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1 Stationary values of integrals

This course on the Calculus of Variations is a doorway to modern applied math-
ematics and theoretical physics. For examination purposes you can treat it as a
comparatively self-contained and straightforward topic, but that is not its only
purpose. The central point of the course is to show how more abstract and non-
obvious ideas begin to play a part in applied mathematics and fundamental physi-
cal theory, a development which will be taken much further in the Part B Classical
Mechanics course.

As mathematics, this has a history in which the great figures of Euler, Lagrange,
and Hamilton played a notable part in the 18th and 19th centuries. Although
stimulated by physics, they created quite new ideas in mathematics which turned
out to be vital in the 20th century formulation of quantum mechanics and relativ-
ity.

To start off the course, however, I shall go back even further, to antiquity. One of
the simplest ideas in physics is that light travels in straight lines. This observation
gains much greater power when put in the following way: light travels in a straight
line because a straight line is the shortest distance between two points.

This may sound a trivial reformulation but it remains one of the basic ideas in
Einstein’s general theory of relativity and is strongly bound up with the modern
understanding of light in terms of quantum electrodynamics. So it should be taken
seriously!

Even in antiquity, this principle was seen as having a non-trivial application to the
law of reflection.

∗andrew.hodges@wadh.ox.ac.uk

1



Figure 1: The shortest path from A to B

The ‘shortest path’ criterion leads to a rule that the angle of incidence equals the
angle of reflection. Further deductions (the optical properties of foci in conics, for
instance), are far from obvious.

Notice that we have deduced a local rule about what happens at one point from
a global criterion — variation over all possible paths. This is the basic idea of
variational calculus that we shall generalise considerably and apply to a wide
range of problems.

A slightly more advanced problem arises in considering how to combine running
and swimming so as to reach a point on the opposite side of a river in the shortest
time.

Figure 2: The biathlon problem
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The problem is obviously soluble by considering the time taken a function of the
variable yP (we shall assume that given the position of P , the paths AP and PB
must be straight lines.)

We have that at the optimum value of yP :

d

dyP

(√
(xA − xP )2 + (yA − yP )2

c1
+

√
(xB − xP )2 + (yB − yP )2

c2

)
= 0 .

so that

(yA − yP )

c1
√

(xA − xP )2 + (yA − yP )2
=

(yP − yB)

c2
√

(xB − xP )2 + (yB − yP )2
.

So the optimum position of P is such that the angles ψ1, ψ2 satisfy:

sinψ1

c1
=

sinψ2

c2
, (1)

which you may recognise as Snell’s Law governing the refraction of light in its
passage from one medium to another, provided that the observed refractive index
of the medium is identified with the inverse of speed. Fermat observed that Snell’s
Law follows from such a least-time principle, although it was not until the 20th
century that such a principle could be understood in terms of quantum physics
and relativity.

We can now solve a slightly more general problem. Suppose that someone is
running on a muddy field x > 0 where speed is proportional to c(x), where c(x)
is some differentiable function. Equivalently, we have an optical medium with a
continuously varying refractive index proportional to (c(x))−1. What then is the
shortest-time path from one point to another?

We can consider this in the following way. Divide up the muddy field into strips
of thickness δx, so that in the strip from x to x+ δx, the speed is a constant given
by c(x).

Then repeatedly applying Snell’s law from equation (1), it must be true that

sinψ

c
is a constant of the path. (2)

Now take the limit as δx→ 0, and this law will remain true.

As an example of special interest, take the case where c(x) is linear in x, in fact
suppose c(x) = x. Then we have

sinψ

x
= constant , (3)

3



A bit of elementary calculus: The angle ψ that the path makes to the x-axis is
such that tanψ = dy

dx
= y′. We also have arc-length s defined by ds2 = dx2 + dy2.

Putting these together, we have

sinψ =
y′√

1 + y′2
=

dy

ds
, cosψ =

1√
1 + y′2

=
dx

ds
.

It is also useful to derive from these that

κ =
dψ

ds
=

y′′

(1 + y′2)3/2

where κ is the curvature of the path, defined in a way that is invariant under
rotation of the the axes.

So we can translate the statement of Snell’s law into a statement that y = y(x) is
a solution of

y′√
1 + y′2

= Ax (4)

If A = 0 this gives the lines y = constant, and for A 6= 0, we obtain

x2 + (y − y0)2 = A−2 (5)

i.e. the circles with centres on the line x = 0. This completely solves the problem
of finding the runner’s shortest-time path between any two points on the field. We
shall return later to this remarkable geometrical fact.

Clearly we could now consider the even more general problem that arises when
c = c(x, y). But this is left to the worksheet to explore. Instead, we will take a
different point of view. We reformulate the problem we have been studying in the
following much more general terms.

We will think of the time taken to cover the path as a functional of the path
taken. That is, it is a function on the space of possible paths, which are themselves
functions.

Specifically, in the problem we have been considering, we can define a functional
I[y] by:

I[y] =

∫ b

a

√
1 + y′2

c(x)
dx , (6)

and then we ask for the least value of I[y] as y(x) varies over all possible paths.
The function y(x) which achieves this least value is called a extremal.

In this case it is obvious that we are looking at minimum values of an integral,
but in general this is too restrictive. We use the term stationary value. This
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will mean that (in a sense to be defined) the first derivative of I[y] vanishes. It
will allow for a range of possibilities (a mimimum, or maximum, or something
equivalent to saddles, or more complicated situations in which higher derivatives
also vanish).

We now regard this as a special case of a far more general problem in which we
look for stationary values of

I[y] =

∫ b

a

F (x, y, y′) dx . (7)

for a general F (x, y, y′).

The remarkable discovery (due principally to Euler and Lagrange) is that there is a
single method which deals with all such questions. It can be extensively generalised
further (to many dimensions, many derivatives, and constraints).

Even more remarkably, problems which don’t look at all like least-time problems
can usefully be reformulated in this way. Dynamical systems have trajectories
which can be considered as being solutions to such an stationary-value problems,
not of shortest distance or shortest time but of least action, as will be explained.
One reason that this is a very useful description of physical problems is that the
concept of the stationary value is independent of the coordinates used to describe
it.

Theoretical physics today is rooted in the idea of stationary values of functionals
of fields. The current Standard Model of particles and forces is defined by writing
down a least action principle, as also are string and superstring theories. So part
of the motivation for this course comes from the deepest properties of the physical
world, properties which only come to light through the transforming power of
creative mathematics.
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2 The Euler-Lagrange equation

We now consider the general problem of finding the y(x) which gives a stationary
value to the functional

I[y] =

∫ b

a

F (x, y, y′) dx . (8)

From a completely rigorous point of view, we would have to specify the exact
(huge) class of functions y(x) over which the functional is taken (differentiable,
differentiable with continuous derivative, differentiable to every order?), and we
would also need some concept of what it means to vary a function to a ‘nearby’
function, by putting a metric or at least a topology on the class of functions.

In this course we will take a more elementary point of view and assume that all the
functions we use have sufficient differentiability for the problem in hand. (There
is a Part C course which develops the more rigorous analysis.)

The one point that we will make rigorous, to help justify this rather cavalier
approach, is the idea of a ‘bump function’.

Suppose we define B1(x) as vanishing outside (0, 1) and taking the value (x(1−x))2

on (0, 1). Then B1(x) is continuously differentiable everywhere. Similarly we can
define a Bn(x) that is n times continuously differentiable everywhere.

Note also that the function

y = 0, x ≤ 0, y = exp(−x−1), x > 0

is differentiable everywhere to all orders. (The only non-trivial point is that all
derivatives vanish at x = 0). Hence the function defined by

B∞(x) = 0 outside (0, 1), B∞(x) = exp(−(x(1− x))−1) on (0, 1) (9)

is differentiable to all orders everywhere and is non-zero only on (0, 1). By an
obvious extension we can define ‘bump functions’ on any interval.

So a function can always be varied within any interval (by adding on a bump
function) without affecting its differentiability, and it doesn’t matter what degree
of differentiability we are talking about. (Note: the situation would be entirely
different if we were thinking about holomorphic functions.)

The test function lemma

Now suppose that we are given that a continuous y(x) on an interval [a, b] has the

property that
∫ b
a
y(x)η(x)dx = 0 for all ‘test functions’ η(x) belonging to some

class of differentiable functions. Then y(x) must vanish everywhere on [a, b].
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For a proof by contradiction, suppose w.l.o.g that y(p) > 0 for some p ∈ [a, b].
Then we must have y(x) > 0 everywhere on some interval [c, d] containing p (this
follows from properties of continuity.) Take a bump function b(x) on [c, d]. Then
given any test function η(x), we know that η(x) + b(x) is an equally good test
function. So from the hypothesis,∫ b

a

y(x)η(x)dx = 0 =

∫ b

a

y(x)(η(x) + b(x))dx , (10)

whence
∫ d
c
y(x)b(x)dx = 0, impossible as y(x)b(x) is positive and continuous in

this interval.

Notice that this test function lemma doesn’t depend on the exact class of differ-
entiability. In what follows we shall use it freely.

Now we embark on the analysis of the stationary values of the functional I(y).
What does it mean to vary y(x) by some δy(x)? This seems impossibly ambitious
— there are uncountably many ways in which we could do this variation!

The key step is not to worry about these uncountably many possibilities, but
instead to focus on a single one-dimensional family of variations,

y(x)→ y(x) + αη(x) , (11)

where α is a real parameter and η(x) is some particular differentiable function.
This allows us to consider

I[y + αη] =

∫ b

a

F (x, y + αη, y′ + αη′) dx . (12)

By applying the chain rule, we can write:

d

dα
I[y + αη]α=0 =

∫ b

a

η(x)
∂

∂y
F (x, y, y′) + η′(x)

∂

∂y′
F (x, y, y′) dx . (13)

This ought to worry you. How can it make sense to write ∂
∂y′
F (x, y, y′), as though

y′ can be varied while y remains fixed? The answer of course is that this notation
is only shorthand: by ∂

∂y′
F (x, y, y′) we mean F3(x, y, y

′), where the function F3 is

defined by F3(x, y, z) = ∂
∂z
F (x, y, z).

The next key step is an integration by parts, to eliminate the η′(x). First note
that:

d

dx
(η

∂

∂y′
F (x, y, y′)) = η′

∂

∂y′
F (x, y, y′) + η

d

dx

∂

∂y′
F (x, y, y′) (14)
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where the d
dx

represents a total derivative, acting on every appearance of x whether
explicit or implicit (in y and y′).

Hence

d

dα
I[y + αη]α=0 =

∫ b

a

d

dx

(
η
∂F

∂y′

)
dx+

∫ b

a

η(x)

(
∂F

∂y
− d

dx

∂F

∂y′

)
dx

=

[
η
∂F

∂y′

]b
a

+

∫ b

a

η(x)

(
∂F

∂y
− d

dx

∂F

∂y′

)
dx . (15)

Now, for y to be an extremal, the LHS of this equation must vanish for all η.

Hence the RHS must vanish for all η(x). It is easy to see that this means that
both terms on the RHS must vanish for all η(x). From the test function lemma,
this means that

d

dx

∂F

∂y′
− ∂F

∂y
= 0 (16)

This is the (simplest form of the) Euler-Lagrange equation, and is our principal
result.

We also require that [η ∂F
∂y′

]ba = 0, for all η. This can be guaranteed in more than
one way.

At the end-point x = a, we can either restrict to the class of η such that η(a) = 0,
or we can impose the condition ∂F

∂y′
= 0 at x = a.

The first possibility is equivalent to specifying the value of y(a) and only making
variations which respect this condition. Often this is just what we want for the
problem in hand. This is the fixed endpoint boundary condition.

The second possibility is called a natural boundary condition. It is equivalent to
finding an extremal y(x) over all the possibilities for y(a). The justification of this
statement can be made as follows. Suppose that the condition y(a) = c does in
fact give such an extremal y. Suppose also that the solution of the Euler-Lagrange
equation with condition y(a) = c + δ, where δ is small but non-zero, is given by
y + δy (where δy cannot vanish at x = a.) Then I[y] = I[y + δy] to first order

in δ. Hence
∫ b
a
F (x, y, y′)dx =

∫ b
a
F (x, y + δy, y′ + δy′)dx to first order. Thus∫ b

a
(δyFy + δy′Fy′)dx = 0 to first order. Using the fact that y satisfies the Euler-

Lagrange equation, and integrating, we obtain δyFy′ = 0 at a. Hence Fy′ = 0 at
a. The argument goes the other way: if Fy′ = 0 is imposed at x = a, then the
solution obtained, which must take some value y = c when x = a, is extremal in
the neighbourhood of c.
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The conditions at x = b can then also be chosen from these two possibilities, quite
independently from the choice made at x = a.

Note: Remember that finding extremals and stationary values does not mean the
same thing as locating maxima or minima. It will need some further piece of infor-
mation to determine whether an extremal is a (local) maximum, or (local) mini-
mum, or neither of these. However, maxima and minima must be extremals.
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3 Classical examples and basic theorems

Shortest distance on the Euclidean plane

To illustrate the method let us derive the equation of curves which give the shortest
distance between two given points (x1, y1), (x2, y2) in the Euclidean plane. Assum-
ing (w. l. o. g.) that x1 6= x2, then we have

F (x, y, y′) =
√

1 + y′2 (17)

and the Euler-Lagrange equation becomes

d

dx

∂F

∂y′
=

d

dx

y′√
1 + y′2

= 0 , (18)

since ∂F
∂y

= 0.

Hence y′√
1+y′2

is constant, hence y′ is constant, for a solution to the Euler-Lagrange

equation. To complete the analysis we must impose the boundary conditions. If
they are both ‘fixed points’, say y(x1) = y1, y(x2) = y2, then we have a straight
line between the given points. If only one end is fixed, say y(x1) = y1, and the
condition at x2 taken as the ‘natural boundary condition’, in this case y′ = 0, we
obtain the shortest path from the point (x1, y1) to the line x = x2, which is of
course the line y = y1. If both boundary conditions are taken as natural, then all
the lines of form y = constant solve the equations; there is not a unique stationary
solution.

Shortest paths on the ‘muddy field’

Next, we can verify the circular paths found for the ‘muddy field’ problem in
lecture 1. We now take

F (x, y, y′) =

√
1 + y′2

x
. (19)

The Euler-Lagrange equation is

d

dx

∂F

∂y′
=

d

dx

y′

x
√

1 + y′2
=
∂F

∂y
= 0 , (20)

and this immediately allows one integral to be done, leaving

y′

x
√

1 + y′2
= c , (21)
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which is just the same equation (4) as we derived by generalizing Snell’s Law. To
remind you, the solutions are (arcs of) circles with centre on the y-axis. (Again,
there are both fixed point and natural boundary conditions to consider, and you
can check that these all give solutions which make sense.)

An ‘ignorable coordinate’

You should take particular note of the way that this problem simplified from a
second-order ODE to a first-order ODE because this particular F (x, y, y′) had no
explicit dependence on y, i.e. ∂F

∂y
= 0. This turns out to be of enormous importance,

especially in applications to mathematical physics. The dependent variable y is
said to be ignorable in this situation. We can state a general theorem:

If
∂F

∂y
= 0 then there is a simple first integral:

∂F

∂y′
is a constant. (22)

The same problem from a different standpoint

If we consider the problem of finding stationary values of the functional I[y] which
comes from taking

F (x, y, y′) =

√
1 + y′2

y
, (23)

the geometrical interpretation tells us immediately that the extremals must be
(arcs of) circles with centre on the x-axis. However, this is not immediately obvious
if we write down the Euler-Lagrange equations:

d

dx

(
y′

y
√

1 + y′2

)
+

√
1 + y′2

y2
= 0 , (24)

giving a complicated-looking second-order ODE. The key thing is to note a more
general result which obtains when the F has no explicit dependence on the x. This
is Beltrami’s identity, and is also of great importance.

Beltrami’s identity

If ∂F/∂x = 0, i.e. F (x, y, y′) has no explicit dependence on x, then it follows from
the Euler-Lagrange equation that

d

dx

{
y′
∂F

∂y′
− F

}
= 0 , (25)

and so

H = y′
∂F

∂y′
− F = constant (26)
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is a first integral.

Proof:
dF

dx
= 0 + y′

∂F

∂y
+ y′′

∂F

∂y′
,

by ∂F/∂x = 0. But by the Euler-Lagrange equation, this is

y′
d

dx

∂F

∂y′
+ y′′

∂F

∂y′

=
d

dx

(
y′
∂F

∂y′

)
which proves the result claimed.

Alternative Proof: Although the preceding proof is easy, it does not give any idea
of why this first integral should exist. The following argument shows the reason:
it is really just a special case of an ignorable coordinate. We simply exchange the
roles of x and y and think of the curve to be found as a function x(y) instead of
as a function y(x). (This is a clearly a very natural idea in the particular problem
we are studying!) Writing x′ for dx/dy, so that y′ = (x′)−1, the integral∫ b

a

F (x, y, y′) dx , y(a) = c, y(b) = d (27)

becomes ∫ d

c

F (x, y, (x′)−1)x′ dy , x(c) = a, x(d) = b (28)

Now x is the ignorable coordinate, so the Euler-Lagrange equation becomes

∂

∂x′
(
F (x, y, (x′)−1)x′

)
= constant.

Taking care over the partial derivatives here, i.e. remembering how expressions like
∂/∂y′ F (x, y, y′) are properly defined, this yields

−(x′)−2Fy′(x, y, (x
′)−1)x′ + F (x, y, (x′)−1) = constant.

and so
−y′Fy′(x, y, y′) + F (x, y, y′) = constant.

which is equivalent to the Beltrami identity.

Applied to the problem in hand, we deduce that

H =
−1

y
√

1 + y′2
is constant, (29)
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and it is straightforward to perform the remaining integral and recover the circular
paths.

In this case, however, there are no solutions satisfying the natural boundary con-
ditions. This agrees with the fact that there is no minimum or maximum value
for the integral between x = a and x = b. It can take any real positive value, and
the infimum 0 cannot be attained.

We shall come back to such shortest-path problems, or more generally the problems
of geodesics, in Lecture 5. It will turn out that the ‘muddy field’ is actually a way
of representing the core mathematical concept of the hyperbolic plane.

Brachistochrone

This is the most famous example of a stationary integral problem, originally solved
by Newton, J. Bernoulli and others in the 17th century.
(See http://mathworld.wolfram.com/BrachistochroneProblem.html).
The answer is not at all intuitive.

The problem is defined in terms of the mechanics of constant-g gravity. Find the
curve which allows a smoothly falling particle released from rest at one point to
reach a given lower point, not immediately below it, in the shortest time. This
needs some first-year mechanics to obtain the relevant F (x, y, y′). In this problem
we use x for horizontal distance and y for distance moved downwards. (This is
purely for the sake of being able to start at the origin and yet avoid expressions
like
√
−y.)

Explicitly, suppose the particle is released from (x, y) = (0, 0) at t = 0, and then
follows a curve y = y(x) which reaches (x, y) = (a, h), so that h is the height
lost, and a the horizontal distance traversed. Using the initial conditions, and
conservation of energy, we know that at each point in the motion along the curve
y = y(x),

E =
1

2
m(ẋ2 + ẏ2)−mgy = 0

So

ẋ2 =
2gy

1 + y′2

where y′ = dy/dx, and so

dt =
1√
2g

√
1 + y′2
√
y

dx ,

and hence the total time T is given, as a functional of the curve y(x), by

T [y] =
1√
2g

∫ a

0

√
1 + y′2
√
y

dx . (30)
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We want the curve y(x) which minimises T [y], given the fixed-end boundary condi-
tions of passing through (0, 0) and (a, h). (Note that this can also be interpreted as
solving the quickest path problem for the ‘muddy field’ where speed is proportional
to
√
y.)

We could easily write down the Euler-Lagrange equations, but it’s more efficient
to take a short cut and use the Beltrami identity. This tells us that

√
y
√

1 + y′2 =
√

2c (31)

for some constant 2c. To solve, make the substitution y = 2c sin2(φ/2), and it
becomes

dx

dφ
= 2c sin2(φ/2) = c(1− cosφ) ,

and hence (using the initial condition)

x = c(φ− sinφ), y = c(1− cosφ) , (32)

which is a cycloid.

(See http://mathworld.wolfram.com/Cycloid.html for pictures).

The ratio of a to h will now fix the arc of the cycloid that solves the problem. If
a/h = π/2, the cycloid is followed to its lowest point, at φ = π, with c = a/π; if
a/h < π/2 then it is a smaller segment of the cycloid, with c chosen to fit, and so
on.

It is worth filling in some more details. One finds that φ̇ is constant, namely
√
g/c.

So the time taken to reach the point with parameter φ is just
√
c/g φ. Suppose

the horizontal distance a is given, and we ask for the path which reaches it fastest,
over all possible h. The time is given by

√
c/g φ, where c is given implicitly by the

relation a = c(φ− sinφ). So finding the fastest way of reaching a is equivalent to
minimising φ√

φ−sinφ . One may check that this is given by φ = π. This verifies what

we obtain much more easily from taking the natural boundary condition y′ = 0
at x = a. This selects the cycloid which arrives at x = a at its lowest point, i.e.
where φ = π.

Soap film

In this question the problem is to find a minimum area, but as it is the area of a
surface of revolution, this reduces to finding a curve.

We consider a surface obtained by revolving the curve y = y(x) around the x-axis,
between the values x = x1 and x = x2. What curve gives the minimum area?
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This can be visualised as a soap film suspended between two circular wires at
x1, x2, given that the film will establish an equilibrium at a position of minimum
area.

In this case the functional A[y] to be minimised is readily given as

A[y] = 2π

∫ x2

x1

y
√

1 + y′2 dx . (33)

Again the Beltrami identity applies to gives us a first integral:

y√
1 + y′2

= c

of which the solutions are

y = c cosh(
x− x0
c

) . (34)

Filling in the details and then fitting the initial conditions is a rather fiddly business
and is left as an exercise.

The cosh curve will turn up again in connection with another problem — finding
the shape taken by a hanging chain. It is called the catenary because of this
connection, and the surface we have discovered is the catenoid. It plays a major
part in the geometry of surfaces.

A typical second order ODE problem

Suppose

F (x, y, y′) =
1

2
y′2 − 1

2
y2 + y f(x), y(0) = 0 = y(1) . (35)

Then ∂F
∂y′

= y′, ∂F
∂y

= −y + f, and the the Euler-Lagrange equation is

y′′ + y − f(x) = 0 . (36)

In this case we don’t have any helping hand from an ignorable coordinate or
Beltrami’s identity. However, we recognise the second-order ODE as the type
of equation studied intensively in the Differential Equations courses, with the
boundary conditions which can be solved by a Green’s function.

In this course we shall not pursue the solutions of such equations any further;
actually, we are more interested in a different question. Can we translate the
differential equations we have met before into a problem of finding extremals?
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4 Extension to many variables,

Hamilton’s principle

In this section we explore the application of variational principles to Mechan-
ics.

First we need a modest generalization to allow more than one dependent variable.
For this it is convenient to change our notation, since in mechanics applications
it is actually time that is the one independent variable, and the many dependent
variables represent the spatial coordinates of the mechanical system. So we think
first about q(t) and F (t, q, q̇) instead of y(x) and F (x, y, y′), where q is a typical
spatial coordinate and t is time. There is a reason for using q rather than x as
the dependent variable; we do not want to be restricted to Cartesian coordinates
as use of the letter x might wrongly suggest. The variable q might be angle or
radial distance, for instance. We then make a generalization to q1(t), q2(t), . . . qn(t)
and functions F (t, q1, . . . qn, q̇1, . . . , q̇n). Thus we consider stationary values of the
functional

I[q1, . . . , qn] =

∫ b

a

F (t, q1, . . . qn, q̇1, . . . , q̇n)dt . (37)

The method of finding these is the same as in the simplest case; we vary with
qi(t)→ qi(t) + αηi(t) and consider the effect on I at α = 0.

We find
dI

dα
|α=0 =

∫ b

a

n∑
i=1

(
ηi
∂F

∂qi
+ η̇i

∂F

∂q̇i

)
dt , (38)

and integrating by parts, this is

n∑
i=1

[
ηi
∂F

∂q̇i

]b
a

+

∫ b

a

n∑
i=1

ηi

(
∂F

∂qi
− d

dt

∂F

∂q̇i

)
dt .

We thus obtain a set of n Euler-Lagrange equations

d

dt

∂F

∂q̇i
− ∂F

∂qi
= 0, for i = 1, . . . , n . (39)

with boundary conditions [
ηi
∂F

∂q̇i

]b
a

, for i = 1, . . . , n . (40)
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We have the important special cases (1) of an ‘ignorable coordinate’ that arises
when some variable qi does not appear in F :

∂F

∂qi
= 0 implies

∂F

∂q̇i
is a constant. (41)

and (2) the generalisation of the Beltrami identity that arises when F is indepen-
dent of t :

∂F

∂t
= 0 implies H :=

n∑
1

q̇i
∂F

∂q̇i
− F is a constant. (42)

Hamilton’s Principle

The following statement sums up why Mechanics can be reformulated in terms of
extremal problems and solved by the calculus of variations.

If a mechanical system is subject only to holonomic, workless constraints and all
forces are conservative, then the motion according to Newton’s laws is an extremal
of the integral

I[q] =

∫
L(qi, q̇i, t)dt , (43)

where the coordinates qi are arbitrary but unconstrained, and L = T −V = Kinetic
Energy − Potential Energy of the system as expressed in those coordinates. L is
called the Lagrangian.

Workless means there is no friction (the constraints do no work); and conservative
means all forces are the gradient of a potential V.

Holonomic means that the qi arise as the result of eliminating constraints of the
form φ(q̃i, t) = 0, where the q̃i are some larger set of coordinates. Specifically, the
constraints do not involve the velocities ˙̃qi.

This is Hamilton’s Principle, also referred to as the principle of least action, where
the integral I[q] is called the action.

In this course, we shall take it as given, not proved, that it correctly encodes
physical laws. (In the Part B Classical Mechanics course it will be shown that it
is equivalent to Newton’s laws.)

Note that I[q] has the dimensions of energy × time. Action is a technical term
for a physical quantity with these dimensions. It turns out to be the most fun-
damental physical quantity (and in particular Planck’s constant is a quantum of
action.)
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The simplest example is just given by taking L = T = 1
2
m(ẋ2 + ẏ2 + ż2) for motion

in free space without any forces. The Euler-Lagrange equations are just

ẍ = ÿ = z̈ = 0 , (44)

i.e. Newton’s laws of motion for a free particle.

The next simplest example arises from L = T −V = 1
2
m(ẋ2+ ẏ2+ ż2)−mφ(x, y, z)

for motion in free space subject only to a conservative force with potential φ
(typically, Newtonian gravity.) The Euler-Lagrange equations then become

ẍ = −∂φ
∂x
, ÿ = −∂φ

∂y
, z̈ = −∂φ

∂z
, (45)

as required.

The value of the reformulation as a stationary integral emerges more clearly if
we make a change of coordinates. For orbit problems, with φ = −k/r, the use
of Cartesian x, y, z is correct but not very helpful. Since the Lagrangian formal-
ism does not mind which coordinates we use, let’s use spherical polars instead.
Then

L = T − V =
1

2
m(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2) +

km

r
. (46)

The θ-equation is:
d

dt
(r2θ̇)− r2 sin θ cos θφ̇2 = 0 , (47)

which is solved by θ ≡ π/2, i.e. by paths always in the equatorial plane. Restricting
our attention to such paths, the remaining equations become

r̈ − rφ̇2 +
k

r2
= 0 , (48)

d

dt
(r2φ̇) = 0 , (49)

which we can recognise as the equations obtained by a longer argument in the
Prelims treatment. The φ-equation obviously integrates to

r2φ̇ = h . (50)

It is very important to note that the simplicity of this step arises directly from
the fact that φ never appears in L; it is an ignorable coordinate. So in the La-
grangian formulation, the conservation of angular momentum is an immediate
consequence.
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Can the energy conservation statement be equally easily derived? Yes; it is the
equivalent of the Beltrami identity. By the remarks above, the fact that L has no
explicit dependence on t means that

H =
n∑
i

q̇i
∂L

∂q̇i
− L (51)

remains constant along the path. It is immediate to see from the original form of
L (before the specialisation to equatorial paths) that in this case H is just T + V ,
i.e. total energy. For equatorial paths we reduce to

1

2
(ṙ2 + r2φ̇2)− k

r
= E , (52)

and hence now we have reduced the whole problem to a single integration, with
its well known conic solutions.

The two simplifying theorems we have used, that of ignorable coordinates and
Beltrami’s identity, point to a deep feature of physical theory. There is a direct
connection between the concepts of symmetry (i.e. invariance under a group of
transformations) and conservation laws.

Independence of angle φ means that the action is invariant under φ→ φ+ α, and
this fact is equivalent to the conservation of angular momentum. In a problem
where x is ignorable, i.e. the action is invariant under x→ x+α, the corresponding
momentum in the x-direction is conserved. And when t can be replaced by t+ α,
we have a conserved energy.

Notice that angle × angular momentum, length × momentum, and time × en-
ergy, all have the dimensions of action. This conjugacy becomes fundamental in
quantum mechanics, and is the basis of the famous Heisenberg Uncertainty Prin-
ciple.

The Euler-Lagrange equations must remain the same in form under change of
coordinates, because the concept of being stationary doesn’t depend on which
coordinates are used to describe the question. On a technical level this means that
we can go ahead with writing down T and V in any way we like, without any
chain-rule transformation of variables.

We shall just look at a few examples to illustrate this simplicity.
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5 More examples in physics and geometry

So far we have not made use of the new freedom to impose holonomic con-
straints.

A typical problem studied in Prelims is where a particle moves smoothly on a
surface of revolution, say the paraboloid az = x2 + y2. Let’s derive the equations
of motion from Hamilton’s Principle. At any time the position of the particle
may be given as (

√
az cos θ,

√
az sin θ, z). That is, we have used the holonomic

constraint provided by the smooth surface to eliminate one of the three spatial
dimensions and reduce the space to that of two dimensions. Here we have used
z, θ as the two qi needed, but in principle we could have used whatever we liked.
It’s a good idea, however, to use the angle θ as one of the two coordinates because
then it turns out to be ignorable in L and so gives rise to an easy first integral.
Explicitly,

L = T − V =
1

2
((1 +

a

4z
)ż2 + azθ̇2)− gz

and the fact that θ is ignorable implies θ̇ = h/z for some constant h. The fact
that L has no explicit dependence on t, and that it is quadratic in the velocities,
gives the fact that T +V is conserved. Thus all the facts in the Prelims treatment
are immediately derived without any dotting and wedging of vectors to eliminate
the reaction force.

Prelims questions do sometimes ask for the reaction force (e.g. to determine when
a particle will lose contact with a surface) and if this is needed then a further
step is required to deduce it from the acceleration of the particle. But in many
contexts we are not actually concerned with this force at all and nothing is lost by
eliminating it from the analysis altogether.

As another example, consider the C.3 question from Mods 2010. A particle moves
smoothly on a straight wire which is at angle β to the vertical and rotates at angular
velocity ω. The Mods method involves considering the normal reaction force and
eliminating it. Using Hamilton’s Principle we can ignore the normal reaction and
go straight to L = T − V . The particle is at (z tan β cosωt, z tan β sinωt, z). So
the K.E. is just 1/2{(zω tan β)2 + (ż sec β)2} and the P.E. is gz. There is just one
Euler-Lagrange equation, giving the equation of motion immediately as

z̈ − ω2 sin2 βz = −g cos2 β

as asked for in the question. This Mods question also asked whether E = T +V is
conserved, which it is not. (Obviously — because work has to be done to keep the
rod rotating at the constant angular velocity ω.) The Lagrangian method does
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better, by producing an H which is conserved, but is not equal to total energy,
namely

H = ż∂L/∂ż − L =
1

2
{(ż sec β)2 − (zω tan β)2}+ gz .

Notice that this non-conservation of T +V follows directly from the fact that T is
not a quadratic in the velocities.

Now we are free to consider more general problems which it would not be easy to
solve by the methods used in first-year questions.

Suppose we have a particle moving on a quite general surface embedded in three
dimensions. (In what follows, we shall assume this constraint of contact with the
surface without worrying about how it could be physically realised without the
particle ever losing contact. For a mental picture, you might consider a space-
craft whose exterior surface is in the form of a double layer; the particle moves
between these two layers so that the normal reaction can point either inwards or
outwards.)

Hamilton’s Principle leads us immediately to a Lagrangian for this motion: it is
simply the kinetic energy T for motion constrained to lie on the surface. Explicitly,
suppose the surface is parametrised by (u, v), so that its points are specified by
x(u, v) = (x(u, v), y(u, v), z(u, v)). Then writing L in terms of the coordinates
(u, v), we have:

L = T =
m

2
(ẋ2 + ẏ2 + ż2) =

m

2
(E(u, v)u̇2 + 2F (u, v)u̇v̇ +G(u, v)v̇2)

where
E(u, v) = xu.xu, F (u, v) = xu.xv, G(u, v) = xv.xv

We can now write down the Euler-Lagrange equations, thus in principle determin-
ing the entire motion. In general these second-order differential equations for u
and v will not be easy to solve, but a simplifying feature is that the path taken by
the particle is a geodesic on the surface — a stationary value of arc-length.

To show this, note first that a Lagrangian L of a purely ‘kinetic energy’ form,
(i.e. quadratic in the velocities q̇i, and with no explicit dependence on t) has a
special property: by the Beltrami identity the value of L is itself a constant of the
motion.

The kinetic energy is also positive-definite. Now if f is some strictly increasing
function on the positive reals, consider the stationary value problem generated by
f(L). The Euler-Lagrange equations will be

d

dt

∂f(L)

∂q̇i
− ∂f(L)

∂qi
= 0
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d

dt

(
f ′(L)

∂L

∂q̇i

)
− f ′(L)

∂L

∂qi
= 0

f ′′(L)
dL

dt

∂L

∂q̇i
+ f ′(L)

(
d

dt

∂L

∂q̇i
− ∂L

∂qi

)
= 0

but as dL
dt

= 0, and f ′(L) 6= 0, this reduces to the same equations as generated by
L.

Taking f(L) to be
√
L, this tells us that∫ √

E(u, v)u̇2 + 2F (u, v)u̇v̇ +G(u, v)v̇2 dt

generates the same Euler-Lagrange equations. But this is simply the arc-length
for a trajectory on the surface, defining a geodesic where it is stationary.

If we wish we can eliminate the time variable t and write the integral as∫ √
E(u, v) + 2F (u, v)vu +G(u, v)v2u du

where now v = v(u) is being considered as defining the curve on the surface. This
is of the same form as we studied earlier.

So in the absence of forces, a particle simply takes the shortest path (at least in the
sense of a local minimum) it can, consistent with geometrical constraints. In this
case, least action actually coincides with shortest distance. This is a generalization
of Newton’s second law.

5.1 More geodesics

Example: circular cylinder. Take the surface to be the circular cylinder of
radius 1 and axis along the z-axis. It is then given by

x(u, v) = (cosu, sinu, v) .

We then calculate xu = (− sinu, cosu, 0),xv = (0, 0, 1), so that E = G = 1, F = 0.
The kinetic energy Lagrangian is just

L(u, v, u̇, v̇) =
1

2
(u̇2 + v̇2)

and the geodesics are given by
ü = v̈ = 0
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and so are straight lines in the (u, v) coordinates. The same conclusion comes
equally easily from finding the geodesic as stationary arc-length, where the method
above gives vuu = 0, i.e. v = au + b, as the equation of the geodesics. (Note that
paths on the cylinder illustrate very clearly that a local minimum of path-length
is not at all the same thing as the absolute minimum.)

Why is this so simple? The point is that although the cylinder has been given
as a curved surface in R3, it is in fact intrinsically flat, as is intuitively obvious:
the surface can be unwrapped without any stretching and laid out on a Euclidean
plane. The proper word for this is that it is isometric to the plane. Under such an
isometry, the geodesics are unchanged, since they are defined intrinsically.

A similar example (a circular cone) is left to the worksheet.

It is worth noting that the concept of geodesic on a surface is much more general
than this. There is no need to restrict to surfaces as defined by an embedding in
an ambient three-dimensional space. The metric can be given abstractly (in fact
we did this with our ‘speed’ functions in the opening lecture). Also, there is no
need to restrict attention to geodesics on surfaces; we could equally well study
geodesics in spaces of any number of dimensions.

In physics, this is a most important idea in the development of Einstein’s general
theory of relativity. In this theory, gravity becomes a part of the four-dimensional
space-time geometry, not a force, and the orbits of free fall under gravity (including
light rays) must be geodesics in the resulting space; the four-dimensional space is
not thought of as embedded in anything bigger.

In pure mathematics, the study of geodesics is a vital part of Geometry and some-
thing you could follow in the B course next year.

23



6 Generalization to several independent variables

and to higher derivatives

6.1 Several independent variables

Suppose that instead of considering the stationary values of functionals of a curve
y(x), we go up one dimension and consider the variation of surfaces z(x, y). Thus
we define the functional

I[z] =

∫ ∫
R

F (x, y, z, zx, zy)dxdy ,

where R is some region in the (x, y)-plane, and zx, zy are the partial derivatives of
z(x, y) with respect to x and y.

For example, F (x, y, z, zx, zy) =
√

1 + z2x + z2y would give the area of the surface,
and so allow the investigation of minimal surfaces in generality (not restricted to
surfaces of revolution).

The method, as always, is to vary the dependent variable along a one-dimensional
path:

z(x, y)→ z(x, y) + αη(x, y) ,

which means that

dI

dα
|α=0 =

∫ ∫
R

(
η
∂F

∂z
+ ηx

∂F

∂zx
+ ηy

∂F

∂zy

)
dxdy .

We can integrate by parts. In the case of fixed boundary conditions, i.e. η = 0 on
∂R, we obtain:

dI

dα
|α=0 =

∫ ∫
R

η

(
∂F

∂z
− ∂

∂x

∂F

∂zx
− ∂

∂y

∂F

∂zy

)
dxdy .

and conclude that the Euler-Lagrange equation, which must hold at all points in
R, is

∂

∂x

∂F

∂zx
+

∂

∂y

∂F

∂zy
− ∂F

∂z
= 0 .

Further generalization, to n rather than 2 independent variables, is immediate.
The result is as follows: consider functions u(x1, x2 . . . xn) and write ui for ∂u/∂xi.
Then given a functional F (x1, x2 . . . xn, u, u1, u2 . . . un), integrated over an n-dimensional
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region R, with fixed boundary conditions on ∂R, the stationarity condition is given
by the Euler-Lagrange equation

n∑
i

∂

∂xi

∂F

∂ui
− ∂F

∂u
= 0 .

A simple and beautiful example of this is the case where

F =
1

2
|∇u|2 =

1

2

n∑
1

u2i

in which case the Euler-Lagrange equation is just

0 =
n∑
i

∂

∂xi

∂F

∂ui
− ∂F

∂u
=

n∑
i

∂

∂xi
ui = ∇2u ,

i.e. the Laplace equation or its n-dimensional generalization. This indicates that
Laplacian or wave-equation problems can readily be reformulated in a variational
form — an idea which is fundamental to modern quantum field theory.

6.2 Higher derivatives

Suppose now we wish to find stationary values for

I[y] =

∫ b

a

F (x, y, y′, y′′) dx .

Varying y(x) as before, we find

dI

dα |α=0
=

∫ b

a

(
η
∂F

∂y
+ η′

∂F

∂y′
+ η′′

∂F

∂y′′

)
dx .

Integrating by parts twice, we find

dI

dα |α=0
=

[
η(
∂F

∂y′
− d

dx

∂F

∂y′′
) + η′

∂F

∂y′′

]b
a

+

∫ b

a

η

(
∂F

∂y
− d

dx

∂F

∂y′
+

d2

dx2
∂F

∂y′′

)
dx .

Thus we now have, as necessary condition for a stationary solution, the satisfaction
of the Euler-Lagrange equation

∂F

∂y
− d

dx

∂F

∂y′
+

d2

dx2
∂F

∂y′′
= 0 .
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This is a fourth-order differential equation, requiring four constants of integration.
These must come from a suitable selection of end-point conditions (now on both
y and y′), and natural boundary conditions

∂F

∂y′
− d

dx

∂F

∂y′′
= 0,

∂F

∂y′′
= 0 .

Example: a diving board

We shall study a problem which gives a picture of how the calculus of variations
can solve practical problems of optimisation such as arise in engineering and eco-
nomics.

We consider the functional

E[y] =

∫ L

0

(
1

2
K(y′′)2 + ρgy) dx ,

which can be considered as the total energy of an elastic beam of horizontal length
L, clamped at x = 0 so that it has y = 0, y′ = 0 there, but free at x = L
and bending under its weight. (We assume that y is suitably small, so that this
functional is a reasonable approximation to the physical situation.) The beam will
settle in an equilibrium where the total energy is minimised, and so the calculus
of variations gives a method to find the shape of the beam.

The Euler-Lagrange equation is

Ky′′′′ + ρg = 0

and the four boundary conditions are supplied by y(0) = y′(0) = 0 at one end,
and then the natural boundary conditions y′′(L) = y′′′(L) = 0 at the other. This
clearly specifies a quartic polynomial, and satisfaction of the boundary conditions
gives

y(x) = − ρg

24K
(x4 − 4Lx3 + 6L2x2) .

Note that in this situation, the free end of the board will droop to height y = −ρgL4

8K
.

Imagine a swimmer in the pool putting a hand to the free end and fixing it at height
y = −ρgL4

8K
+ h. Clearly, if h = 0 no force is required at all. But for h 6= 0 a force

will be required. We can evaluate this force by extending the analysis.

First, solve the stationary problem again but now for the fixed-end condition
y(L) = −ρgL4

8K
+ h. To shorten the expressions, write w = ρg

K
in what follows. We

find, straightforwardly, that now

y(x) = − w
24

(x4 − 4Lx3 + 6L2x2) +
h

2L4
(−Lx3 + 3L2x2) .
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Clearly the energy functional E[y] can now be considered as a function of h. It will
take the least value when h = 0. If the free end is raised, the energy will increase,
and this can only come from the work done, which is given by

∫
F (h)dh, where

F (h) is the force needed to keep y(L) = − w
8L4 + h. Thus F (h) = d

dh
E(h).

This is easily calculated and is 3hK
L3 .

Returning to the situation where the end x = L is free, we can apply the same
ideas to find the forces being applied at x = 0 in order to maintain the constraints.
In this case it is even easier to see that the upward force to maintain y(0) = 0
is just the total weight ρgL of the board; slightly less obvious is that a torque of
moment 1

2
ρgL2 is applied by the clamp to maintain the condition y′(0) = 0. In

this case we use torque times angle = work done.

You will already be familiar with this idea of a force being associated with a
constraint, since it is just the idea of a normal reaction that you had in Prelims
mechanics.

But suppose the functional is something that measures not energy but cost. Then
the elements of the problem, including the constraints, take on an economic inter-
pretation. You could imagine this diving-board curve as representing the effect of
a company buying a hospital and changing a policy of stable employment to one
of running down the work force. (The independent variable x is now time, and y
measures the size of the work force.) How can it pursue this policy at least cost?
Suppose that its cost functional is given by the same elements as appeared in the
diving-board functional: the wages, proportional to y, and the cost in administra-
tive disruption, strikes, etc. from making swingeing cuts, modelled as proportional
to (y′′)2. The solution with natural boundary conditions will represent the ideal
situation (from the point of view of the company, of course, not that of the pa-
tients!) at the end of a period. If a government regulator imposes a constraint,
of dictating what the workforce level must be at that point, that constraint is
naturally associated with a price: it is what it will be worth the company paying
to persuade the regulator to reduce the imposed quota by one unit. In the Opti-
misation course, using linear programming, you met the idea that prices are dual
variables associated with constraints, and this is a another example of it.
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7 Extremals subject to an integral constraint

The problem addressed in this section is that of how to find a stationary value of
an integral

I[y] =

∫ b

a

F (x, y, y′) dx

subject to an integral constraint

J [y] =

∫ b

a

G(x, y, y′) dx = C .

We perform a two-parameter variation, that is, consider

y → y + α1η1 + α2η2 .

Then, for an particular y, we can define

f(α1, α2) = I(y + α1η1 + α2η2), g(α1, α2) = J(y + α1η1 + α2η2) .

Now recall the method of Lagrange multipliers from Prelims. If we seek a station-
ary value of f(α1, α2), constrained by g(α1, α2) being specified, we do by solving
the equations

∂

∂αi
(f − λg) = 0 , i = 1, 2 .

So for small variations of y, we deduce that

∂

∂αi
(I(y + α1η1 + α2η2)− λJ(y + α1η1 + α2η2))|αi=0 = 0 , i = 1, 2 .

and then the same arguments as before (integration by parts, the test function
lemma) lead to the Euler-Lagrange equation

d

dx

(
∂

∂y′
(F − λG)

)
− ∂

∂y
(F − λG) = 0 ,

together with fixed end point or natural boundary conditions.
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A freely hanging chain — the catenary:

We can use this method to find the shape taken by an (idealized) hanging chain
of constant density, supported only by two ends. Assume that the chain falls on a
curve described by y = y(x), with fixed endpoints y = b at x = ±a. It is subject
to the constraint that its total length is fixed:

J [y] =

∫ a

−a

√
1 + y′2 dx = L ,

and then its equilibrium is determined by minimising its gravitational potential
energy, which is

I[y] = gρ

∫ a

−a
y
√

1 + y′2 dx .

Applying the Lagrange multiplier method, and absorbing ρg into the λ,

F − λG = (y − λ)
√

1 + y′2 ,

which has no explicit x-dependence, so Beltrami’s identity gives a first integral:

(y − λ) = c
√

1 + y′2

Substituting y = λ+ c coshu readily gives the solution:

y = λ+ c cosh(
x− x0
c

)

Fitting these constants c, λ, x0 to the given data a, b, L is left as an exercise.

Dido’s Problem:

Another classical problem of this nature is the simplest example of an isoperimetric
problem. On the Euclidean plane, given a fixed length as a perimeter, what is the
largest area that can be enclosed by it? (The answer is given by taking a circle.)
We will consider a slightly different version of this problem, in which the area
is on one side of a given straight line, w.l.o.g the x-axis. Then the answer is
given by taking the boundary to be a circular arc. You will find this described as
‘Dido’s problem’, since it can somewhat fancifully be considered as arising in the
Aeneid. Dido (better known for inspiring Purcell’s famous Lament) supposedly
fixed the boundaries of Carthage by this criterion. That is, the line y = 0 is the
Mediterranean coastline.
(See http://mathworld.wolfram.com/DidosProblem.html).
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For this problem, we could take F = y and G =
√

1 + y′2, where the boundary
curve is taken to be y = y(x), but it is actually better to take the boundary curve
to be given by (x(t), y(t)), where t is an arbitrary parameter. Then we consider
the extremals of ∫

(yẋ− λ
√
ẋ2 + ẏ2)dt .

The Euler-Lagrange equations are

d

dt

−λẏ√
ẋ2 + ẏ2

= ẋ ,
d

dt

−λẋ√
ẋ2 + ẏ2

= −ẏ , (53)

so
−λẏ√
ẋ2 + ẏ2

= (x− a) ,
−λẋ√
ẋ2 + ẏ2

= −(y − b) , (54)

and thus, eliminating λ,

(x− a)ẋ+ (y − b)ẏ = 0, (x− a)2 + (y − b)2 = c2 ,

so the curves must be circles.

For the original Dido problem we are interested in the case of a fixed boundary
condition y(t) = 0 at each end, and a natural boundary condition for x(t) at each
end (that is, we are taking the extremals over all possible x, given y = 0.) The
natural boundary condition for x is y − λẋ/

√
ẋ2 + ẏ2 = 0, and since y = 0, this

means ẋ = 0. (This means that dy/dx is infinite here, which is why the y(x)
formulation is not appropriate.) This means that the centre of the circle must
be on y = 0, and the stationary area, given the constraint, will be bounded by a
semi-circle, as expected.

These are the same semi-circles as we have met in the problem of the quickest
paths on the muddy field (more formally, geodesics on the hyperbolic plane). This
can be seen more directly if we proceed slightly differently. The second equation
in (53) can be written

d

dt
(

λẋ√
ẋ2 + ẏ2

− y) = 0, so
λẋ√
ẋ2 + ẏ2

− y is constant.

When the boundary conditions y = 0, ẋ = 0 are imposed, this constant must be
0, and so

y
√

1 + y′2 = λ .

This is the same equation as arises for the quickest-path problem, at (29), and so
has the same semi-circle solutions.
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This feature extends to the more general colonial land-grab problem where a vary-
ing value h(y) is attached to the land and the objective is to secure the greatest
total value, given the length of the border to be defended. In this case, the problem
is given by taking F = H(y) and G =

√
1 + y′2, where H(y) =

∫ y
0
h(u)du. For

the case of natural boundary conditions, the resulting equation is

H(y)
√

1 + y′2 = λ ,

which you can check is the same equation as arises from the problem of finding
the quickest path on the muddy field when the speed of movement is H(y).

Thus if h(y) = 1/
√
y, so H(y) = 2

√
y, and the solution is given by a cycloid,

just as with the Brachistochrone (see equation (31)). The details are left to the
worksheet.

Constraints and prices again

We now have another example of where a constraint can be thought of as defining
a price. How much more I can we get if we change the constraint J = C to
J = C+δC? Write I(C) for the stationary value of I, given the constraint J = C.
Then we find that

λ =
dI(C)

dC
, (55)

giving a nice interpretation of the λ.

For a proof of this, recall that the solution I − λJ is stationary, i.e. is unchanged,
to first order, when the extremal y is changed to any y + δy consistent with the
boundary conditions. Suppose we choose the particular δy which makes y+δy the
extremal for the problem where the constraint J = C + δC is imposed. Then we
have

I(C)− λC = I(C + δC)− λ(C + δC)

to first order. Subtracting and taking δC → 0, we recover the relation.

Thus, in Dido’s problem the value of λ in the solution indicates the value (in extra
area gained) of increasing the length of the rope which defines the perimeter.
(So we have solved an extra problem: how much money Dido should pay for old
rope.)

Specifically, in this problem, we have for perimeter of length L, a stationary area
I(L) = L2

2π
, and so dI(L)

dL
= L

π
, which is just the radius of the circle. It is easy to

check that this is indeed the value of λ.
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8 Application to Sturm-Liouville equations

8.1 Some motivation from quantum mechanics

Here are some remarks from outside the content of this course which are intended
to illustrate the connection with fundamental physics.

In quantum mechanics, the state of a physical system depends not on the motion
of point particles but of wave functions. These are actually complex-valued, but
for the purpose of this discussion we can give a simplified picture with real func-
tions. The simplest situation is for a single particle confined to a one-dimensional
finite interval [0, 1]. Whilst a point particle could simply remain at rest in this
interval, and have zero kinetic energy, the wave-function ψ(x) has an kinetic en-

ergy associated with (half) the integrated square of its derivative:
∫ 1

0
{ψ′(x)}2dx.

So far this might look something like the kinetic energy of a fluid, but there is a
subtlety which makes a wave-function completely different from a classical fluid.
The energy is actually determined by the ratio∫ 1

0
{ψ′(x)}2dx∫ 1

0
{ψ(x)}2dx

so that multiplying ψ(x) by a constant makes no difference. The energy is a
functional of the shape of the ψ, not of its scale. In particular, ψ ≡ 0 makes no
sense in this ratio, so there is no obvious analogue of a particle at rest. Instead, the
question of the least value taken by this ratio emerges, and it is far from intuitively
clear. In fact, for functions such that ψ(0) = 0 = ψ(1), the answer is π2, as we
shall show, and the existence of such a non-zero ground-state energy is a typical
feature of quantum systems in much more general settings.

We need a formalism that will handle this problem, but also the more general
problems that arise when the energy functional is not so simple, and the geometry
of the space not just a simple interval. Clearly, the theory of stationary integrals,
subject to an integral constraint, provides just this formalism. The ratio prob-
lem as described above can be restated as the problem of finding a minimum for∫ 1

0
{ψ′(x)}2dx subject to the constraint that

∫ 1

0
{ψ(x)}2dx = 1.

Thus the ratio of interest can be identified with the value taken by the Lagrange
multiplier λ in the solution. If we look at this in the light of the preceding discus-
sion, we see that the relationship of I[y] to J [y] is very simple in this case: it is
simply linear, I = λJ , with λ interpretable as a constant price. But what is new
in this situation is that for the first time we are taking seriously the fact that there
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are many local extrema, in fact a countable infinity of them, and we are studying
how they inter-relate.

The inter-relation of the extrema is naturally expressed by seeing that λ also takes
on a further meaning as the eigenvalue of an differential operator.

8.2 The Sturm-Liouville equation

The differential operators we are concerned with are just the same as you have
met in last term’s course, but written in a slightly different way. The standard
Sturm-Liouville form is

(p(x)y′)′ + q(x)y = −λr(x)y for a ≤ x ≤ b , (56)

with boundary conditions which will be specified below. Here p, q, r are taken to
have continuous derivatives, and we shall assume r > 0, p ≥ 0.

It is immediate that this is the Euler-Lagrange equation for the variational problem
of finding stationary values of

I[y] =

∫ b

a

(p(y′)2 − qy2)dx

subject to

J [y] =

∫ b

a

ry2dx = constant.

We can now note the boundary conditions that are consistent with this interpre-
tation: we have the usual choice between fixed and natural boundary conditions
at each end, so that either

y(a) = 0 or p(a)y′(a) = 0 , (57)

and similarly at b.

8.3 Examples

1. If p ≡ 1, q ≡ 0, r ≡ 1, we regain the motivating example that began this section.
But now we can solve it: the allowed values of λ are just the sequence λn = n2π2,
and the corresponding yn(x) are (proportional to) sin(nπx).

2. If p(x) = 1 − x2, q ≡ 0, r ≡ 1, we have Legendre’s equation on [−1, 1]. With
natural boundary conditions, the solutions are the Legendre polynomials Pn(x),
as met in the Differential Equations course.
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3. If p(x) = x, q(x) = −k2/x, r(x) = x, we obtain the equation

(xy′)′ − k2

x
y = −λxy

which is equivalent to

y′′ +
1

x
y′ − k2

x2
y = −λy

also recognisable from the Differential Equations course as Bessel’s equation of
order k. This has solutions vanishing at x = 0 of form Jk(λx). A fuller treatment
would bring in the solutions to Bessel’s equation which diverge at x = 0, but in the
simplest situation, when boundary conditions y = 0 at x = 0, x = a, are imposed,
there will be a discrete spectrum of λn such that Jk(λnx) satisfies them.

8.4 Eigenfunction expansions

The idea of Sturm-Liouville theory is to generalise the Fourier analysis that is
naturally associated with case (1). From Mods, you know how to expand a gen-
eral function in terms of sines and cosines, making use of their completeness and
orthogonality properties. It turns out that these properties are not unique to the
trigonometrical functions. They can be regarded as following from their emergence
as solutions to a Sturm-Liouville ODE, and any other Sturm-Liouville equation
will give rise to another set of functions with these completeness and orthogonal-
ity properties. That is, there is in general, for any Sturm-Liouville equation, a
sequence of eigenfunctions yn(x) with completeness and orthogonality properties,
such that a general function can usefully be expanded as

∑
n cnyn.

The proper statement and proof of this lies beyond this course (remember that
even for Fourier theory the question of completeness is subtle, with great attention
being needed for points of discontinuity.) However, we can show how the vital
orthogonality properties emerge directly from this formulation.

Suppose, for a (p, q, r) Sturm-Liouville system, we have two solutions yn, ym with
the corresponding λn 6= λm.

We will first verify that λn, the eigenvalue associated with the eigenfunction yn, is
equal to the quotient I[yn]/J [yn] and so to the Lagrange multiplier in the integral
formulation. We have

(p(x)y′n)′ + q(x)yn = −λnr(x)yn

so multiplying by yn and integrating,∫ b

a

(p(x)y′n)′yn + q(x)y2n dx = −λn
∫ b

a

r(x)y2n dx
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so ∫ b

a

d

dx
(py′nyn) dx−

∫ b

a

(p(x)y′
2
n − q(x)y2n) dx = −λn

∫ b

a

r(x)y2n dx

i.e.
[py′nyn]ba − I[yn] = −λnJ [yn] . (58)

But the boundary term vanishes because a we either have yn(a) = 0 or we have
p(a)y′n(a) = 0, and similarly at b. Hence I[yn] = λnJ [yn] as required.

Now we shall show that ym, yn are orthogonal, in the sense that∫ b

a

rynymdx = 0 . (59)

We have that
(p(x)y′n)′ + q(x)yn = −λnr(x)yn

(p(x)y′m)′ + q(x)ym = −λmr(x)ym

Multiplying the first by ym, the second by yn, subtracting, and integrating from a
to b, ∫ b

a

(ym(py′n)′ − yn(py′m)′)dx = −(λn − λm)

∫ b

a

r(x)ymyndx

But the LHS can be exactly integrated to

[p(ymy
′
n − yny′m)]ba

and thus vanishes by the boundary conditions, for at a we either have ym(a) = 0 =
yn(a) or we have p(a)y′m(a) = 0 = p(a)y′n(a), and similarly at b. Thus the RHS
vanishes, but since λm − λn 6= 0 by assumption, the orthogonality follows.

This argument is the same as that used in the Algebra course where the general
definition of an inner product is discussed. We have in effect defined an inner
product structure on a space of functions by using the r(x). As in Algebra, we can
define an orthonormal set of basis functions yn, with respect to this inner product,
by choosing the scale such that

J [yn] =

∫ b

a

r(x){yn(x)}2dx = 1 . (60)
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8.5 Rayleigh-Ritz approximation

Throughout the course we have emphasised that the variational formalism is a
two-way street. Our theory allows the solution, via differential equations, of no-
table problems involving extremals. On the other hand, it can be used profitably
to reformulate problems to do with differential equations in terms of stationary
integrals. In the context of Sturm-Liouville equations, the spectrum eigenvalues
can be usefully investigated by calculating the integrals I[y] and J [y]. In partic-
ular, trying out any y whatever gives an upper bound for the lowest eigenvalue
λ1.

Thus, returning to the original example of∫ 1

0
{ψ′(x)}2dx∫ 1

0
{ψ(x)}2dx

we can try the simplest possible y satisfying the boundary conditions, y = x(1−x),
and calculate

Q =

∫ 1

0
(2x− 1)2dx∫ 1

0
x2(1− x)2dx

= 10

so that λ1 ≤ 10. This is a good approximation to λ1 = π2.

This process can be refined. Clearly, this approximation could be improved by
optimising the trial y over a set of parameters. Hence we arrive at a good approx-
imation ỹ1 to y1. Then, the next eigenvalue could be estimated by optimising over
another class of trial functions, all orthogonal to ỹ1. This gives an estimate of λ2
and y2, and so on.

There is a reason why the approximation of eigenvalues is good; if the trial function
ỹ1 is correct to O(ε), the eigenvalue λ1 will be good to O(ε2). For if

ỹ1 = y1 +
∞∑
2

cnyn

where each cn is of O(ε). then

I[ỹ1] = λ1 +
∞∑
2

λn|cn|2, J [ỹ1] = 1 +
∞∑
2

|cn|2

whence Q[ỹ1] differs from λ1 by O(ε2).
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