## PNA - Problem Sheet 2

## Exercise 1

## Interpolation with Splines

• Implement the function [coNat] = natural\_spline\_coeffs(x,y,p) that returns the matrix of coefficients of a natural spline of degree p, where x is the vector of interpolation nodes, and y = f(x). The matrix coNat should be such that row i gives the spline coefficients of interval  $[x_{i-1}, x_i]$  in descending powers of x, e.g.

$$\begin{bmatrix} a_i & b_i & c_i & d_i \end{bmatrix} \iff a_i x^3 + b_i x^2 + c_i x + d_i.$$

- Implement the function [coPer] = periodic\_spline\_coeffs(x,y,p) that returns the coefficients of a *periodic* spline of degree p in the same matrix format.
- Sample the function

$$f(x) = \sin(x) + \cos^2(x) \tag{1}$$

over the interval  $[0, 4\pi]$ . Plot this function along with both its *natural* spline and *periodic* spline interpolants, for different values of p.

## Exercise 2

**Least Squares Interpolation** We consider 1e4 equispaced samplings of the function

$$f(x) = e^{-x/10}\sin(8x)\cos(7x) + \varepsilon, \qquad (2)$$

where  $\varepsilon$  is some random noise (use noise = Q(x) = 0.2\*rand(size(x))-0.1;)

• Consider a grid  $\{t_i = ih\}_{i=0}^{100}$  with  $h = 2\pi/100$ . We call space of piecewise-linear functions the vector space spanned by the basis functions

$${b_i(x) := \max(1 - |x - c_i|/h, 0)}_{i=0}^{100}$$

Compute and plot the piecewise-linear least-squares interpolant of (2) over the interval  $[0, 2\pi]$  (for plotting, you may be interested in the MATLAB-function interp1.

- Compute and plot the  $p^{\text{th}}$  degree polynomial least-square interpolant of (2) using a monomial basis  $\{x^n\}_{0 \leq n \leq p}$ , for  $p = 1, 11, 21, \ldots, 81$ . Do this with your own implementation (using backslash and/or qr) and compare your solutions to those of the MATLAB-function polyfit.
- Challenge: Find the least-square interpolant of the vector field

$$\mathbf{f}(x,y) = [\sin(x)\cos(y), \sin(y)\cos(x)]^{\mathrm{T}}$$
(3)

for  $(x,y) \in [0,2\pi] \times [0,2\pi]$ . Use a multivariate monomial basis  $\{x^n y^m\}_{0 \le n,m \le 3}$  over  $(21 \times 21)$  interpolating points, and plot the results using quiver.