistic point particle

$$
\begin{equation*}
S=-\alpha \int d s=-\alpha \int \sqrt{\eta_{\mu \nu} \frac{\partial X^{\mu}}{\partial \tau} \frac{\partial X^{\nu}}{\partial \tau}} d \tau \tag{4}
\end{equation*}
$$

where τ parametrises the worldline of the particle $X^{\mu}(\tau)$.
(a) Show that the action is invariant under Poincaré transformations.
(b) Show that the action is invariant under reparametrisation of the worldline time $\tau \rightarrow \tau^{\prime}(\tau)$.
(c) Show that

$$
\begin{equation*}
p^{\mu}=-\frac{\alpha \dot{X}^{\mu}}{\sqrt{\eta_{\nu \rho} \dot{X}^{\nu} \dot{X}^{\rho}}} . \tag{5}
\end{equation*}
$$

(d) Parametrise the path by the time coordinate $t=x^{0}$ and take the non-relativistic limit $\left|\partial_{0} x^{i}\right| \ll 1$ to determine the value of the constant α.

