PNA - Problem Sheet 2

Exercise 1

Interpolation with Splines

- Implement the function [coNat] = natural_spline_coeffs(x,y,p) that returns the matrix of coefficients of a natural spline of degree p, where x is the vector of interpolation nodes, and $y=f(x)$. The matrix coNat should be such that row i gives the spline coefficients of interval $\left[x_{i-1}, x_{i}\right]$ in descending powers of x, e.g.

$$
\left[\begin{array}{llll}
a_{i} & b_{i} & c_{i} & d_{i}
\end{array}\right] \Leftrightarrow a_{i} x^{3}+b_{i} x^{2}+c_{i} x+d_{i} .
$$

- Implement the function [coPer] = periodic_spline_coeffs (x,y,p) that returns the coefficients of a periodic spline of degree p in the same matrix format.
- Sample the function

$$
\begin{equation*}
f(x)=\sin (x)+\cos ^{2}(x) \tag{1}
\end{equation*}
$$

over the interval $[0,4 \pi]$. Plot this function along with both its natural spline and periodic spline interpolants, for different values of p.

Exercise 2

Least Squares Interpolation We consider 1e4 equispaced samplings of the function

$$
\begin{equation*}
f(x)=e^{-x / 10} \sin (8 x) \cos (7 x)+\varepsilon, \tag{2}
\end{equation*}
$$

where ε is some random noise (use noise $=@(x) \quad 0.2 * r a n d(\operatorname{size}(x))-0.1 ;$)

- Consider a grid $\left\{t_{i}=i h\right\}_{i=0}^{100}$ with $h=2 \pi / 100$. We call space of piecewiselinear functions the vector space spanned by the basis functions

$$
\left\{b_{i}(x):=\max \left(1-\left|x-c_{i}\right| / h, 0\right)\right\}_{i=0}^{100}
$$

Compute and plot the piecewise-linear least-squares interpolant of 2 the interval $[0,2 \pi]$ (for plotting, you may be interested in the Matlabfunction interp1.

- Compute and plot the $p^{\text {th }}$ degree polynomial least-square interpolant of (2) using a monomial basis $\left\{x^{n}\right\}_{0 \leq n \leq p}$, for $p=1,11,21, \ldots, 81$. Do this with your own implementation (using backslash and/or qr) and compare your solutions to those of the Matlab-function polyfit.
- Challenge: Find the least-square interpolant of the vector field

$$
\begin{equation*}
\mathbf{f}(x, y)=[\sin (x) \cos (y), \sin (y) \cos (x)]^{\mathrm{T}} \tag{3}
\end{equation*}
$$

for $(x, y) \in[0,2 \pi] \times[0,2 \pi]$. Use a multivariate monomial basis $\left\{x^{n} y^{m}\right\}_{0 \leq n, m \leq 3}$ over (21×21) interpolating points, and plot the results using quiver.

